用户名: 密码: 验证码:
空气引射风力灭火机的研究及其性能影响因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力灭火机为我国草原防火主流灭火设备。本文将空气引射技术应用于风力灭火机,改变了风力灭火机喷风筒出口后流场结构,改善了出口风量同时增大了有效灭火距离。
     本文首先通过对无扩压亚音速空气引射风力灭火机的出口后流场基本模型的研究确定了出口后1.5m风速,1.5m处有效灭火面积及有效灭火距离为评价风力灭火机气动性能好坏的标准,并对这三个指标进行了方程推导,提出了有效灭火面积比的概念。
     建立了引射式风力灭火机及涡喷式引射风力灭火机的CFD模型,通过试验对比的方法确定了适合计算引射式风力灭火机内部流场湍流模型为RNG κ-ε,适合计算涡喷式引射风力灭火机内部流场湍流模型为S-A模型。用试验的方法确定了两种风力灭火机CFD模型的边界条件。用试验的方法测定了混合室出口截面速度不均匀度β,并找到了β与用于计算2种风力灭火机出口后流场的湍流系数a的拟合关系式。证明了在所研究范围内其这2种拟合关系式的有效性。
     应用CFD方法研究混合室直径Dm、混合室长度Lm、喷嘴位置S及接收室收敛角θ对引射式风力灭火机性能指标单一因素影响,发现其影响程度顺序为:Dm>Lm>S>θ。分析不同参数组合的245组CFD模型发现,Dm、Lm、θ三个尺寸参数存在较强交互性影响。制造了引射式风力灭火机并进行了性能指标试验测试,结果为:对比于传统便携式风力灭火机,距离喷射筒出口1.5m速度u1.5提高了8.31%,有效灭火距离Lc提高了9.95%,1.5m处有效灭火面积而Ac提高了62.2%。
     应用CFD分析的方法发现单一因素对涡喷式引射风力灭火机性能指标的影响大小顺序为:Dm>S>Lm>θ。其中Lm和θ的单独变化对涡喷式引射风力灭火机性能指标影响非常小。分析不同参数组合的486组CFD模型发现,Dm、S、θ三个尺寸参数对涡喷式引射风力灭火机性能指标存在着交互性影响。最终确定最优尺寸参数组合为:混合室直径Dm为80mm,接收室收敛角θ为20°,喷嘴位置S为0,混合室长度为Lm为700mm。应用该参数组合制造的喷射筒实测值为:u1.5为42.7m/s,Lc为3.16m,Ac为0.091m2。其最大误差绝对值小于4.39%。说明应用响应曲面及CFD分析的方法计算涡喷式引射风力灭火机流场是有效的。
     根据受力分析及国家标准,确定了涡喷式引射风力灭火机基本结构及尺寸。制造了涡喷式引射风力灭火机并进行了整机性能评测,发现除噪声大于规定标准将外,其它指标均大幅优于便携式风力灭火机整机性能标准。进行了草原实地风力灭火试验并将试验数据与便携式风力灭火机进行了对比。发现涡喷式引射风力灭火机能够处理更高火强度及可燃物密度草原火,且灭火时间低于便携式风力灭火机,同时其抗复燃性也优于便携式风力灭火机。
Portable pneumatic extinguisher is an effective device which has been widely used for forest and grassland fire extinguishing in China. In order to enhance the effective range and rate of discharge of portable pneumatic extinguisher, a new method to weaken air velocity attenuation by increasing the flow rate using an air ejector is proposed and investigated in this study. This research belongs to the category of subsonic air ejector.
     Firstly, tow types of turbulivity of air jet'a'has been expressed by the non-uniformity of flow velocity distributions on. It's necessary to use this factor for the calculation of air velocity where1.5meters downstream from the outlet cross-section of mixing chamber which defined as u1.5. Experimental and the CFD (Computational Fluid Dynamics) methods are applied to investigate the influence on performance of the air ejector. Four parameters are characterized:converging angle of entraining chamber θ; diameter of the mixing chamber Dm; the nozzle position (NXP) S and lenth of mixing chamber Lm.
     Up to241different models are established and meshed by Gambit2.3and then simulated and calculated by Fluent6.3with the turbulence model of RNG k-epsilon. Consequently,241different results containing flow rate of nozzle outlet cross-section Gp, entrainment flow rate Ge, flow rate of mixing chamber outlet cross-section Gm, air velocity of mixing chamber outlet cross-section uc are acquired. Based on these data, the response surfaces for u1.5, Lc and Ac which are used to investigate the interaction between Dm,θ, S and Lm to u.2.5and entrainment ratio have been established. The results indicate that the parameters Dmand θ have great influence on u1.5, Lc and Ac. It is also demonstrated that the interaction between Dm,θ and Lm is significant. However, parameter S gives a relative delicate influence on u1.5, Lc and Ac, and also the interaction with the other parameters is weak. In addition, to find out the mechanism of influence on u1.5, Lc and Ac, the pressure field and velocity field of every single factor of Dm,9, S and Lm have been investigated and compared as well. It indicates that high value of θ could create a relatively significant negative pressure zone in the mixing chamber, which requires a larger Dm to provide sufficient air input, as a consequence u1.5and entrainment ratio increase accordingly. Because of the negative pressure zone nearby nozzle outlet, the effective power of centrifugal fan and engine are increased both. The optimum value of θ is25.3°, when Dm equals to144mm, Lm equals to900mm, S equals to-60mm, u1.5could reach the maximum value. The maximum u1.5Lc and Ac which is gained by experiments using an ejecting pneumatic extinguisher, is32.6m/s,2.32m and0.060m2respectively, which exceeds the traditional pneumatic extinguisher8.31%,9.95%,62.2%. Meanwhile, the value of u1.5could keep adding up as Dm continues to increase, but the range of Dm has been limited by design and practical applicability of portable pneumatic extinguisher.
     For the MTE pneumatic ejecting extinguisher, Up to486different models are established and meshed by Gambit2.3and then simulated and calculated by Fluent6.3with the turbulence model of Spalart-Allmaras. Consequently,486different results containing flow rate of nozzle outlet cross-section Gp, entrainment flow rate Ge, flow rate of mixing chamber outlet cross-section Gm, air velocity of mixing chamber outlet cross-section uc are acquired. Based on these data, the response surfaces for u1.5, Lc and Ac which are used to investigate the interaction between Dm,9, S and Lm to u2.5and entrainment ratio have been established. The results indicate that the parameters Dmand9have great influence on u1.5, Lc and Ac. It is also demonstrated that the interaction between Dm,θ and Lm is significant. However, parameter S and9gives a delicate influence on M1.5, Lc and Ac. In addition, to find out the mechanism of influence on m1.5, Lc and Ac, the pressure field and velocity field of every single factor of Dm,θ, S and Lm have been investigated and compared as well. Because of the negative pressure zone nearby nozzle outlet, the effective power of centrifugal fan and engine are increased both. The optimum value of6is20°, when Dm equals to80mm, Lm equals to700mm,S equals to0, u1.5could reach the maximum value. The maximum u1.5, Lc and Ac which is gained by experiments using an ejecting pneumatic extinguisher, is42.7m/s,3.16m and0.091m2respectively. Meanwhile, the micro turbine pneumatic ejecting extinguisher has been designed and manufactured. Grassland fire extinguishing experiment has been carried out and it has been proved that the extinguishing effect of MTE pneumatic ejecting extinguisher is much better than portable pneumatic extinguisher.
引文
[1]吕敬群,孟庆良.风力灭火机具研究概述.森林防火,2008(1):40-42
    [2]宋兴关,马丽心,王立民.6SB-C型风力灭火机的研制.林业机械与木工设备,2002,30(3):22-23
    [3]王冠群.风力灭火机的发展史.林业机械与木工设备,2001,29(1):31-32
    [4]李攀旭,王顺喜,何鹏,等.我国草原森林风力灭火机问题探讨.林业实用技术,2007(12):42-43
    [5]宋兴关,马丽心,王立民.6SB-A型手提式风力灭火机的研制.林业机械与木工设备,2002,30(2):16-17
    [6]廖进昌.6MF-26风力灭火机的设计和开发.广西林业科学,2004,33(3):155-157
    [7]周尧振.HFM-37型风力灭火机的研制.林业机械与木工设备,1999,27(3):8-10
    [8]周尧振.HFM-37型风力灭火机灭火试验研究.林业机械与木工设备,1999,27(4):11
    [9]佟志军.草原火灾应急管理与决策支持集成研究:[博士学位论文].长春:东北师范大学,2009
    [10]马有祥.我国草原火灾防控的实践与探索.中国应急管理,2012(11):12-15
    [11]籍志方.风力灭火机的特点及评价指标.林业机械,1989(1):2-5
    [12]董广生,王淑妨,高昌海,等.高速气流灭火能量的研究.林业科技,1994,19(3):25-27
    [13]徐滨.风力灭火机灭火机理的探讨.森林防火,1994(2):13-15
    [14]黄志军.高速气流灭火机理及其能量的研究.中国林业,2009(2):38
    [15]褚双磊,俞国胜.轴流式风力灭火机的研究初探.林业机械与木工设备,2007,35(4):24-26
    [16]褚双磊.叶片几何参数对轴流叶轮气动性能的影响规律研究.科学技术与工程,2014,14(7):26-30
    [17]宋向群,沈天耀,傅汉章.风力灭火机出口后湍流场的计算.力学与实践,1992,14(1):35-37
    [18]李林书,蒋梅胜,何也能,等.空气引射提高风力灭火机风速的分析与试验.农业工程学报,2014,30(1):55-62
    [19]褚双磊.轴流式风力灭火机的轴流叶轮气动性能研究:[博士学位论文].北京:北京林业大学,2010
    [20]索科洛夫.喷射器.北京:科学出版社,1977
    [21]王栋.微型涡喷发动机试验研究:[硕士学位论文].南京:南京理工大学,2011
    [22]Chunnanond K, Aphornratana S. Ejectors:applications in refrigeration technology. Renewable and sustainable energy reviews,2004,8(2):129-155
    [23]Sun D W, Eames I W. Recent developments in the design theories and applications of ejectors-a review. Journal of Institute Energy,1995,68(475):65-79
    [24]Dessouky H, Ettouney H, Alatiqi I. Evaluation of steam jet ejectors. Chemical Engineering and Processing,2002,41(6):551-561
    [25]Munday JT, Bagster DF. A new theory applied to steam jet refrigeration. Industrial & Engineering Chemistry Process Design and Development,1977,16(4):442-449
    [26]Keenan JH, Neumann EP, Lustwerk F. An investigation of ejector design by analysis and experiment. ASME Journal of Applied Mechanics,1950,72:299-309
    [27]Zahradnik J, Fialova M, Linek V, et al. Dispersion efficiency of ejector-type gas distributors in different operating modes. Chemical engineering science,1997,52(24):4499-4510
    [28]Eames IW, Aphornratana S, Haider H. A theoretical and experimental study of a small-scale steam jet refrigerator. International Journal of Refrigeration,1995,18(6):378-386
    [29]Aly NH, Aly K, Shamloul MM. Modelling and simulation of steam jet ejectors. Desalination, 1999,123(1):1-8
    [30]Rogdakis ED, Alexis LK. Design and parametric investigation of an ejector in an air-conditioning system. Applied Thermal Engineering,2000,20(2):213-226
    [31]Selvaraju A, Mani A. Analysis of an ejector with environment friendly refrigerants. Applied Thermal Engineering,2004,24(5):827-838
    [32]Ouzzane M, Aidoun Z. Model development and numerical procedure for detailed ejector analysis and design. Applied Thermal Engineering,2003,23(18):2337-2351
    [33]Grazzini G, Mariani A. A simple program to design a multistage jet-pump for refrigeration cycles. Energy Conversion and Management,1998,39(16):1827-1834
    [34]Sherif SA, Lear WE, Steadham JM, et al. Analysis and modeling of a two-phase jet pump of a thermal management system for aerospace applications. International Journal of Mechanical Sciences, 2000,42(2):185-198
    [35]Cizungu K, Lroll M, Ling ZL. Modelling and optimization of two-phase ejectors for cooling systems. Applied Thermal Engineering,2005,25(13):1979-1994
    [36]Beithou N, Aybar HS. A mathematical model for steam-driven jet pump. International Journal of Multiphase Flow,2000,26(10):1609-1619
    [37]Cattadori L, Lalbiati L, Vanini P. A single-stage high pressure steam injector for next-generation reactors:test result and analysis. International Journal Multiphase Flow,1995,21(4): 591-606
    [38]Deberne N, Leone JF, Duque A, et al. A model for calculation of steam injector performance. International Journal of Multiphase Flow,1999,25(5):841-855
    [39]Smith SJ, Riffat SB, Wu S, et al. Low-pressure ejectors:prediction of performance by computational fluid dynamics. Building Services Engineering and Research Technology,1997,18(3): 179-182
    [40]Riffat SB, Everitt P. Experimental and CFD modelling of an ejector system for vehicle air conditioning. Journal of Institute of Energy,1999,72(491):41-47
    [41]Riffat SB, Omer SA. CFD modelling and experimental investigation of an ejector refrigeration system using methanol as the working fluid. International Journal of Engineering Research, 2001,25(2):115-128
    [42]Varga S, Oliveira A C, Ma X, et al. Experimental and numerical analysis of a variable area ratio steam ejector. International Journal of Refrigeration,2011,34(7):1668-1675
    [43]Bartosiewicz Y, Aidoun Z, Desevaux P, et al. Numerical and experimental investigations on supersonic ejectors. International Journal of Heat and Fluid Flow,2005,26(1):56-70
    [44]Desevaux P, Aeschbacher O. Numerical and experimental flow visualization of the mixing process inside an induced air ejector. International Journal of Turbo Jet Engines,2002,19(1/2):71-78
    [45]Bartosiewicz Y, Aidoun Z, Mercadier Y. Numerical assessment of ejector operation for refrigeration applications based on CFD. Applied Thermal Engineering,2006,26(5):604-612
    [46]Kandakure MT, Gaikar VG, Patwardhan AW. Hydrodynamic aspects of ejectors. Chemical Engineering Science,2005,60(22):6391-6402
    [47]Kim MI, Kim OS, Lee DH, et al. Numerical and experimental investigations of gas-liquid dispersion in an ejector. Chemical Engineering Science,2007,62(24):7133-7139.
    [48]Yadav RL, Patwardhan AW. Design aspects of ejectors:effects of suction chamber geometry. Chemical Engineering Science,2008,63(15):3886-3897
    [49]Bhutada SR, angarkar VG. Gas induction and hold-up characteristics of liquid jet loop reactors. Chemical Engineering communications,1987,61(1-6):239-261
    [50]Balamurugan S, Gaikar VG, Patwardhan AW. Effect of ejector configuration on hydrodynamic characteristics of gas-liquid ejectors. Chemical Engineering Science,2008,63(3): 721-731
    [51]Narabayashi T, Mizumachi W, Mori M. Study on two-phase flow dynamics in steam injectors. Nuclear Engineering and Design,1997,175(1):147-156
    [52]Huang BJ, Chang JM. Empirical correlation for ejector design. International Journal of Refrigeration,1999,22(5):379-388
    [53]Huang BJ, Jiang CB, Hu FL. Ejector performance characteristics and design analysis of jet refrigeration system. ASME Journal of Engineering for Gas Turbines and Power,1985,107(3):792-802
    [54]Huang MC, Chen SL. An experimental investigation of ejector performance characteristics in a jet refrigeration system. Journal of the Chinese Institute of Chemical Engineers,1996,27(2):91-100
    [55]Chen F, Liu C F, Yang J Y. Supersonic flow in the second-throat ejector-diffuser system. Journal of Spacecraft and Rockets,1994,31(1):123-129
    [56]Balamurugan S, Lad MD, Gaikar VG, et al. Hydrodynamics and mass transfer characteristics of gas-liquid ejectors. Chemical Engineering Journal,2007,131(1):83-103
    [57]Aphornratana S, Eames IW. A small capacity steam-ejector refrigerator:experimental investigation of a system using ejector with movable primary nozzle. International Journal of Refrigeratrion,1997,20(5):352-358
    [58]Sun DW. Variable geometry ejectors and their applications in ejector refrigeration system. Energy Conversion,1996,21(10):919-929
    [59]Arnold HG, Huntley WR, Perez-Blanco H. Steam ejector as an industrial heat pump. ASHRAE Transactions,1982,88:845-857
    [60]Everitt P, Riffat SB. Steam jet ejector for vehicle air conditioning. International Journal of Ambient Energy,1999,20(3):14-20
    [61]El-Dessouky H, Ettouney H, Al-Fulaij H, et al. Multistage flash desalination combined with thermal vapor compression. Chemical Engineering and Processing,2000,39(4):343-356
    [62]El-Dessouky H T, Ettouney H M, Al-Juwayhel F. Multiple effect evaporation-vapour compression desalination processes. Chemical Engineering Research and Design,2000,78(4):662-676
    [63]Munday JT, Bagster DF. A new theory applied to steam jet refrigeration. Industrial & Engineering Chemistry Process Design and Development,1977,16(4):442-449 [64] Huang BJ, Chang JM, Wang CP. A 1D analysis of ejector performance. International Journal of Refrigeration,1999,22(5):354-364
    [65]Zhu Y, Cai W, Wen C, et al. Numerical investigation of geometry parameters for design of high performance ejectors. Applied Thermal Engineering,2009,29(5):898-905
    [66]Yapici R, Ersoy HK. Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model. Energy Conversion and Management,2005,46(18):3117-3135
    [67]Sun DW, Eames IW. Performance characteristics of HCFC-123 ejector refrigeration cycles. International Journal of Energy Research,1996,20:871-885
    [68]Kairouani L, Elakhdar M, Nehdi E, et al. Use of ejectors in a multi-evaporator refrigeration system for performance enhancement. International Journal of Refrigeration,2009,32(6):1173-1185
    [69]Elakhdar M, Nehdi E, Kairouani L, et al. Simulation of an ejector used in refrigeration systems. International Journal of Refrigeration,2011,34(7):1657-1667
    [70]Khalil A, Fatouh M, Elgendy E. Ejector design and theoretical study of R134a ejector refrigeration cycle. International Journal of Refrigeration,2011,34(7):1684-1698
    [71]Alexis G K, Rogdakis E D. A verification study of steam-ejector refrigeration model. Applied Thermal Engineering,2003,23(1):29-36
    [72]Rogdakis E D, Alexis G K. Investigation of ejector design at optimum operating condition. Energy conversion and management,2000,41(17):1841-1849
    [73]Selvaraju A, Mani A. Analysis of a vapour ejector refrigeration system with environment friendly refrigerants. International Journal of Thermal Sciences,2004,43(9):915-921
    [74]Grazzini G, Milazzo A, Paganini D. Design of an ejector cycle refrigeration system. Energy Conversion and Management,2012,54(1):38-46
    [75]Grazzini G, Milazzo A, Piazzini S. Prediction of condensation in steam ejector for a refrigeration system. International Journal of Refrigeration,2011,34(7):1641-1648
    [76]Kumar N S, Ooi K T. One Dimensional model of an Ejector with special attention to Fanno flow within the mixing chamber. Applied Thermal Engineering,2014,65(1),226-235
    [77]Rusly E, Aye L, Charters W W S, et al. CFD analysis of ejector in a combined ejector cooling system. International Journal of Refrigeration,2005,28(7):1092-1101
    [78]Scott D, Aidoun Z, Ouzzane M. An experimental investigation of an ejector for validating numerical simulations. International Journal of Refrigeration,2011,34(7):1717-1723
    [79]Bartosiewicz Y, Aidoun Z, Mercadier Y. Numerical assessment of ejector operation for refrigeration applications based on CFD. Applied Thermal Engineering,2006,26(5):604-612
    [80]Pianthong K, Seehanam W, Behnia M, et al. Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique. Energy Conversion and Management,2007,48:2556-2564
    [81]Hemidi A, Henry F, Leclaire S, et al. CFD analysis of a supersonic air ejector. Part Ⅰ: Experimental validation of single-phase and two-phase operation. Applied Thermal Engineering,2009, 29(8):1523-1531
    [82]Hemidi A, Henry F, Leclaire S, et al. CFD analysis of a supersonic air ejector. Part Ⅱ: Relation between global operation and local flow features. Applied Thermal Engineering,2009,29(14): 2990-2998
    [83]郭金基.亚音速气体喷射器的理论计算.流体工程,1989(7):18-22
    [84]郭金基.亚音速气体喷射器的流控端口特性的研究及应用.中山大学学报(自然科学版),1983(2):84-91
    [85]郭金基.亚音速气体喷射器的性能分析及其计算方法.中山大学学报(自然科学版),1981(1):22-33
    [86]祝银海.基于临界圆的二维喷射器模型构建及流动机理研究:[博士学位论文].西安:西安交通大学,2009
    [87]Chen Y M, Sun C Y. Experimental study of the performance characteristics of a steam-ejector refrigeration system. Experimental Thermal and Fluid Science,1997,15(4):384-394
    [88]Varga S, Oliveira A C, Diaconu B. Numerical assessment of steam ejector efficiencies using CFD. international journal of refrigeration,2009,32(6):1203-1211
    [89]Varga S, Oliveira A C, Diaconu B. Influence of geometrical factors on steam ejector performance-a numerical assessment. International journal of refrigeration,2009,32(7):1694-1701
    [90]Yapici R, Ersoy H K, Aktoprakoglu A, et al. Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio. International Journal of Refrigeration,2008,31(7):1183-1189
    [91]Jia Y, Wenjian C. Area ratio effects to the performance of air-cooled ejector refrigeration cycle with R134a refrigerant. Energy Conversion and Management,2012,53(1):240-246
    [92]Ma X, Zhang W, Omer S A, et al. Experimental investigation of a novel steam ejector refrigerator suitable for solar energy applications. Applied Thermal Engineering,2010,30(11): 1320-1325
    [93]Varga S, Oliveira A C, Ma X, et al. Experimental and numerical analysis of a variable area ratio steam ejector. International Journal of Refrigeration,2011,34(7):1668-1675
    [94]He S, Li Y, Wang R Z. Progress of mathematical modeling on ejectors. Renewable and Sustainable Energy Reviews,2009,13(8):1760-1780
    [95]Dirix C, Van der Wiele K. Mass transfer in jet loop reactors. Chemical Engineering Science, 1990,45(8):2333-2340
    [96]Cramers P, Beenackers A. Influence of the ejector configuration, scale and the gas density on the mass transfer characteristics of gas-liquid ejectors. Chemical Engineering Journal,2001,82(1): 131-141
    [97]Bando, Kuraishi M, Nishimura M, et al. The characteristics of a bubble column with a gas-suction type, simultaneous gas-liquid injection-nozzle. International Chemical Engineering,1990, 30:729-737
    [98]Havelka P, Linek V, Sinkule J, et al. Effect of the ejector configuration on the gas suction rate and gas hold-up in ejector loop reactors. Chemical Engineering Science,1997,52(11):1701-1713
    [99]Keenan JH, Neumann EP. A simple air ejector. ASME Journal of Applied Mechanics,1942, 64:75-82
    [100]Kandakure M T, Gaikar V G, Patwardhan A W. Hydrodynamic aspects of ejectors. Chemical Engineering Science,2005,60(22):6391-6402
    [101]Balamurugan S, Gaikar V G, Patwardhan A W. Effect of ejector configuration on hydrodynamic characteristics of gas-liquid ejectors. Chemical Engineering Science,2008,63(3): 721-731
    [102]Eames I W. A new prescription for the design of supersonic jet-pumps:the constant rate of momentum change method. Applied Thermal Engineering,2002,22(2):121-131
    [103]Worall M, Omer S, Riffat S B. A hybrid jet-pump CO2 compression system for transport refrigeration. International Journal of Low-Carbon Technologies,2011,6(4):249-254
    [104]Chaiwongsa P, Wongwises S. Effect of throat diameters of the ejector on the performance of the refrigeration cycle using a two-phase ejector as an expansion device. International journal of refrigeration,2007,30(4):601-608
    [105]Sriveerakul T, Aphornratana S, Chunnanond K. Performance prediction of steam ejector using computational fluid dynamics:Part 1. Validation of the CFD results. International Journal of Thermal Sciences,2007,46(8):812-822
    [106]Sun D W, Eames I W. Recent developments in the design theories and application of ejectors:a review. Journal of the Institute of Energy,1995,68(475):65-79
    [107]Zhu Y, Cai W, Wen C, et al. Simplified ejector model for control and optimization. Energy Conversion and Management,2008,49(6):1424-1432
    [108]Zhu Y, Li Y. New theoretical model for convergent nozzle ejector in the proton exchange membrane fuel cell system. Journal of Power Sources,2009,191(2):510-519
    [109]Vyas B D, Kar S. Study of entrainment and mixing process for an air to air jet ejector. BHRA Fluid Engineering,1975,1(2):15-25
    [110]Kastner L J, Spooner J R. An investigation of the performance and design of the air ejector employing low-pressure air as the driving fluid. Proceedings of the Institution of Mechanical Engineers, 1950,162(1):149-166
    [111]Mitchell J W, London A L. Design parameters for subsonic air-air ejectors, technical report No.40. Stanford University, Department of Mechanical Engineering,1958:4-42
    [112]Watanabe I. Experimental investigations concerning pneumatic ejectors with special reference to the effect of dimensional parameters on performance characteristics. Symposium on Jet Pumps and Ejectors,1972,3:97-120
    [113]Harrell J P. Experimentally Determined Effects of Educator Geometry on the Performance of Exhaust Gas Educators for Gas Turbine Powered Ships:[dissertation]. California:Naval Postgraduate School,1977
    [114]McLachlan B G, Krothapalli A, Nagaraja K. Flow structure within a heated rectangular jet ejector. AIAA, Aerospace Sciences Meeting,1984,1
    [115]Quinn W R. Mean flow and turbulence measurements in a triangular turbulent free jet. International Journal of Heat and Fluid Flow,1990,11(3):220-224
    [116]Quinn W R. Streamwise evolution of a square jet cross-section. AIAA Journal,1992,30(12): 2852-2857
    [117]Chen Qi. Performance of Air-Air Ejectors with Multi-ring Entraining Diffusers: [dissertation]. Kingston:Queen's University,2008
    [118]王忠义.船用燃气轮机排气引射装置性能研究:[博士学位论文].哈尔滨:哈尔滨工程大学,2010
    [119]王忠义,李飞,裴小萌,等.不同滤清装置布置形式下进气系统气动性能研究.船舶工程,2013,35(5):31-35
    [120]马铁猫.喷气发动机上使用套管以冷却发动机尾喷管及增加推力的探讨.北京航空学院学报,1957(1):77-87
    [121]方浩百,江勇,梅飞.航空发动机试车台排气引射器性能的数值模拟.机械设计与制造,2011(1):98-100
    [122]Hussein H J, Capp S P, George W K. Velocity measurements in a high Reynolds number, momentum-conserving, axisymmetric, turbulent jet. Journal of Fluid Mechanics,1994,258:31-75
    [123]赵承庆,姜毅.气体射流动力学.北京:北京理工学大学出版社,1998
    [124]Habashi W G, Dompierre J, Bourgault Y, et al. Anisotropic mesh adaptation:Towards user-independent, mesh-independent and solver-independent CFD. International Journal for Numerical Methods in Fluids,2000,32(6):125-144
    [125]Desevaux P, Marynowski T, Khan M. CFD prediction of supersonic ejectors performance. International Journal of Turbo and Jet Engines,2006,23(3):173-177
    [126]Ferrari M L, Bernardi D, Massardo A F. Design and testing of ejectors for high temperature fuel cell hybrid systems. Journal of fuel cell science and technology,2006,3(3):284-291
    [127]Ji M K, Utomo T, Woo J S, et al. CFD investigation on the flow structure inside thermo vapor compressor. Energy,2010,35(6):2694-2702
    [128]Simak J. Computation of the Flow and Interaction of Shock Waves in a 2D Supersonic Ejector. Colloquium Fluid Dynamics.2009:21-23
    [129]Dvorak V, Safarik P. Supersonic flow structure in the entrance part of a mixing chamber of 2D model ejector. Journal of Thermal Science,2003,12(4):344-349
    [130]Dvorak V, Safarik P. Transonic instability in entrance part of mixing chamber of high-speed ejector. Journal of Thermal Science,2005,14(3):258-264
    [131]Chen X, Omer S, Worall M, et al. Recent developments in ejector refrigeration technologies. Renewable and Sustainable Energy Reviews,2013,19(C):629-651
    [132]Ouzzane M, Aidoun Z. Model development and numerical procedure for detailed ejector analysis and design. Applied Thermal Engineering,2003,23(18):2337-2351
    [133]Gagan J, Smierciew K, Butrymowicz D, et al. Comparative study of turbulence models in application to gas ejectors. International Journal of Thermal Sciences,2014,78:9-15
    [134]Bouhanguel A, Desevaux P, Bailly Y, et al. Flow velocity investigation by particle Image velocimetry in supersonic air ejector. Applied Mechanics and Materials,2012,232:256-260
    [135]El-Behery S M, Hamed M H. A comparative study of turbulence models performance for turbulent flow in a planar asymmetric diffuser. International Journal of Mechanical Systems Science& Engineering,2010,2(2):769-780
    [136]Dvorak V, Vit T. Experimental and numerical study of constant area mixing.16th Internari8nal Symposium on Transport Phenomena,2005,29(8):1
    [137]Kolar J, Dvorak V. Verification of κ-ω SST turbulence model for supersonic internal flows. World Academic Science Engineering Technology,2011,81:262-266
    [138]Shih TH, Liou WW, Shabbir A, et al.A new κ-ε eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids,1995,24(3):227-238
    [139]Yakhot V, Orzag SA. Renormalization group analysis of turbulence:basic theory. J Scient Comput,1983,1:3-11
    [140]商景泰.通风机实用技术手册.北京:机械工业出版社,2011
    [141]王琴芳.航空燃气涡轮发动机原理.南京:南京航空航天大学出版社,1995
    [142]Wygnanski I, Fiedler H.'Some measurements in the self-preserving jet. Journal of Fluid Mechanics,1969,38(3):577-612
    [143]董志勇.射流力学.北京:科学出版社,2005
    [144]McGuirk J J, Palma J. The flow inside a model gas turbine combustor:Calculations. Journal of Engineering for Gas Turbines and Power,1993,115(3):594-602

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700