用户名: 密码: 验证码:
贯通式潜孔锤反循环钻进技术钻具优化及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贯通式潜孔锤反循环钻进技术是一种先进的钻探方法,适用于复杂地层中的地质勘探以及各类钻孔工程。本文采用理论研究和野外试验研究相结合的方式,对该项技术的基础理论、钻具结构、钻井规程参数及生产应用进行深入细致的研究。
     贯通式潜孔锤钻进技术利用空气流体实施全孔反循环钻进,论文建立了潜孔锤反循环系统的流体动力学参数计算模型。通过该模型可以计算不同孔深和围压状况下,实施潜孔锤反循环钻进所需的最小气体体积流量;循环过程中系统压力分布情况;并对该方法的最大钻孔深度进行了理论性的探讨。
     针对不同矿区、不同地层条件下出现的各类钻探工程难题,深入开展了贯通式潜孔锤反循环钻进技术的钻进工艺及应用研究,解决了复杂地层、极复杂地层地质勘探的技术难题,同时解决了矿区面临的生产勘探难题,带来了良好的经济效益和社会效益,也为解决复杂地层中的钻探难题起到了示范作用。
     在野外试验研究和理论研究的基础上,制定出的合理钻进规程参数、钻具选配原则和事故处理办法,为该项技术的推广应用提供指导和帮助。
     利用有限元软件ANSYS对潜孔锤的关键零部件进行了结构分析和强度计算,为优化设计钻具提供理论依据,显著提高了潜孔锤部件的使用寿命和工作性能。利用计算流体力学软件FLUENT,对反循环机理进行了深入研究,同时对不同结构类型的反循环钻头底部流场进行了模拟仿真和计算,获得了钻头底部流场的压力场、速度场的分布规律。通过对钻头各个结构参数的优化设计提高了钻头的反循环效果和对复杂地层的适应能力,同时创新设计了外环空抽吸式反循环钻头和贯通式潜孔锤孔底强力抽吸装置,以解决当前该项技术应用过程中遇到的难题。
The Air-DTH hammer drilling technique is one of the most promising and widely used in drilling and construction technologies in the present words. It is used compressed air as the dynamic medium and cleaning solvent, and it takes the percussive-rotary drilling technique to break rock. With the development of science and technology and need of engineering, the DTH drilling technique has been developing continually, many new drilling tools and drilling technique methods are invented one after the other. From the general DTH hammer to the hollow-through DTH hammer reverse circulation drilling technique, the multi-techniques drilling technique is developed at the basis of single drilling technique.
     The Hollow-through DTH hammer reverse circulation drilling technique is regarded as the advanced DTH hammer drilling technology, which integrates three advanced drilling methods of DTH hammer fracturing rock, fluent removal by reverse circulation and continually obtaining core and sample during drilling. In the new round of geological exploration, the western region resources exploration, crisis mines replacing investigation and reclamation of resources become the working focus. In the drought, water shortage and complex formation regions, the Hollow-through DTH hammer reverse circulation drilling technique with its own unique technique advantages, could be got a wide range of promotion and application. This kind of technique has been applied successfully in practice after several years' study and test. However, in the face of complex geology and construction conditions, there are also many problems needed to be solved. Therefore, the CGS's projects "shallow layer sampling drilling equipment development and drilling technological method research" was set up to support the research. The paper is based on this project, the theory and technique studies on the problems existed in hollow-through DTH hammer reverse circulation drilling technique were done, and at the same time, the drilling structure was designed. These had been solved some problems during process of the production application.
     When the Hollow-through DTH hammer drilling was in process, it could transport the large particles of the rock sample and the schistose core. The flow dynamic characteristics of gas medium when it was circulating in the double-channel drill pipe were including the required gas volume and gas pressure increased in the hole depth, the pressure distribution of the gas in the double-channel drill pipe, and so on. Aiming at these to develop research, it was theoretical support to formulate appropriate process parameters and to further study reverse circulation mechanism. In this paper, the fluid medium pressure distribution and the speed change during the DTH hammer reverse circulation drilling was got preliminary study. Further more, it was built up the mathematical calculation model, which was supported theoretical basis to research the DTH hammer reverse circulation drilling. Through the mathematical calculation model, it could obtain the minimum gas volume with different hole depths and the pressure distribution of the double-channel drilling tool reverse circulation system. The theoretical calculation results were slightly less than the actual results when the test drilling parameters used in comparison.
     The special reverse circulation bit was the key part of the reverse circulation drilling system. In order to perfect the structure of the bit, the theoretic and practical studied on the bit have been done. Based on the computational fluid dynamics (CFD) theory, used engineering fluid dynamics software-FLUENT, the bit flow field was simulated with CFD. According to the productive tests and theoretical calculations to determine the reasonable boundary conditions and the entry-exit conditions, the different specification bit used in the Geological core exploration were calculated. We got the regularities of distribution of pressure field, velocity field, thermal field and the gas mass flow. At the same time, the influence of the size and position of bottom nozzles on the bit bottom flow field was simulated, and the influence of the size and position of injector hole on distribution of pressure and velocity field was simulated, and the influence of the bit diffusion groove shape on the bit bottom flow field was simulated. The area proportional relation of injector hole and bottom jet orifice was analyzed. We can get following conclusions: 1. When the bottom nozzle is away from the drill axis, the effective cross flow area is gradually increasing, and the reverse circulation effects are good. 2. The problem of air leaking in broken formation can be solved by using reverse circulation bit with inner jet orifices. Low pressure zone is formed above the inner jet orifices for its pumping function, which can reform the shape of flow field at the hole bottom and strengthen the reverse circulation. The reverse circulation can form successfully even if the formation is complex and leaking seriously. 3.Smaller value of aangle, the inclination of inner jet orifices, is good for formation of reverse circulation. But 25°is a ciritical point. When the value of ais between 20°and 30°,the reverse circulation can form successfully. 4. When drilling in the complex and fragment strata, it should increase the flow cross section area of the injector hole. The results of analog simulation play an important part in optimum design of structure and size of reverse circulation bit and curtailing the spending of time and money in researching which was good for further test research of hollow-through DTH hammer. At the same time, it is designed the outer annulus-suction type reverse circulation drilling bit and device of strength aspiration for hole batton. in order to capture the rock powder which is accumulated in the annulus of the drill tools and hole bottom during the reverse circulation drilling.
     The Hollow-through DTH hammer was used the reverse circulation to access the core, which was favorable to protect the integrity of the hole wall and to raise the core recovery rate, and it is especially applicable the application of complex formation. The formation features of hebeizhoulu silver mining area were mainly volcanic tuff, hornfels, diorite and quaternary overburden, the fracture zone development, the existence of underground mined-out area, the rock hard and leakage, poor stability, the easy collapse of the accident-prone hole. Because of the scarcity of water resources within the mining area, the drilling efficiency was low when used the conventional drilling methods, and the rock recovery rate was also low. In contrast, when used the hollow-through DTH drilling technology, determining the reasonable drilling parameters, there were completed 7 drill holes 824m drilling workload, so they had provided detailed technical information for geological exploration of the mine area. In addition, compared to the small caliber diamond drilling and central sampling C·S·R drilling technique, the drilling to use the hollow-through DTH drilling technology could increase the drilling efficiency and core recovery rate.
     Luanchuan molybdenum-tungsten mine located in Henan province is the biggest molybdenum mine in china, the formation of the mine zone belongs to classical complex strata. In recent years, owning to the frequent collapses of underground mined-out areas, it made the already broken formation into more complex, when using the conventional drilling methods, the pore was not formed at all. Aiming at the existed technique problems, it was further studied on mainly using the hollow-through DTH hammer drilling technology, auxiliary with the pipe-follow drilling and C·S·R drilling technique, and developed the productive tests in the complex strata in which the hole could not formed with the conventional drilling method, to complete the 44 drill hole. And among them, there were 24 holes facing the underground mined-out areas. The greatest height of the underground mined-out area was 34m, and the accumulated productive test workload was 2080m. The above all which were provided a very important geological data for the mine production safety and production plans, had achieved remarkable economic and social benefits.
     In the course of the experiment, the GQ89 piston was prone to breakage and damage, so further study its force condition. Firstly, it was used the stress wave theory to analyze and calculate the compressive stress wave and the tensile stress wave formed by the piston impacting movement, in order to find the position of the greatest compressive stress and tensile stress. And then the finite element software-ANSYS was used to analyze its dynamical stress and strain, which were provided the basis for the structure optimized design. The intensity of the new design GQ89 Piston had been a substantial increase.
     According to theoretical calculations and field productive test, it was relatively developed the series hollow-through DTH hammer air reverse circulation drilling parameters and the accident treatment methods in order to guide the actual production, and to solve the problems and accidents during the production process.
     The main creative point in the paper article:
     1. Estabish the calculation model of fluid mechanics parameter. It can solve the supplied of air and condition of pressure distribution, through calculate the model, perfect the basic theory of DTH hammer reverse circulation drilling.
     2. Formation a suit of integration drilling technique which is suitable for geologic survey in complex formation, through research of field productive test and drilling tool optimization.
     3. Creative designed the drilling bit of outer annulus-suction typer and the device of strength-aspiration for hole bottom.
     4. Optimzated the framework of reverse circulation bit using the software Fluent based on the theory of CFD.
     The applications in practice show that the technique of coring continually by reverse circulation with hollow-through DTH hammer is of abroad using field and can be used widely in solid mineral and resources exploration. The DTH drilling technique has many advantages, such as higher rate of penetration, high percentage recovery of core and sample, lower cost of drilling, the ability to adapt to complicated strata and so on. Via the theoretical study, the productive tests, the reverse circulation bit design, and the exploration and improvement of the parameters, this drilling technique as an advanced drilling technique has been formed the perfect equipments, applicable to the complex strata drilling, and it is of the advanced level in international domain.
引文
[1]吴岗,田春华.我国地质勘查工作的里程碑——《全国地质勘查规划》解读(上)[J].国土资源.2008(04):28-31.
    [2]张永勤.反循环钻探技术的推广应用[J].探矿工程(岩土钻掘工程).2007(09):46-47.
    [3]殷琨.深化反循环工艺研究,促进钻探科技快速发展[J].探矿工程(岩土钻掘工程).2006(03):2.
    [4]蒋荣庆,殷琨,王茂森等.潜孔锤钻进理论与实践的新进展[J].探矿工程(岩土钻掘工程).2001(S1):179-183.
    [5]蒋荣庆,殷琨,杨洪东等.潜孔锤钻进应用拓宽的前景[J].探矿工程(岩土钻掘工程).1997(03):7-11.
    [6]吴岗,田春华.我国地质勘查工作的里程碑——《全国地质勘查规划》解读(下)[J].国土资源.2008(05):46-49.
    [7]耿瑞伦,陈星庆.多工艺空气钻探[M].北京:地质出版社,1995.
    [8]耿瑞伦.潜孔锤(冲击器)的应用领域[J].中地装备.1999(1):10-11.
    [9]耿瑞伦,刘志方.多工艺空气钻进技术综述[J].探矿工程译丛.1998(2):1-7.
    [10]Sewell D M,Wheatley C J V.Integrated exploration success for gold at Wetar,Indonesia[J].Journal of Geochemical Exploration.1994,50(1-3):337-350.
    [11]何宜章.反循环中心取样钻探的发展和趋势[J].国外地质科技.1993(1):57-63.
    [12]任红.贯通式潜孔锤反循环连续取心钻进取心机理研究[D].长春:吉林大学建设工程学院,2008.
    [13]张晓西.中心取样钻探技术(一)[J].探矿工程(岩土钻掘工程).2000(01):63-64.
    [14]陈丽霞,刘清友,单代伟.气动冲击器研究现状及发展趋势[J].石油矿场机械.2007,36(06):19-22.
    [15]菅志军,张玉霖,王茂森等.冲击旋转钻进技术新发展[J].地质与勘探.2003,39(03):79-83.
    [16]刘广志.潜孔锤的研制与发展[J].地质与勘探.1994,30(02):71-74.
    [17]王茂森.全孔反循环潜孔锤参数优化及其钻进工艺研究[D].长春:吉林大学建设工程学院,2007.
    [18]耿瑞伦,陈星庆.多工艺空气钻探[M].北京:地质出版社,1995.
    [19]刘广志.国外一种无阀贯通式气动潜孔锤问世[J].探矿工程(岩土钻掘工程).1991(01):60-62.
    [20]颜纯文,乔峰.Samplex贯通式潜孔锤钻进装置[J].国外探矿工程情报.1992(1):80-86.
    [21]Prochnau J.Samplex drill system[J].Mining Magazine.1990,162(2):4.
    [22]谭凡教.射流式冲击器改型设计及MATLAB仿真计算[D].长春:吉林大学建设工程学院,2005.
    [23]李大用.采用中空式潜孔锤进行反循环钻进[J].探矿工程(岩土钻掘工程).1987(02):64-65.
    [24]刘海翔.Bulroc反循环潜孔锤[J].国外地质勘探技术.1990(12):14-15.
    [25]薇红,乐锋.英国首次采用Bulroc反循环设备进行反循环钻进[J].国外铀金地质.1992(1):92-93.
    [26]于好善,刘玮.Bulroc贯通式潜孔锤钻进装置[J].国外探矿工程情报.1992(1):87-92.
    [27]鸣午.Halco-Lister反循环取样系统[J].国外铀金地质.1992(2):93-94.
    [28]颜纯文.Halco-Lister-DTH反循环取样装置[J].国外探矿工程情报.1992(1):96-97.
    [29]耿瑞伦,陈星庆,耿燕婷等.推广应用多工艺空气钻进技术成效显著[J].探矿工程(岩土钻掘工程).1998(03):3-6.
    [30]郑秀华,胡茂焱.我国空气钻进技术发展概况[J].地质与勘探.1992(01):59-61.
    [31]张晓西.中心取样钻探技术(二)[J].探矿工程(岩土钻掘工程).2000(02):58-60.
    [32]张晓西.CSR钻探方法简介(下)[J].探矿工程(岩土钻掘工程).1987(06):62-63.
    [33]何跃文,孟庆鸿,张晓西等.中心取样钻探工艺的研究与应用[J].探矿工程(岩土钻掘工程).1997(S1):100-103.
    [34]贾庆军.空气反循环中心取样钻探技术在第四系地层的应用[J].探矿工程(岩土钻掘工程).2008(04):23-25.
    [35]武环,王德平,郭福盛.反循环中心取样钻探技术在第三系砾岩金勘探中的应用[J].探矿工程(岩土钻掘工程).2006(10):94-96.
    [36]张永勤,刘辉,陈修星.空气反循环钻进在沙漠区石油物探爆破孔的应用[J].西部探矿工程.2002(02):48-49.
    [37]殷琨,王茂森.FOC—15型大直径单头潜孔锤钻具系统研制[J].探矿工程(岩土钻掘工程).1995(05):17-19.
    [38]彭枧明,殷琨,陈家旺等.新一代大直径气动潜孔锤钻进系统的研制与应用[J].工程机械.2007,38(02):36-38.
    [39]陈家旺,殷琨,彭枧明等.大直径潜孔锤在海底嵌岩锚链灌注桩工程中的应用[J].施工技术.2007,36(01):86-88.
    [40]蒋荣庆,殷琨.贯通式气动潜孔锤反循环连续取心(样)钻进在水文水井钻中的应用[J].探矿工程(岩土钻掘工程).1991(06).
    [41]殷琨,王茂森,彭枧明等.水文水井潜孔锤反循环钻进技术[J].探矿工程(岩土钻掘工程).2003(S1).
    [42]袁新梅,孙起昱,王爱芳等.旋冲钻井技术及装备的发展现状和展望[J].石油矿场机械.2007,36(03):7-10.
    [43]Mackay P,徐合献.反循环钻井避免损害低压气层[J].国外油田工程.2003,19(09):19-20.
    [44]王运美,李琛,马建民.反循环钻井技术在浅层气开发中的应用[J].石油机械.2007,35(05):5-6.
    [45]韩烈祥,孙海芳.气体反循环钻井技术发展现状[J].钻采工艺.2008,31(05):1-5.
    [46]Graham R L,Foster J M,Amick P C,et al.Reverse circulation air drilling can reduce well bore damage[J].Oil and Gas Journal.1993,91(12):6.
    [47]Li L,Ru D,Li K,et al.Research and application of reverse circulation drilling technologyEC].Beijing:Society of Petroleum Engineers,2006.
    [48]Shale L.Underbalanced drilling with air offers many pluses[J].Oil and Gas Journal.1995,93(26):33-39.
    [49]Li Z,Yanshan U,Guo B.Analysis of longitudinal vibration of drillstring in air and gas drillingEC].Denver:Society of Petroleum Engineers,200?.
    [50]博坤.贯通式潜孔锤反循环钻进技术试验及钻头流场分析[D].长春:吉林大学建设工程学院,2006.
    [51]胡振阳.潜孔锤反循环钻进技术在河南栾川钼矿复杂地层中的试验与理论研究[D].长春:吉林大学建设工程学院,2004.
    [52]蒋荣庆,殷琨,王茂森.气动贯通式潜孔锤反循环连续取心(样)钻具系统研制及使用效果[J].地质与勘探.1996,32(03):55-60.
    [53]殷琨,蒋荣庆.潜孔锤反循环钻进技术及应用[J].探矿工程(岩土钻掘工程).1996(05):13-15.
    [54]张祖培,殷琨等.岩土钻掘工程新技术[M].北京:地质出版社,2003.
    [55]Lyous,C W,Bayum Guo.Air and Gas Drilling Manual[M].U.S.A:,1984.
    [56]Guo B,Miska S Z,Lee R.Volume Requirements for Directional Air Drilling[C].Richardson,TX,USA:Pub1 by Society of Petroleum Engineers(SPE),1994.
    [57]Cheng R,Wang R.A Three-Segment Hydraulic Model for Annular Cuttings Transport With Foam in Horizontal Drilling[J].Journal of Hydrodynamics,Ser.B.2008,20(1):67-73.
    [58]蒋宏伟,邢树宾,王克雄等.空气钻井最小注气量和地层出水量关系研究[J].大庆石油地质与开发.2008,27(02):106-109.
    [59]任双双,刘刚,沈飞等.空气钻井最小排量研究与应用[J].内蒙古石油化工.2006(03).
    [60]毕雪亮,陶丽杰,翟洪军等.空气钻井最小流量计算方法[J].天然气工业.2008,28(05):63-64.
    [61]李怀科,鄢捷年,李志勇等.空气钻井中气体体积流量的计算——两种不同体积流量准则的比较[J].钻井液与完井液.2008,25(03):1-3.
    [62]毕雪亮,陶丽杰,翟洪军等.空气钻井最小流量计算的修正模型[J].断块油气田.2008(02).
    [63]陈志学.气体钻井工艺技术理论及应用研究[D].成都:西南石油大学硕士论文,2006.
    [64]李诗久.工程流体力学[M].北京:机械工业出版社,1980.
    [65]李文绚,金保侠.气体动力学计算方法[M].北京:机械工业出版社,1990.
    [66]刘刚,朱忠喜,张迎进等.空气钻井中的压力及注气量问题研究[J].钻采工艺.2005,28(02):4-6.
    [67]郭文才,刘绘新.空气钻井计算方法及应用软件[J].钻采工艺.2001(01).
    [68]崔之健.计算空气钻井参数的新方法[J].江汉石油学院学报.1996,18(04):64-68.
    [69]王忠生,廖兵.双壁钻杆反循环空气钻井循环参数的分析与计算[J].钻采工艺.2008,1(03):1-4.
    [70]Multiphase hydrodynamic analysis of pneumatic transportation of drill cuttings in air drilling:Adewumi,M A;rian,S Powder TechnolV75,N2,May 1993,P133-144[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1993,30(6):369.
    [71]Ping L,Wang Z,Wei J.Pressure drop models for gas-liquid two-phase flow and its application in underbalanced drilling[J].Journal of Hydrodynamics,Ser.B.2006,18(3,Supplement 1):405-411.
    [72]库德里亚绍夫(苏)等著,张祖培等译.勘探孔空气钻进[M].北京:地质出版社,1994.
    [73]熊峥.基于JSL-30型砾石钻机潜孔锤同心跟管钻具的流场理论分析及试验研究[D].长春:吉林大学建设工程学院,2006.
    [74]蒋荣庆,殷琨,辜华良.潜孔锤钻进在复杂地层中应用[J].地质与勘探.1999(06).
    [75]廖长生.复杂地层钻进技术浅析[J].西部探矿工程.2009(02):70-71.
    [76]中南矿冶学院地质系护孔科研组.复杂地层堵漏与护壁 第一讲 复杂地层概述[J].地质与勘探.1976(01).
    [77]蒋荣庆,殷琨.潜孔锤反循环连续取心用于金矿勘探[J].地质与勘探.1990(11).
    [78]张永勤,刘辉,陈修星.复杂地层钻进技术的研究与应用[J].探矿工程(岩土钻掘工程).2001(S1):159-165.
    [79]中南309队.提高复杂地层岩、矿心采取率的双管钻具[J].探矿工程(岩土钻掘工程).1974(04):49-51.
    [80]Lundberg B,Okrouhlik M.Efficiency of a percussive rock drilling process with consideration of wave energy radiation into the rock[J].International Journal of Impact Engineering.2006,32(10):1573-1583.
    [81]Wiercigroch M,Wojewoda J,Krivtsov A M.Dynamics of ultrasonic percussive drilling of hard rocks[J].Journal of Sound and Vibration.2005,280(3-5):739-757.
    [82]Yue Z Q,Lee C F,Law K T,et al.Automatic monitoring of rotary-percussive drilling for ground characterization—illustrated by a case example in Hong Kong[J].International Journal of Rock Mechanics and Mining Sciences.2004,41(4):573-612.
    [83]张国忠.气动冲击设备及其设计[M].北京:机械工业出版社,1991.
    [84]赵统武.冲击钻进动力学[M].北京:冶金工业出版社,1996.
    [85]高丽稳.冲击机械活塞强度研究的现状[J].工程机械.2005(1):37-49.
    [86]薛维华.20CrNi2Mo钢热处理工艺及性能研究[D].阜新:辽宁工程技术大学,2005.
    [87]闫宇红,罗元良,杨铁军等.20CrNi2Mo钢应用范围研究[J].矿山机械.1998(8):68-69.
    [88]詹军,殷琨.风动冲击器活塞冲击末速度的有限元分析[J].煤田地质与勘探.2003(6):58-60.
    [89]李士民.潜孔锤钻进最优转速的探讨[J].探矿工程(岩土钻凿工程).1991(6):32-33.
    [90]陈嘉霖.风动潜孔锤钻进孔深与风压的关系[J].探矿工程.1995(2):46.
    [91]蒋希文.钻井事故与复杂问题[M].北京:石油工业出版社,2002.
    [92]徐同台,刘玉杰,申威.钻进工程防漏堵漏技术[M].北京:石油工业出版社,1998.
    [93]张运钧,周润民,周国荣等.金矿钻探技术[M].北京:地质出版社,1991.
    [94]赵静野,孙厚钧,高军.引射器基本工作原理及其应用[J].北京建筑工程学院学报.2001(03).
    [95]贺军科,吴雄.被动式引射器内流场数值研究[J].固体火箭技术.2005(02).
    [96]赵承庆,姜毅编著.气体射流动力学[M].北京:北京理工大学出版社,1998.
    [97]董志勇.射流力学[M].北京:科学出版社,2005.
    [98]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [99]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实力与应用[M].北京:北京理工大学出版社,2004.
    [100]Kelessidis V C,Maglione R,Tsamantaki C,et al.Optimal determination of rheological parameters for Herschel-Bulkley drilling fluids and impact on pressure drop,velocity profiles and penetration rates during drilling[J].Journal of Petroleum Science and Engineering.2006,53(3-4):203-224.
    [101]何林峰,谢翠丽,陈康民.流道形状对PDC钻头头部流场影响的数值模拟[J].上海理工大学学报.2007,24(01):59-64.
    [102]黄志强,单代伟,李琴等.潜孔钻头井底流场数值模拟研究[J].石油机械.2006,34(08):11-14.
    [103]王海桥,刘荣华,陈世强.独头巷道受限贴附射流流场特征模拟实验研究[J].中国工程科学.2004,06(08):45-49.
    [104]王伟,谢禹钧.气体无限空间淹没湍流射流数值模拟[J].石油化工设备.2006(02).
    [105]王海桥,施式亮,刘荣华等.压入式受限贴附射流流场特征及参数计算[J].黑龙江科技学院学报.2001,11(04):4-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700