用户名: 密码: 验证码:
FeCuNbSiB复合结构多层膜的巨磁阻抗效应及磁化特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于薄膜材料易于集成化、微型化,在巨磁阻抗效应器件方面有着重大的应用前景,本文采用磁控溅射法制备了FeCuNbSiB/Si02/Cu/Si02/FeCuNbSiB/Si02型复合结构多层膜,利用XRD谱、表面磁光克尔效应(SMOKE)和磁导率频谱对由溅射功率和退火温度引起的材料磁性能的变化,以及对巨磁阻抗效应的影响进行了研究。
     1.当改变制备磁性层的溅射功率时,随着溅射功率的增加,多层膜样品的平面矫顽力逐渐减小,软磁性能提高,巨磁阻抗效应增大。当溅射功率为150W时,制备态样品出现最大的阻抗效应,横向阻抗效应为53%,纵向阻抗效应为44.3%;但溅射功率增加至200W后,由于溅射应力增大,样品出现了一定的垂直各向异性,巨磁阻抗效应明显减弱。
     2.退火温度对FeCuNbSiB多层膜的磁性能影响很大。当退火温度为400℃时,样品的极向克尔磁滞回线表现出较大矫顽力、高矩形比的垂直各向异性,导致样品的软磁性能减弱,巨磁阻抗效应显著下降。540℃退火处理后,样品纳米晶化,表现出优异的软磁性能,横向阻抗效应最高达到102.7%。
     3.利用复数磁导率和等效电路讨论了该多层膜的磁化过程,及其与GMI效应的关系。外加直流磁场抑制磁畴运动,在等效电路中与抵消的并联电路相关。样品磁化的特征弛豫频率在12MHz左右,与出现最大磁阻抗变化的频率接近。
Due to the significant application perspective in the giant magneto-impedance (GMI) effect devices of film materials which are prone to integration and micromation, we have prepared FeCuNbSiB/SiO_2/Cu/SiO_2/FeCuNbSiB/SiO_2 multilayer films by magnetron sputtering method. By the methods of X-ray diffraction spectrums, surface magneto-optic Kerr effect and permeability spectrums, the changes of the samples' magnetic properties and GMI effect upon different sputtering powers and annealing temperatures are studied.
    1. With the increase of the sputtering power of magnetic layers, the plane coercive force of the samples decreased, which enhanced the soft magnetic properties and GMI effect. The sample deposited by sputtering power of 150W had the maximal GMI effect, 53% and 44.3% in transverse and longitudinal MI effect respectively. However, when the sputtering power reached 200W, the increasing sputtering stress induced the perpendicular anisotropy in the sample, thus reduced remarkably GMI effect of the material.
    2. The magnetic properties of the samples were strongly affected by annealing temperatures. The polar Kerr hysteresis loops of the samples annealed at 400℃ exhibited perpendicular anisotropy of large coercive force and high rectangle ratio, which decreased soft magnetic properties and resulted in a dramatic fall of GMI effect. The samples annealed at 540℃ showed excellent soft magnetic properties by nano-crystallization, and the transverse magneto-impedance effect was high to 102.7%.
    3. Complex permeability and equivalent circuits were used to demonstrate the magnetization processes, which were relevant to GMI effect. The applied DC field was to produce a damping in domain wall movements, which was responsible for the minus parallel RL arm in equivalent circuits. The relaxation frequency of the sample was about 12MHz, near which the maximum GMI effect happened.
引文
[1] K. Mohri, T. Kohzawa, K. Kawashima, et al. IEEE. Trans. Magn., 28(1992): 3150
    [2] K. Kawashima, T. Kohzawa, H. Yoshida, et al. IEEE Trans. Magn., 29(1993): 3168
    [3] R. S. Beach and A. E. Berkowitz, J. Appl. Phys., 76(t994): 6209
    [4] F. L. A. Machade, B. L. da Silva, S. M. Rezende, et al. J. Appl. Phys., 75(1994): 6563
    [5] M. Knobel, M. L. Sanchez, C. Gomez-Polo, et al. J. Appl. Phys., 79(1996): 1646
    [6] R. L. Sommer andA. Gundel. J. Appl. Phys., 86(1999): 1057-1061
    [7] Yong Zhou, Jingqiang Yu, Xiaolin Zhao, et al. J. Appl. Phys., 89(2001): 1816-1819
    [8] R. B. da Silva, A. M. H. de Andrade, et al. Phys. B., 320(2002): 156
    [9] D. P. Makhnovskiy, N. Fry, L. V. Panina, et al. J. Appl. Phys., 96(2004): 2150-2158
    [10] Zhao Z. J, Bendjaballah F, Yang X. L, et al. J Magn Magn Mater, 246(2002): 62
    [11] X. L. Yang, J. X. Yang, G. Chen, et al. J. Magn. Magn. Mater., 175(1997): 285
    [12] R. L. Sommer, C. L. Chien, Appl. Phys. Lett., 67(1995): 3346
    [13] Y. H. Liu, C. Chen, L. Zhang, et al. J. Phys. D.: Appl. Phys., 29(1996): 2943
    [14] S. Q. Xiao, Y. H. Liu, L. Zhang, et al. J. Phys. Condens. Matter., 10(1998): 3651
    [15] M. Vazquez, J. M. Garcia-Beneytez, J. M. Garcia, et al. J. Appl. Phys., 88(2000): 6501
    [16] Kurlyandskaya G. V., Barandiaran J. M., et al. J. Appl. Phys., 87(2000): 4822
    [17] Shu-qin Xiao, De-zhen Liu, Yi-hua Liu, et al. CHIN. PHYS. LETT., 16(1999): 452
    [18] Wei-Ping Chen, Shu-Qin Xiao, et al. J. Phys. D: Appl. Phys., 37(2004)2780
    [19] N. A. Buznikoy, A. S. Antonoy, A. L. D'yachkoy, et al. J. Phys. D. : Appl. Phys., 37(2004): 518-524
    [20] 陈卫平,萧淑琴,王文静等,物理学报, 54(2005):2929-2933
    [21] R. H. Yu, G. Landry, Y. F. Li, et al. J. Appl. Phys., 87(2000): 4807
    [22] Xinzheng Wang, Wangzhi Yuan, Zhenjie Zhao, et al. IEEE Trans Magn., 41(2005): 113
    [23] Takeshi Morikawa, Yuji Nishibe, Hideya Yamadcra, et al. IEEE Trans Magn., 5(1996): 4965
    [24] M. Knobel, K. R. Pirota. J. Magn. Magn. Mater., 242-245(2002): 33-40
    [25] K. R. Pirota, M. Knobel, C. Gomez-Polo. Physics B, 320(2002): 127-134
    [26] 刘江涛,周云松,王艾玲等。物理学报,52(2003):2859-2864
    [27] Wang X. Z., Sun Z., Yuan W. Z., et al. J. Magn. Magn. Mater., 308(2007): 269-272
    [28] A. Antonov, S. Gadetsky, A. Granovsky, et al. PhysicaA, 241(1997): 414
    [29] L. V. Panina. J. Magn. Magn. Mater., 249(2002): 278-287
    [30] L. V. Panina, K. Mohri, Senior member, T. Uchiyama, and M. Noda, IEEE Trans. Magn., 31(1995): 1249
    [31] L. D. Landau and E. M. Liftshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960)
    [32] D. P. Mokhnovskiy, L. V. Panina, Sensors and Actuators A, 81(2000): 91
    [33] L. V. Panina, K. Mohri, Sensors and Actuators A, 81(2000): 71
    [34] X. D. Li, W. Z. Yuan, Z. J. Zhao, et al. J. Magn. Magn. Mater., 279(2004): 429
    [35] X. D. Li, W. Z. Yuan, Z. J. Zhao, et al. J. Phys. D: Appl. Phys., 38(2005): 1351
    [36] 刘龙平,赵振杰,阮建中等,功能材料, 34(2003):638
    [37] L. P. Liu, Z. J. Zhao, Z. M. Wu, et al. J. Magn. Magn. Mater., (submitted).
    [38] R. L. Wang, Z. J. Zhao, L. P. Liu, et al. J. Magn. Magn. Mater., 285(2005): 55
    [39] K. Mohria, T. Uchiyama, L. P. Shen, et al. J. Magn. Magn. Mater., 249(2002): 351
    [40] 杨燮龙,杨介信,戴文恺等,半导体学报, 24 (2003), 202
    [41] Z. M, Wu, Z, J. Zhao, J. X. Yang, et al. Sensors and Actuators A, 121(2005): 430
    [42] H. Chiriac, M. Tibu, A. E. Moga, et al. J. Magn. Magn. Mater., 671(2005): 293
    [43] L. Kraus, M. Malatek, K. Postava, et al. J. Magn. Magn. Mater., 290-291(2005): 1131-1133
    [44] M. E. McHenry, M. A. Willard, and D. E. Laughlin, Prog. Mater. Sci., 44(1999): 291
    [45] M. Baricco, C. Antonine, P. Ailia, et al. Mater. Sci. Eng.A., 572(1994): 179
    [46] M. S. Leu, et al., J. Appl. Phys., 81(1997): 4051
    [47] G. Chen, X. L. Yang, L, Zeng, J. Appl. Phys., 87(2000): 5263
    [48] D. Shindo, Y. G. Park and Y. Yoshizawa, J. Magn. Magn. Mater., 238(2002): 101
    [49] M. H. Phan, H. X. Peng, R. Michael, et al. Composites: Part A, 37(2006): 191-196
    [50] M . H. Phan, H. X. Peng, M. R. Wisnom, et al. Sensors and Actuators A, 129(2006): 62-65
    [51] J. Pezold. J. Magn. Magn. Mater., 84(2002): 242-245
    [52] H. Ratajczak and I. Gosciafiska, J. Magn. Magn. Mater., 140(1995): 711
    [53] A. Neuweiler, H. Kronmuller, J. Magn. Magn. Mater., 177(1998): 1269
    [54] X. Shu-qin, L. Yi-hua, Y. Shi-shen, et al., Phys. Review B, 61(2000): 5734
    [55] 李晓东,袁望治,赵振杰等,功能材料,35,(2004):686-688
    [56] M. Faraday. Trans. Roy. Sco. (London), 5(1846): 592
    [57] J. Kerr. Philos. Mag., 3(1877): 339
    [58] S. D. Bader, E. R. Moog, and P. Grunberg, J. Magn. Magn. Mater., 53(1986): L295
    [59] 蔡志申,物理双月刊,25,(2003):605-613
    [60] O. Zivotsky, K. Postava, L. Kraus, et al. J. Magn. Magn. Mater., 290-291(2005): 625-628
    [61] O. Zivotsky, K. Postava, L. Kraus, et al. J. Magn. Magn. Mater., 304(2006)e534
    [62] D. Kumar, A. Gupta. J. Magn. Magn. Mater., 308(2007): 318-324
    [63] A. V. Svalov, A. Fernandez, V. O. Vas'kovskiy, et al. J. Alloys and Compounds, 419(2006): 25-31
    [64] J. T. S. Irvine, A. R. West, E. Amano, et al. Solid State Ionics, 220(1990): 40-41
    [65] G. Aguilar-Sahagun, P. Quintana, E. Amano, et al. J. Appl. Phys, 75(1994): 7000
    [66] R. Valenzuela, M. Knobel, M. Vazquez, et al. J. Phys. D 28(1995): 2404.
    [67] R. Valenzuela, M. Knobel, M. Vazquez, et al. J. Appl. Phys., 78(1995): 5189
    [68] R. C. O'Handley, in: Modem Magnetic Materials: Princi-ples and Applications, Wiley, New York, 2000, p. 343.
    [69] 史美伦,交流阻抗谱原理及应用,国防工业出版社,2001:27
    [70] 廖绍彬,铁磁学下册,北京:科学出版社,1992:1-5
    [71] K. L. Garcia, R Valenzuela. J. Non-Crys. Solids, 287(2001): 313-317
    [72] I. Betancourt, M. L. Sanchez, B. Hemando, et al. J. Magn. Magn. Mater., 294(2005): e159-e162
    [73] B. D. Hermsmeier, R. F. C. Farrow, C. H. Lee, et al. J. Appl. Phys., 69(1991): 5646
    [74] S. Tsunashima, K. Nagase, K. Nakamura et al. IEEE Trans. Magn., 25(1989): 3761
    [75] G. Herzer, KHJ. Buschow. Handbook of magnetic materials Amsterdam: Elsevier Science, 3(1997): 415.
    [76] 林祖纕,郭祝岜等.快离子导体.上海:上海科学技术出版社,1983:48-52
    [77] R. Valenzuela. Phys. B, 299(2001): 280-285
    [78] R Valenzuela. J. Magn. Magn. Mater., 249(2002): 300-304
    [79] 李晓东《纳米微晶FeCuNbSiB多层膜晶化、磁矩重取向及巨磁阻抗效应研究》华东师范大学硕士研究生学位论文,2004.5
    [80] 宋子成 《NiFe复合结构薄膜的巨磁阻抗效应与磁性能的研究》 华东师范大学硕士研究生学位论文,2006.5
    [81] 刘龙平《复合机构丝的巨磁阻抗效应研究》华东师范大学博士研究生学位论文,2007.1
    [82] FD-sMOKE-A型表面磁光克尔效应实验系统实验使用说明,2006.9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700