用户名: 密码: 验证码:
玉米S-CMS育性恢复基因精细定位和玉米耐旱全基因组关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞质雄性不育(Cytoplasmic Male Sterility, CMS)是在大多数植物中都存在的一种自然现象。CMS/Rf系统不仅在玉米、水稻、油菜等主要农作物的杂交育种中发挥着重要的作用,而且也是研究核质互作的重要模式系统之一。玉米是最早将CMS/Rf系统应用于杂种优势利用的粮食作物。S-CMS是玉米细胞质雄性不育中最大的一种类别,精细定位并克隆其育性恢复基因对阐明核质互作控制其育性发生的分子机理,充分发挥S-CMS在玉米杂种优势利用中的作用具有重要的理论及实践意义。
     在前人关于玉米S-CMS育性恢复基因定位研究的基础上,本研究以含有Rf3/rf3基因的近等基因系(NIL) Mo17为材料,构建了S-Mol7rf3rf3×-Mo17Rf3Rf3)X N-Mo17rf3rf3和(S-Mo17Rf3Rf3xN-Mo17rf3rf3)×N-Mo17rf3rf3)两套BC1群体。利用Rf3/rf3区间的分子标记信息,并借助B73基因组序列开发分子标记,对Rf3进行精细定位构建S-Mo17Rf3Rf3的BAC文库。同时对定位区域内包括PPR基因在内的功能基因信息进行挖掘分析,确定可能的Rf3候选基因。研究取得以下进展:
     1.通过比较分析玉米雄穗不同小花内的花粉发育动态,确定了“鉴定小穗上位花的花粉育性”作为判定玉米配子体CMS材料花粉育性的形态学指标。确保了研究中育性鉴定的准确性。
     2.两套BC1群体的田间植株育性表型和室内花粉育性镜检结果一致,BC1群体中半不育和全不育株分离比符合1:1的分离比例。表明定位群体的雄花育性受-对Rf3/rf3基因控制。
     3.以B73基因组序列为参考,在前人初步定位Rf3/rf3基因的2.09bin区间内共开发标记638对,其中SSR标记有198对,STS标记440对。标记分析结果表明:两类标记在亲本材料间的多态性分别为1%和5%。
     4.STS引物扩增片段的序列分析发现,多数片段的序列完全相同,仅有少数SNP位点可以成功转化为CAPS和dCAPS标记。这一结果从另一侧面确定了本研究所利用的Rf3/rf3的NIL间,正向选择差异区段的图距相对较窄。
     5.采用图位克隆策略,利用不同年份构建的两套较大的BC1分离群体,构建了Rf3/rf3基因区间19.9cM的分子标记遗传连锁图,标记间平均图距为2.84cM。但这些被精细定位的标记均位于Rf3基因的一侧,最近的标记为2042S-3,遗传距离为1.6cM。在为恢复基因的图位克隆奠定了基础。
     6.以S-Mo17Rf3Rf3为材料,构建了含有Rf3基因的Mo17核背景的细菌人工染色体(BAC)文库。该文库包含175104个BAC克隆,平均插入片段长度为130kb,覆盖玉米基因组9.1倍,为图位克隆Rf3基因提供了有效的工具。
     7.对2.09bin区域内的序列分析发现了12个PPR基因,其中有6个与CMS恢复基因相关的P亚家族基因位于Rf3定位的区域内。以该6个PPR基因为探针,采用RFLP技术检测包含近等基因系在内的、分别含有Rf3或rf3基因的若干试材,为后续Rf3的克隆提供了重要的功能标记。
     8.以候选PPR基因的序列和最近的标记为探针,筛选BAC文库,在2.09bin区域内获得阳性克隆48个。contig构建及后续分析正在进行中。
     本研究另一个关注的领域是玉米干旱胁迫下耐旱QTL的定位。
     干旱胁迫是全球干旱、半干旱地区影响玉米生产的重要逆境之一,利用转基因技术和分子标记辅助选择等分子育种手段,选育抗旱玉米自交系是玉米育种的一个重要研究领域。本研究对350份热带玉米自交系与测验种CML312组配的F1群体,在中国、墨西哥、肯尼亚和泰国等4个环境下的干旱处理和对照(正常灌溉)获得的表型鉴定数据,利用Illumina MaizeSNP50芯片分析的基因型资料进行全基因组耐早性的关联分析,为进一步发掘和克隆抗旱QTL提供理论依据。研究获得了以下结果。
     1.9个耐旱相关表型的遗传力分析表明,株高、穗位高、相对穗位高、散粉-吐丝间隔期和百粒重等遗传力较高,籽粒产量的遗传力中等,穗粒数遗传力最低,表明籽粒产量和穗粒数受干旱影响较大。以上结果与CIMMYT多年育种实践一致。
     2.利用Illumina MaizeSNP50芯片对350份供试材料的基因分型结果表明,A/G类型的SNP占74.5%,其他类型的SNP占25.5%,这种SNP的“偏爱”现象暗示了基因组结构—基因功能—耐旱表型—热带地区自然选择和人工选择之间的可关联性。
     3.本研究在Bonferroni1/N下共检测到275个SNP,定位于221个基因与所测表型关联,其中50个基因与一个以上的性状相关联。GO功能分析显示这些基因涉及到生物合成、代谢、信号传导等多个途径。结果显示玉米耐旱是一个复杂的过程,需要多个代谢途径协同响应。
     4.38个基因共定位到的28个已知的抗旱Meta-QTL区间中,有9个为干旱胁迫环境下检测到的,22个在正常环境下检测到,7个在两个环境下都检测到。38个基因分布于玉米基因组的10条染色体,第二染色体最多,有7个,第三染色体最少,仅有一个。
In higher plant, cytoplasmic male sterility (CMS) is a common phenomenon. The CMS/Rf system is not only widely used in hybrid breeding, but also a perfect model system for studying the molecular mechanism of the interaction between nucleus and cytoplasm. Maize is one of the earliest crops whose heterosis is improved through this system. S-CMS is the largest one of the three CMS groups in maize but utilization in breeding is limited by its unstable sterility. For using CMS in maize production by the greatest extent, it is necessary to clone the Rf3gene and theoretically elucidate the mechanisms of sterility and restoration of sterility.
     In the present study, we screened SSR and STS marker polymorphic between the near isogenic lines (NILs). Two sets of BC1F1populations were constructed from NILs with differences in Rf3locus for linkage analysis. The two populations were designated SSN for (S-Mol7rf3rf3xS-Mol7Rf3Rf3)xN-Mol7rf3rf3and SNN for (S-Mol7Rf3Rf3xN-Mol7rf3rf3)xN-Mol7rf3rf3. Additionally, we analyzed the sequences of maize2.09bin from B73genome (AGPv2). At the same time, a BAC library containing Rf3gene was also constructed. And some primary results are listed below:
     1. By examining the structure and development process of maize florets, we found it was more accurate to check pollens from the upper flowers inside the floret for determining whether the plant was sterile or not, which ensures the correction of fertility identification.
     2. The SSN population generated2781semi-fertile and2720sterile plants while the SNN generation yielded445semi-fertile and472sterile plants. The segregation retios of the two populations fit a monogenic Mendelian inheritance model of1fertile (Rf3rf3):1sterile (rf3rf3), it confirmed that the fertility restoration was conditioned by one dominant restorer gene in these maize materials.
     3. Total638pairs of primers were designed. Of those,198pairs were SSR markers,440were STS markers and only10SSR and4STS marker were polymorphic. The rates of the polymorphism for SSR and STS marker were10%and1%, respectively, relatively lower than usual, probably because markers were assayed between NILs in which most genomic region assayed were as the same as the recurrent, the other parent.
     4. Sequencing results of STS fragments confirmed the low polymorphism between the target region of the NILs. Only a small amount of SNP sites were discovered. Several could be converted to CAPS and dCAPS markers successfully.
     5. A linkage map was constructed around R/3locus, which was mapped on the distal region of chromosome2long arm. The total size of the map is19.9cM and all marker are mapped to one side of Rf3gene. The nearest marker to R/3gene is2043S-3, which is1.6cM away from the gene.
     6. A bacterial artificial chromosome (BAC) library was constructed from inbred line S-Mol7Rf3Rf3, and high-density filter set was prepared also. The library contains175,104clones with130kb average insertion fragment, which covers9.1times of the maize genome. The availability of this BAC library provides a useful tool for the cloning of Rf3gene.
     7.12PPR genes were discovered after rescanning the region of maize2.09bin. Of those PPR genes,10are belong to P subfamily and6PPRs of P subfamily located the mapping area of R/3locus. RFLP analysis revealed two PPR genes were polymorphic between tested lines containing R/3gene and lines containing rf3gene.
     8. the sequences of two PPR genes and the nearest marke were used as hybridization probes to screen the BAC library and48positive clones were obtained. Contig building and further analysis are under the way.
     Another area interested in our research is the discovery of maize genes related to response or tolerance to drought. Drought is one of the most important factors affecting the yield stability of maize (Zea mays L.) in China and many other areas in the world. In order to solve the drought and water shortage problem, breeding hybrids with drought tolerance is an important method besides water saving engineering. All350hybrids were phenotyped for9traits under water-stressed (WS) and well-watered (WW) conditions in multiple environments. Genes significantly related to drought were found through association analysis. These findings lay the foundation for further study on the mechanism of maize drought tolerance.
     1. Broad sense heritability of nine traits across the tested environments was calculated. Heritability of all but GY and KNO were high, which indicated the genotypic values of these traits were more consistent across environments. GY and KNO were more affected by the environments. These are in accordance with results from CIMMYT.
     2. Illumina MaizeSNP50array was used for genotyping the panel of350maize inbred lines. Statistical results showed that the SNP type of A/G was the most abundant in the population which was74.5%of total. All the other SNP types only held25.5%. This bias reflects the inherent connections among genomic structure, gene function, natural selection and artificial selection.
     3. In this study,275associated SNPs (P≤2.25x10-5|1/N) were identified, located i n221genes for126trait x environment x treatment combinations. under the Bonferroni correction of1/N.50genes were related to more than one trait. GO annotations showed that these genes were related to biosynthase, signaling, metabolism, etc. The results indicated that it is a very complex process of maize responsive to drought and drought tolerance of maize is a result by coordinating multiple pathways.
     4.38genes were co-localized to28Meta-QTL intervals which were known for drought tolerance of maize,9of them were found under WS,22under WW and7under both WW and WS.38genes were distributed over10chromosomes.7genes within5Meta-QTLs were on chromosome2while there was only one gene on chromosome3.
引文
1.鲍巨松,杨成书,薛吉全.玉米在水分胁迫条件下脯氨酸变化与抗旱性的关系.陕西农业科学,1990,(增刊):37-39
    2.丁雷,王学臣.干早胁迫下ABA对气孔运动的作用机制.干早地区农业研究,1993,11(2):50-56
    3.董永华,吉史平,韩发民.干早对玉米幼苗PEP化酶活性的影响.玉米科学,1995,3:54-57
    4.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001
    5.高世斌.玉米耐旱相关性状的QTL分析.[博士学位论文]雅安:四川农业大学,2004
    6.黎裕,王天宇,刘成,石云素,宋燕春.玉米抗旱品种的筛选指标研究.植物遗传资源学报,2004,5:210-215
    7.李晚忱,付凤玲,袁佐清.玉米苗期耐性鉴定方法研究.西南农业学报,2001,14(3):29-32
    8.李新海,高根来,梁晓玲等.我国主要玉米自交系开花期耐早性及改良.作物学报,2002,28:595-600
    9.刘仁虎,孟金陵.MapDraw在Excel中绘制遗传连锁图的宏.遗传,2003,25(3):317-321
    10.刘燕,董振生,张改生,周维.甘蓝型油菜细胞质雄性不育研究进展.西北农业学报,2004,(01).
    11.刘宗华,汤继华,陈伟程.玉米配合力自交系豫自87-1的选育研究.作物杂志,2002,5.
    12.穆蕊,张祖新,张方东,郑用琏.玉米CMS-S小孢子败育过程中的细胞程序性死亡.作物学报,2006,32(5):666-67
    13.钱永生,王惠中.渗透调节物质在作物干旱逆境中的作用.杭州师范学院学报,2006,5(6):1-6
    14.石永刚,郑用琏,李建生,刘纪麟.玉米S组CMS育性恢复基因的分子标记定位.作物学报,1997,23(1):1-6
    15.铁双贵.玉米S组CMS育性不稳定现象遗传与基因定位.[博士学位论文].武汉:华中农业大学图书馆,2000
    16.王省芬,马峙英.细菌人工染色体文库及其应用.Chinese Agricultural Bulletin,2001,17(6):62-68
    17.王泽立,戴景瑞,王斌,常德庆.玉米Rf3基因近等基因系(NIL)的构建及RAPD验证.农业生物技术学报,2000,8(3):294-296
    18.王宪泽.作物抗旱育种生理生化指标的研究.中国农学通报,1994,10(5)
    19.夏军红,郑用琏.玉米Rf3近等基因系的分子标记辅助回交选育与效益分析. 作物学报,2002,28(3):339-344
    20.肖海林.玉米S型细胞质雄性不育的育性恢复机理研究.[博士学位论文].武汉:华中农业大学,2006
    21.易平,汪莉,孙清萍,朱英国.红莲型细胞质雄性不育水稻线粒体相关嵌合基因的发现.科学通报,2002,47:130-133
    22.袁照年,罗淑平,吴光成.玉米两个生育时期抗旱性鉴定指标的研究.西北农业大学学报,1995,23(增刊):1-6
    23.张宝石,徐世昌,宋凤斌,张威等.玉米抗旱基因型鉴定方法和指标的探讨.玉米科学,1996,4(3):19-22
    24.张赛群,张方东,肖海林,郑用琏.玉米S型CMS线粒体DNA中R区转录的组织特异性.作物学报,2004,30(07):629-633.
    25.张征锋.玉米S-CMS核育性恢复基因Rf3的精细定位及其候选基因的筛选.[博士学位论文].武汉:华中农业大学,2006
    26.张祖新.玉米S-CMS核恢复基因和玉米对淹水胁迫响应基因的功能分析.[博士学位论文].武汉:华中农业大学图书馆,2004
    27.郑用琏.若干玉米雄性不育类型育性机理的研究.华中农学院学报,1982,(1):44-68
    28.郑用琏.玉米细胞质雄性不育细胞质类型的快速鉴定.专利申请号:03119853.6,2003
    29. Abad AR, Mehrtens BJ, Mackenzie SA. Specific Expression in Reproductive Tissues and Fate of a Mitochondrial Sterility-Associated Protein in Cytoplasmic Male-Sterile Bean. Plant Cell,1995,7:271-285.
    30. Agrama HAS, Moussa ME. Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica,1996,91:89-97.
    31. Andersen JR, Zein I, Wenzel G, Krutzfeldt B, Eder J, Ouzunova M, Lubberstedt T. High levels of linkage disequilibrium and associations with forage quality at a phenylalanine ammonia-lyase locus in European maize (Zea mays L.) inbreds. Theor Appl Genet,2007,114:307-19.
    32. Aubourg S, Boudet N, Kreis M, Lecharny A. In Arabidopsis thaliana,1% of the genome codes for a novel protein family unique to plants. Plant Mol Biol,2000, 42:603-613.
    33. Banziger M, Edmeades GO, Beck D, Bellon M. Breeding For Drought And Nitrogen Stress Tolerance In Maize:From Theory To Practice. Mexico, D.F., CIMMYT,2000.
    34. Beckett B. Classification of male-sterile cytoplasms in maize (Zen mays L.). Crop Sci,1971,11:724-727.
    35. Belo A, Zheng P, Luck S, Shen B, Meyer DJ, Li B, Tingey S, Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics,2008,279:1-10.
    36. Bennetzen JL, Chen M. Grass Genomic Synteny Illuminates Plant Genome Function and Evolution. Rice,2008,1:109-118.
    37. Bentolila S, Alfonso AA, Hanson MR. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. P Natl Acad Sci USA, 2002,99:10887-10892.
    38. Bergamaschi H, Dalmago GA, Bergonci JI, Bianchi CAM, Muller AG, Comiran F, Heckler BMM. Water supply in the critical period of maize and the grain production. Pesquisa Agropecuaria Brasileira,2004,39:831-839.
    39. Blum A. Drought resistance-is it really a complex trait? Func Plant Biol,2011, 38:753.
    40. Bolanos J, Edmeades GO. Eight cycles of selection for drought tolerance in lowland tropical maize. II. Responses in reproductive behavior. Field Crops Res, 1993,31:253-268.
    41. Borovskii GB, Stupnikova IV, Antipina AI, Vladimirova SV, Voinikov VK. Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol,2002,2:5.
    42. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980,32:314-331.
    43. Bray EA. Plant responses to water deficit. Trends Plant Sci,1997,2:48-54.
    44. Brown GG, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J,2003,35:262-272.
    45. Browne J, Tunnacliffe A, Burnell A. Anhydrobiosis:plant desiccation gene found in a nematode. Nature,2002,416:38.
    46. Bruce WB, Edmeades GO, Barker TC. Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot,2002,53:13-25.
    47. Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A. Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell,2005,17:343-360.
    48. Bucher M, Brandle R, Kuhlemeier C. Ethanolic fermentation in transgenic tobacco expressing Zymomonas mobilis pyruvate decarboxylase. EMBO J,1994, 13:2755-2763.
    49. Burke DT, Carle GF, Olson MV. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science,1987,236:806-812.
    50. Chapman SC, Edmeades GO. Selection Improves Drought Tolerance in Tropical Maize Populations:II. Direct and Correlated Responses among Secondary Traits. Crop Sci,1999,39:1315-1324.
    51. Chase CD. Cytoplasmic male sterility:a window to the world of plant mitochondrial-nuclear interactions. Trends Genet,2007,23:81-90.
    52. Chase CD. Expression of CMS-unique and flanking mitochondrial DNA sequences in Phaseolus vulgaris L. Curr Genet,1994,25:245-251.
    53. Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought— from genes to the whole plant. Func Plant Biol,2003,30:239.
    54. Chen HS, Zhu X, Zhao H, Zhang S. Qualitative semi-parametric test for genetic associations in case-control designs under structured populations. Ann Hum Genet,2003,67:250-64.
    55. Christie PJ, Hahn M, Walbot V. Low-temperature accumulation of alcohol dehydrogenase-1 mRNA and protein activity in maize and rice seedlings. Plant Physiol,1991,95:699-706.
    56. Clark AG. The role of haplotypes in candidate gene studies. Genetic Epidemiology,2004,27:321-333
    57. Cochard H. Xylem embolism and drought-induced stomatal closure in maize. Planta,2002,215:466-71.
    58. Cohen D, Bogeat-Triboulot MB, Tisserant E, Balzergue S, Martin-Magniette ML, Lelandais G, Ningre N, Renou JP, Tamby JP, Le Thiec D, Hummel I. Comparative transcriptomics of drought responses in Populus:a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics,2010,11:630.
    59. Conley TR, Peng HP, Shih MC. Mutations affecting induction of glycolytic and fermentative genes during germination and environmental stresses in Arabidopsis. Plant Physiol,1999,119:599-608.
    60. Corellou F, Potin P, Brownlee C, Kloareg B, Bouget FY. Inhibition of the establishment of zygotic polarity by protein tyrosine kinase inhibitors leads to an alteration of embryo pattern in Fucus. Dev Biol,2000,219:165-182.
    61. Cregan PB, Mudge J, Fickus EW, Marek LF, Danesh D, Denny R, Shoemaker RC, Matthews BF, Jarvik T, Young ND. Targeted isolation of simple sequence repeat markers through the use of bacterial artificial chromosomes. Theor Appl Genet,1999,98:919-928.
    62. Critchley W, Klaus S. Water harvesting:a manual for the design and construction of water harvesting schemes for plant production. Rome:Food and Agriculture Organization of the United Nations,1991.
    63. Cui X, Scheffler BE, Simmons C, Meeley RB, Schnable PS. Mutations in the maize pdc3 gene reduce tolerance to anaerobic stress. San Diego, CA USA:AM Society of Plant Biologists,2000.
    64. Cui X, Wise RP, Schnable PS. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science,1996,272:1334-1336.
    65. Desikan R, Hancock J, Neill S. Reactive oxygen species as signalling molecules; in Smirnoff NA (ed):Antioxidants and Reactive Oxygen Species in Plants. Wiley-Blackwell,2005,320.
    66. Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane A. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep,2003,4:588-594.
    67. Diefenbach J, Kindl H. The membrane-bound DnaJ protein located at the cytosolic site of glyoxysomes specifically binds the cytosolic isoform 1 of Hsp70 but not other Hsp70 species. Eur J Biochem,2000,267:746-54.
    68. Dolferus R, Ellis M, De Bruxelles G, Trevaskis B, Hoeren F, Dennis ES, Peacock WJ. Strategies of Gene Action in Arabidopsis during Hypoxia. Ann Bot 1997, 79:21-31.
    69. DuPlessis DP, Dijkhuis FJ. The influence of time lag between pollen shedding and silking on the yield of maize. South African J Agri Sci,1967,10:667-674.
    70. Duvick DN. Cytoplasmic pollen sterility in corn. Adv Genet,1965,13:1-56
    71. Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inform,2009,23:205-211.
    72. Eddy SR. Profile hidden Markov models. Bioinformatics,1998,14:755-763.
    73. Edmeades GO, Bolanos J, Chapman SC, Lafitte HR, Banziger M. Selection Improves Drought Tolerance in Tropical Maize Populations:I. Gains in Biomass, Grain Yield, and Harvest Index. Crop Sci,1999,39:1306-1315.
    74. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data:Linked loci and correlated allele frequencies. Genetics, 2003,164:1567-1587.
    75. Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Wickham Garcia E, Lebruska LL, Laurent M, Shen R, Barker D. Illumina universal bead arrays. Methods Enzymol,2006,410:57-73.
    76. FAO. The state of food insecurity in the world.6th ed. Rome:Food and Agricultrue Orgnization of the United Nations,2004.Feng CD, Stewart JMD, Zhang JF. STS markers linked to the Rfl fertility restorer gene of cotton. Theor Appl Genet,2005,110:237-243.
    77. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet,2006,7:85-97.
    78. Flexas J, Bota J, Galmes J, Medrano H, Ribas-Carbo M. Keeping a positive carbon balance under adverse conditions:responses of photosynthesis and respiration to water stress. Physiologia Plantarum,2006,127:343-352.
    79. Flint-Garcia SA, Thornsberry JM, Buckler ES th. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol,2003,54:357-74.
    80. Frank SA, Barr CM. Programmed cell death and hybrid incompatibility. J Hered, 2003,94:181-183.
    81. Frith MC, Saunders NFW, Kobe B, Bailey TL. Discovering sequence motifs with arbitrary insertions and deletions. PLoS Comput Biol,2008,4:e1000071.
    82. Frova C, Krajewski P, di Fonzo N, Villa M, Sari-Gorla M. Genetic analysis of drought tolerance in maize by molecular markers. Theor Appl Genet,1999, 99:280-288.
    83. Fu H, Dooner HK. Intraspecific violation of genetic colinearity and its implications in maize. P Natl Acad Sci USA,2002,99:9573-9578.
    84. Fu JY, Keurentjes JJB, Bouwmeester H, America T, Verstappen FWA, Ward JL, Beale MH, Vos RCH, Dijkstra M, Scheltema RA, Johannes F, Koornneef M, Vreugdenhil D, Breitling R, Jansen RC. System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nat Genet,2009,41:166-167.
    85. Fu TD. Production and research of rapeseed in the People's Republic of China. Crueiferae Newsletter,1981,6:6-7.
    86. Fujii S, Toriyama K. Suppressed expression of RETROGRADE-REGULATED MALE STERILITY restores pollen fertility in cytoplasmic male sterile rice plants. P Natl Acad Sci USA,2009,106:9513-9518.
    87. Gaafar RM, Hohmann U, Jung C. Bacterial artificial chromosome-derived molecular markers for early bolting in sugar beet. Theor Appl Genet,2005, 110:1027-1037.
    88. Gallagher LJ, Betz SK, Chase CD. Mitochondrial RNA editing truncates a chimeric open reading frame associated with S male-sterility in maize. Curr Genet,2002,42:179-184.
    89. Ganal MW, Durstewitz G, Polley A, Berard A, Buckler ES, Charcosset A, et al. A Large Maize (Zea mays L.) SNP Genotyping Array:Development and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome. PLoS ONE,2011,6:e28334.
    90. Garris AJ, McCouch SR, Kresovich S. Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics,2003,165:759-69.
    91. Gaut BS, Long AD. The lowdown on linkage disequilibrium. Plant Cell,2003, 15:1502-6.
    92. Ghelis Thanos. Signal processing by protein tyrosine phosphorylation in plants. Plant Sig Behav,2011,6:942-951.
    93. Greenberg JT. Programmed cell death:a way of life for plants. P Natl Acad Sci USA,1996,93:12094-12097.
    94. Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants:present status and future prospects. Plant Mol Biol,2005, 57:461-85.
    95. Hamblin MT, Mitchell SE, White GM, Gallego J, Kukatla R, Wing RA, Paterson AH, Kresovich S. Comparative population genetics of the panicoid grasses: sequence polymorphism, linkage disequilibrium and selection in a diverse sample of sorghum bicolor. Genetics,2004,167:471-83.
    96. Hanson MR, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell,2004,16 Suppl:S 154-169.
    97. Hao Z, Li X, Liu X, Xie C, Li M, Zhang D, Zhang S. Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica,2009, 174:165-177.
    98. He S, Abad AR, Gelvin SB, Mackenzie SA. A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco. Proc Natl Acad Sci USA,1996,93:11763-11768.
    99. Heazlewood JL, Whelan J, Millar AH. The products of the mitochondrial orf25 and orfB genes are FO components in the plant FIFO ATP synthase. FEBS Lett, 2003,540:201-205.
    100. Hedgcoth C, el-Shehawi AM, Wei P, Clarkson M, Tamalis D. A chimeric open reading frame associated with cytoplasmic male sterility in alloplasmic wheat with Triticum timopheevi mitochondria is present in several Triticum and Aegilops species, barley, and rye. Curr Genet,2002,41:357-365.
    101. Heisey PW, Edmeades GO. Maize Production in Drought-Stressed Environments: Technical Options and Research Resource Allocation [Internet]. Mexico, D.F., CIMMYT,1999. Available from:http://maizephenotyping.cimmyt.org/index.php? option=com_doc man & task=doc_download&gid=3&Itemid=6
    102. Honjoh KI, Matsumoto H, Shimizu H, Ooyama K, Tanaka K, Oda Y, Takata R, Joh T, Suga K, Miyamoto T, Iio M, Hatano S. Cryoprotective activities of group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27. Biosci Biotechnol Biochem,2000,64:1656-63.
    103. Hu JG, Vick BA. Target region amplification polymorphism:A novel marker technique for plant genotyping. Plant Mol Biol Rep,2003,21:289-294.
    104. Huang J, Wang JF, Wang QH, Zhang HS. Identification of a rice zinc finger protein whose expression is transiently induced by drought, cold but not by salinity and abscisic acid. DNA Seq,2005,16:130-6.
    105. Ibarra-Caballero J, Villanueva-Verduzco C, Molina-GalaN J, SaNchez-De-JimeNez E. Proline Accumulation as a Symptom of Drought Stress in Maize:A Tissue Differentiation Requirement. J Exp Bot,1988,39:889-897.
    106. Inagawa T, Yamada-Inagawa T, Eydmann T, Mian IS, Wang TS, Dalgaard JZ. Schizosaccharomyces pombe Rtf2 mediates site-specific replication termination by inhibiting replication restart. P Natl Acad Sci USA,2009,106:7927-7932.
    107. Ingram J, Bartels D. The Molecular Basis of Dehydration Tolerance in Plants. Annu Rev Plant Physiol,1996,47:377-403.
    108. Ingvarsson PK. Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics,2005,169:945-53.
    109. Ismail AM, Hall AE, Close TJ. Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. P Natl Acad Sci USA,1999, 96:13566-70.
    110. Itabashi E, Iwata N, Fujii S, Kazama T, Toriyama K. The fertility restorer gene, Rf2, for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. Plant J,2011,65:359-367.
    111. Jamieson PD, Martin RJ, Francis GS. Drought influences on grain yield of barley, wheat, and maize. New Zealand J Crop Hort Sci,1995,23:55-66.
    112. Jamsari A, Nitz I, Reamon-Buttner SM, Jung C. BAC-derived diagnostic markers for sex determination in asparagus. Theor Appl Genet,2004,108:1140-1146.
    113. Jones DF. The interrelation of plasmagenes and chromogenes in pollen production in maize. Genetics,1950,35:507-512.
    114. Jones HA, Emsweller SL. A male sterile onion. P Amer Soc Hort Sci,1936, 34:582-585.
    115. Jung M, Ching A, Bhattramakki D, Dolan M, Tingey S, Morgante M, Rafalski A. Linkage disequilibrium and sequence diversity in a 500-kbp region around the adhl locus in elite maize germplasm. Theor Appl Genet,2004,109:681-9.
    116. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res,2005,110:462-467.
    117. Kadowaki K, Suzuki T, Kazama S. A chimeric gene containing the 5'portion of atp6 is associated with cytoplasmic male-sterility of rice. Mol Gen Genet,1990, 224:10-16.
    118. Kamps TL, Chase CD. RFLP mapping of the maize gametophytic restorer-of-fertility locus (rf3) and aberrant pollen transmission of the nonrestoring rf3 allele. Theor Appl Genet,1997,95:525-531.
    119. Kefale D, Ranamukhaarachchi S. Response of maize varieties to drought stress at different phenological stages in Ethiopia. Tropical Sci,2004,44:61-66.
    120. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC. Identification of the cystic fibrosis gene:genetic analysis. Science,1989,245:1073-80.
    121. Kielbowicz-Matuk A. Involvement of plant C(2)H(2)-type zinc finger transcription factors in stress responses. Plant Sci,2012,185-186:78-85.
    122. Kim DH, Kang JG, Kim B-D. Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.). Plant Mol Biol,2007,63:519-532.
    123. Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L. identification of three ERDs as HSP cognate genes. Plant Mol Biol,1994,25:791- 8.
    124. Koag MC, Fenton RD, Wilkens S, Close TJ. The binding of Maize DHN1 to Lipid Vesicles. Gain of Structure and Lipid Specificity. Plant Physiol,2003, 131:309-316.
    125. Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J. Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J,2003,34:407-415.
    126. Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J,2004,37:315-325.
    127. Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J,1993,4:403-410.
    128. Kooke R, Keurentjes JJB. Multi-dimensional regulation of metabolic networks shaping plant development and performance. J Exp Bot,2011, doi:10.1093/jxb /err373.
    129. Kraakman AT, Niks RE, Van den Berg PM, Stam P, Van Eeuwijk FA. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics,2004,168:435-46.
    130. Kristin G Ardlie, Leonid Kruglyak, Mark Seielstad. Patterns of linkage disequilibrium in human genome. Nature Reviews Genetics,2002,3(4):299-310.
    131. Kunzel G, Korzun L, Meister A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics,2000,154:397-412.
    132. Kursteiner O, Dupuis I, Kuhlemeier C. The pyruvate decarboxylasel gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiol,2003,132:968-78.
    133. L'Homme Y, Stahl RJ, Li XQ, Hameed A, Brown GG. Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Curr Genet,1997, 31:325-335.
    134. Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, et al. Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet,2010,42:1027-1030.
    135. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA, Newburg L. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987,1:174-181.
    136. Lander ES. The new genomics:global views of biology. Science,1996,274:536-539.
    137. Landgren M, Zetterstrand M, Sundberg E, Glimelius K. Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3'of the atp6 gene and a 32 kDa protein. Plant Mol Bio,1996,32:879-890.
    138. Laver HK, Reynolds SJ, Moneger F, Leaver CJ. Mitochondrial genome organization and expression associated with cytoplasmic male sterility in sunflower (Helianthus annuus). Plant J,1991,1:185-193.
    139. Leclercq P, Philippon JP. Identification de genes de restauration de fertilite sur cytoplasmes sterilisants chez le tournesol. Agronomie,1984,4:573-576.
    140. Levitt J. Responses of Plants to Environmental Stresses:Water, radiation, salt, and other stresses.2nd Revised edition. New York, NY [u.a.], Academic Press, 1980.
    141. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet,2001,103:455-461.
    142. Li WJ, Liu ZZ, Shi YS, Song YC, Wang TY, Xu CW, Li Y. Detection of Consensus Genomic Region of QTLs Relevant to Drought-Tolerance in Maize by QTL Meta-Analysis and Bioinformatics Approach. Acta Agronomica Sinica, 2010,36:1457-1467.
    143. Liu J, Muse SV. Power Marker:Integrated analysis environment for genetic marker data. Bioinformatics,2005,21(9):2128-2129.
    144. Liu ZJ, Kumari S, Zhang LF, Zheng YL, Ware D. Characterization of miRNAs in response to short-term waterlogging in three inbred lines of zea mays. Plos ONE, 2012,7(6):e39786. Doi:10.1371/journal.pone.0039786
    145. Lopes MS, Araus JL, van Heerden PDR, Foyer CH. Enhancing drought tolerance in C4 crops. J Exp Bot,2011,62:3135-3153.
    146. Lopez C, Piegu B, Cooke R, Delseny M, Tohme J, Verdier V. Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz). Theor Appl Genet,2005,110:425-431.
    147. Lorkovic ZJ. Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci,2009,14:229-236.
    148. Lu GH, Tang JH, Yan JB, Ma XQ, Li JS, Chen SJ, Ma JC, Liu ZX, E LZ, Zhang YR, Dai JR. Quantitative Trait Loci Mapping of Maize Yield and Its Components Under Different Water Treatments at Flowering Time. J Integr Plant Biol,2006, 48:1233-1243.
    149. Lukacin R, Britsch L. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3beta-hydroxylase. Eur J Biochem,1997,249:748-757.
    150. Luo M, Wing RA. An improved method for plant BAC library construction. Methods Mol Biol 2003,236:3-20.
    151. Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, et al. Genome- wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell,2004,16:2089-2103.
    152. Maccaferri M, Sanguineti MC, Tuberosa R. Analysis of linkage disequilibrium in a collection of elite durum wheat genotypes. Mol Breeding,2005,15:271-289.
    153. Martienssen RA, Rabinowicz PD, O'Shaughnessy A, McCombie WR. Sequencing the maize genome. Curr Opin Plant Biol,2004,7:102-7.
    154. Martin GB, Williams JG, Tanksley SD. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. P Natl Acad Sci USA,1991,88(6):2336-2340.
    155. Massonneau A, Condamine P, Wisniewski JP, Zivy M, Rogowsky PM. Maize cystatins respond to developmental cues, cold stress and drought. Biochim Biophys Acta,2005,1729:186-99.
    156. McCarroll SA, Altshuler DM. Copy-number variation and association studies of human disease. Nat Genet,2007,39:S37-S42.
    157. McMullen MD, Kresovich S, Villeda HS, Bradbury PJ, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G et al. Genetic properties of the maize nested association mapping population. Science,2009, 325:737-740.
    158. McSteen P, Hake S. barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development,2001,128:2881-2891.
    159. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002,7:405-10.
    160. Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A. Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet,2005,37:997-1002.
    161. Muehlbauer GJ, Specht JE, Thomas-Compton MA,Staswick PE, Bernard RL Near-isogenic lines-A potential resource in the integration of conventional and molecular marker linkage maps. Crop Sci,1988,28:729-735.
    162. Neale DB, Savolainen O. Association genetics of complex traits in conifers. Trends Plant Sci,2004,9:325-30.
    163. Neff MM, Neff JD, Chory J, Pepper AE. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms:experimental applications in Arabidopsis thaliana genetics. Plant J,1998,14:387-392.
    164. Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, et al. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. P Natl Acad Sci USA,2007,104:16450-5.
    165. Nikolic A, Andjelkovic V, Dodig D, Ignjatovic-Micic D. Quantitative trait loci for yield and morphological traits in maize under drought stress. Genetika,2011, 43:263-276.
    166. Noctor G, Veljovic-Jovanovic S, Foyer CH. Peroxide processing in photosynthesis:antioxidant coupling and redox signalling. Philos Trans R Soc Lond B Biol Sci,2000,355:1465-75.
    167. Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D. The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet,2002,30:190-3.
    168. Ohyama A, Asamizu E, Negoro S, Miyatake K, Yamaguchi H, Tabata S, Fukuoka H. Characterization of tomato SSR markers developed using BAC-end and cDNA sequences from genome databases. Mol Breeding,2009,23:685-691.
    169. Palaisa KA, Morgante M, Williams M, Rafalski A. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell,2003,15:1795-806.
    170. Paran I, Michelmore RW. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet,1993,85. DOI: 10.1007/BF00215038
    171. Pla M, Goday A, Vilardell J, Gomez J, Pages M. Differential regulation of ABA-induced 23-25 kDa proteins in embryo and vegetative tissues of the viviparous mutants of maize. Plant Mol Biol,1989,13:385-94.
    172. Prescott AG. A Dilemma of Dioxygenases (or Where Biochemistry and Molecular Biology Fail to Meet). Journal of Experimental Botany,1993,44:849-861.
    173. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet,2006,38:904-9.
    174. Prioli LM, Huang J, Levings CS 3rd. The plant mitochondrial open reading frame orf221 encodes a membrane-bound protein. Plant Mol Biol,1993,23:287-295.
    175. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. Association mapping in structured populations. Am J Hum Genet,2000,67:170-181.
    176. Quarrie SA, Lazic-Jancic V, Kovacevic D, Steed A, Pekic S. Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J Exp Bot,1999,50:1299-1306.
    177. Queitsch C, Sangster TA, Lindquist S. Hsp90 as a capacitor of phenotypic variation. Nature,2002,417:618-624.
    178. Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol,2002,5:94-100.
    179. Rahman H, Pekic S, Lazic-Jancic V, Quarrie SA, Shah SM, Pervez A, Shah MM. Molecular mapping of quantitative trait loci for drought tolerance in maize plants. Genet Mol Res,2011,10:889-901.
    180. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES th. Structure of linkage disequilibrium and phenotypic associations in the maize genome. P Natl Acad Sci USA,2001, 98:11479-84.
    181. Ribaut JM, Banziger M, Hoisington D. Genetic dissection and plant improvement under abiotic stress conditions:drought tolerance in maize as an example [Internet]. Japan, Japan International Research Center for Agricultural Sciences, 2002.
    182. Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA. Identification of quantitative trait loci under drought conditions in tropical maize II. Yield components and marker-assisted selection strategies. Theor Appl Genet, 1997,94:887-896.
    183. Riccardi F, Gazeau P, de Vienne D, Zivy M. Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification. Plant Physiol,1998,117:1253-63.
    184. Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger AE. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. P Natl Acad Sci USA,2011,109:8872-8877.
    185. Ristic Z, Cass DD. Dehydration Avoidance and Damage to the Plasma and Thylakoid Membranes in Lines of Maize Differing in Endogenous Levels of Abscisic Acid. J Plant Physiol,1993,142:759-764.
    186. Rogers JS. Measures of genetic similarity and genetic distances. In:Studies in Genetics, Univ. Texas Publ.,1972,7213,145-153.
    187. Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol,2000,132:365-386.
    188. Saeed M, Guo WZ, Ullah I, Tabbasam N, Zafar Y, Rahman MU, Zhang TZ. QTL mapping for physiology, yield and plant architecture traits in cotton (Gossypium hirsutum L.) grown under well-watered versus water-stress conditions. Electron J Biotechn,2011, doi:10.2225/vo1144-issue3-fulltext-3.
    189. Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol,1987,4(4):406-25.
    190. Sarria R, Lyznik A, Vallejos CE, Mackenzie SA. A cytoplasmic male sterility-associated mitochondrial peptide in common bean is post-translationally regulated. Plant Cell,1998,10:1217-1228.
    191. Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol,2006,24:447-454.
    192. Schmitz-linneweber C, Small. Pentatricopeptide repeat proteins:a socket set for organelle gene expression. Trends in Plant Science,2008,13:663-670. Schnable P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci,1998,3:175-180.
    193. Sekhon RS, Lin HN, Childs KL, Hansey CN, Buell CR, Leon ND, Kaeppler SM. Genome-wide atlas of transcription during maize development. Plant J,2011,66: 553-563.
    194. Senior ML, Murphy JP, Goodman MM, Stuber CW. Utility of SSRs for Determining Genetic Similarities:a Relationships in Maize Using an Agarose Gel System. Crop Sci,1998,38:1088-1098.
    195. Setter TL, Yan J, Warburton M, Ribaut JM, Xu Y, Sawkins M, Buckler ES, Zhang Z, Gore MA. Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. J Exp Bot,2011,62:701-16.
    196. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol,2008, 26:1135-1145.
    197. Shendure J, Mitra RD, Varma C, Church GM. Advanced sequencing technologies:methods and goals. Nat Rev Genet,2004,5:335-344.
    198. Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol,2003, 6:410-7.
    199. Shinozaki K, Yamaguchi-Shinozaki K. Gene Expression and Signal Transduction in Water-Stress Response. Plant Physiol,1997,115:327-334.
    200. Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought and cold stress. Curr Opin Biotechnol,1996,7:161-7.
    201. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. P Natl Acad Sci USA,1992, 89:8794-8797.
    202. Shizuya H, Kouros-Mehr H. The development and applications of the bacterial artificial chromosome cloning system. Keio J Med,2001,50:26-30.
    203. Shou H, Bordallo P, Wang K. Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot,2004,55:1013-9.
    204. Siculella L, Palmer JD. Physical and gene organization of mitochondrial DNA in fertile and male sterile sunflower. CMS-associated alterations in structure and transcription of the atpA gene. Nucleic Acids Res,1988,16:3787-3799.
    205. Small ID, Peeters N. The PPR motif:a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci,2000,25:46-47.
    206. Springer NM, Ying K, Fu Y, Ji T, Yeh C-T, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H, Iniguez AL, Barbazuk WB, Jeddeloh JA, Nettleton D, Schnable PS. Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet,2009, 5:e1000734.
    207. Subbaiah CC, Sachs MM. Molecular and Cellular adaptations of maize to flooding stress. Ann Bot,2003,90:119-127.
    208. Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takagi M, Takatsuji H. Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J,2003,36:830-41.
    209. Sulpice R, Trenkamp S, Steinfath M, Usadel B, Gibon Y, Witucha-Wall H, Pyl ET, Tschoep H, Steinhauser MC, Guenther M, Hoehne M, Rohwer JM, Altmann T, Fernie AR, Stitt M. Network analysis of enzyme activities and metabolite levels and their relationship to biomass in a large panel of Arabidopsis accessions. Plant Cell,2010,22:2872-2893.
    210. Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, Springer NM. Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res,2010,20:1689-1699.
    211. Tang HV, Pring DR, Shaw LC, Salazar RA, Muza FR, Yan B, Schertz KF. Transcript processing internal to a mitochondrial open reading frame is correlated with fertility restoration in male-sterile sorghum. Plant J,1996,10:123-133.
    212. Tardieu F. Any trait or trait-related allele can confer drought tolerance:just design the right drought scenario. J Exp Bot,2011,63:25-31.
    213. Tardieu F, Granier C, Muller B. Water deficit and growth. Co-ordinating processes without an orchestrator? Curr Opin Plant Biol,2011,14:283-9.
    214. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res,1989,17:6463-6471.
    215. Tenaillon MI, Sawkins MC, Anderson LK, Stack SM, Doebley J, Gaut BS. Patterns of diversity and recombination along chromosome 1 of maize (Zea mays ssp. mays L.). Genetics,2002,162:1401-1413.
    216. Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). P Natl Acad Sci USA,2001,98:9161-6.
    217. Teng F, Zhai LH, Liu RX, Bai W, Wang LQ, Huo DA, Tao YS, Zheng YL, Zhang ZX. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J,2012, DOI:10.1111/tpj.12038.
    218. Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A. Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet,1998,96:688-698.
    219. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES th. DwarfS polymorphisms associate with variation in flowering time. Nat Genet, 2001,28:286-9.
    220. Tie S, Xia J, Qiu F, Zheng Y. Genome-wide analysis of maize cytoplasmic male sterility-S based on QTL mapping. Plant Mol Biol Rep,2006,24:71-80.
    221. Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P, Rines HW, et al. New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics,2009,10:39.
    222. Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S. Mapping QTLs regulating morpho-physiological traits and yield:case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot,2002b,89 Spec No:941-63.
    223. Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol,2002a,48:697-712.
    224. Valliyodan B, Nguyen HT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol,2006,9:189-95.
    225. Varshney RK, Graner A, Sorrells ME. Genic microsatellite markers in plants: features and applications. Trends Biotechnol,2005,23:48-55.
    226. Veyrieras JB, Goffinet B, Charcosset A. MetaQTL:a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics,2007,8:49.
    227. Vilardell J, Goday A, Freire MA, Torrent M, Martinez MC, Torne JM, Pages M. Gene sequence, developmental expression, and protein phosphorylation of RAB-17 in maize. Plant Mol Biol,1990,14:423-32.
    228. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res,1995,23:4407-4414.
    229. Wang CR, Yang AF, Yue GD, Gao Q, Yin HY, Zhang JR. Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta,2008,227:1127-40.
    230. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta,2003, 218:1-14.
    231. Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet,2005,6:109-18.
    232. Wang Y, Ma S, Zhang L. The correlation of the orf224 gene with cytoplasmic male sterility of several interspecific and inter-subspecific hybrids in the genus Brassica. J Gansu Agri Univ,2006,41:36-39.
    233. Watkinson JI, Sioson AA, Vasquez-Robinet C, Shukla M, Kumar D, Ellis M, Heath LS, Ramakrishnan N, Chevone B, Watson LT, Zyl L van, Egertsdotter U, Sederoff RR, Grene R. Photosynthetic acclimation is reflected in specific patterns of gene expression in drought-stressed loblolly pine. Plant Physiol,2003, 133:1702-1716.
    234. Wen L, Chase CD. Pleiotropic effects of a nuclear restorer-of-fertility locus on mitochondrial transcripts in male-fertile and S male-sterile maize. Curr Genet, 1999,35:521-526.
    235. Wen L, Ruesch KL, Ortega VM, Kamps TL, Gabay-Larghnan S, Chase CD. A nuclear restorer-of-fertility mutation disrupts accumulation of mitochondrial ATP synthase subunit alpha in developing pollen of S male-sterile maize. Genetics, 2003,165:771-779.
    236. Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES th. Genetic diversity and selection in the maize starch pathway. P Natl Acad Sci USA,2002, 99:12959-62.
    237. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res,1990,18:6531-6535.
    238. Wise MJ, Tunnacliffe A. POPP the question:what do LEA proteins do? Trends Plant Sci,2004,9:13-7.
    239. Wise RP, Pring DR. Nuclear-mediated mitochondrial gene regulation and male fertility in higher plants:light at the end of the tunnel? P Natl Acad Sci USA, 2002,99:10240-10242.
    240. Wu HM, Cheun AY. Programmed cell death in plant reproduction. Plant Mol Biol,2000,44:267-281.
    241. Xu D, Duan X, Wang B, Hong B, Ho T, Wu R. Expression of a Late Embryogenesis Abundant Protein Gene, HVA1, from Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice. Plant Physiol,1996,110:249-257.
    242. Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One,2009,4:e8451.
    243. Yan J, Warburton M, Crouch J. Association Mapping for Enhancing Maize (L.) Genetic Improvement. Crop Sci,2011,51:433.
    244. Yang JY, Zhao XB, Cheng K, Du HY, Ouyang YD, Chen JJ, Qiu SQ, Huang JY, Jiang YH, Jiang LW, Ding JH, Wang J, Xu CG, Li XH, Zhang QF. A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science,2012,337:1336-1340.
    245. Yao FY, Xu CG, Yu SB, Li JX, Gao YJ, Li XH, Zhang QF. Mapping and genetic analysis of two fertility restorer loci in the wild-abortive cytoplasmic male sterility system of rice (Oryza sativa L.). Euphytica,1997,98:183-187.
    246. You FM, Huo N, Gu YQ, Luo MC, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD. BatchPrimer3:a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics,2008,9:253.
    247. Young ND, Tanksley SD. RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor Appl Genet,1989,77:353-359.
    248. Yu J, Buckler ES. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol,2006,17:155-60.
    249. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet,2006,38:203-8.
    250. Yu LX, Setter TL. Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Plant Physiol, 2003,131:568-82.
    251. Zabala G, Gabay-Laughnan S, Laughnan JR. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics,1997,147:847-860.
    252. Zaidi PH, Harrington K, De-Meyer J, Singh NN. Improving maize productivity under abiotic stress [Internet]. Hyderabad (India), ICAR*CIMMYT, 2004.Available from:http://hdl.handle.net/10883/816
    253. Zhang G, Lu Y, Bharaj TS, Virmani SS, Huang N. Mapping of the Rf-3 nuclear fertility-restoring gene for WA cytoplasmic male sterility in rice using RAPD and RFLP markers. Theor Appl Genet,1997,94:27-33.
    254. Zhang J, Schurr U, Davies WJ. Control of Stomatal Behaviour by Abscisic Acid which Apparently Originates in the Roots. J Exp Bot,1987,38:1174-1181.
    255. Zhang L, Ohta A, Takagi M, Imai R. Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. J Biochem,2000,127:611-6.
    256. Zhang Q, Gao YJ, Yang SH, Ragab RA, Maroof MAS, Li ZB. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Theor Appl Genet,1994,89-89. DOI:10.1007/BF00225139
    257. Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, Xia YF, Sun DY, Sun Y. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLDl/OsGH3.13 activation. Plant Physiol, 2009,151:1889-1901.
    258. Zhang ZF, Wang Y, Zheng YL. AFLP and PCR-based markers linked to Rf3, a fertility restorer gene for S cytoplasmic male sterility in maize. Mol Genet Genomics,2006,276:162-169.
    259. Zhu C, Gore M, Buckler ES, Yu J. Status and Prospects of Association Mapping in Plants. Plant Genome,2008,1:5.
    260. Zhu J, Gong Z, Zhang C, Song CP, Damsz B, Inan G, Koiwa H, Zhu JK, Hasegawa PM, Bressan RA. OSM1/SYP61:a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant Cell,2002,14:3009-28.
    261. Zhu X, Li S, Cooper RS, Elston RC. A unified association analysis approach for family and unrelated samples correcting for stratification. Am J Hum Genet,2008, 82:352-65.
    262. Zhu X, Zhang S, Zhao H, Cooper RS. Association mapping, using a mixture model for complex traits. Genet Epidemiol,2002,23:181-96.
    263. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics,1994, 20:176-183.
    264. Zinselmeier C, Sun Y, Helentjaris T, Beatty M, Yang S, Smith H, Habben J. The use of gene expression profiling to dissect the stress sensitivity of reproductive development in maize. Field Crops Res,2002,75:111-121.
    265. Zondervan KT, Cardon LR. The complex interplay among factors that influence allelic association. Nat Rev Genet,2004,5:89-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700