用户名: 密码: 验证码:
振动筛分过程的三维离散元法模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
筛分是颗粒物质尺寸分离的主要技术之一,是实现节能减排的源头技术,广泛地应用于矿物加工等多个散体工业领域中。筛分过程是一个极为复杂的随机过程,限于物理试验技术的发展水平,至今仍缺少对筛分过程中振动筛面上颗粒群的运动及透筛等基本机理的深入认识。因此,本文基于三维离散元法对颗粒物质的振动分层和筛分过程进行了系统的数值模拟研究,以期为深入理解颗粒物质的分层机理、完善筛分理论、提出新筛分理论和研制新型筛分设备提供理论依据。本文的主要研究成果如下:
     利用高速动态分析系统对单颗粒的自由落体及颗粒群的振动分层过程进行了实验研究。实验结果与采用真实物理参数的三维离散元法模拟结果相一致,验证了三维离散元法的有效性和可靠性。
     利用三维离散元法对球形及非球形颗粒的振动分层过程进行了深入的数值模拟研究。分析了振动参数对分层速度的影响规律,获得了实现快速分层时的振幅、振动强度及粒度比的最佳值。以颗粒间的作用力及动能的变化规律为依据,探索了非球形颗粒的分层机理,阐明了非球形颗粒较球形颗粒活跃的原因,补充了不同振动模式下的颗粒分层理论,提出了综合运用空隙填充、侧面驱动的颗粒运动和能量非均匀分布三种机理,并结合颗粒群的速度矢量分布情况解释不同振动模式下颗粒分离行为的方法。
     对直线、圆和椭圆三种模式的振动筛分过程进行了系统的三维离散元法模拟研究。提出了动态筛分效率的概念,得到了振幅、抛掷指数、振动方向角、筛面倾角等振动参数与筛面颗粒群的平均运动速度之间,以及筛面长度与动态筛分效率之间的回归关系式,阐明了振动参数对筛分过程的影响机理,并获得了实现最佳筛分时的振动参数值,丰富了颗粒物质的振动筛分理论,为传统筛分机的优化设计和新型筛分设备的研制提供了理论依据。
     对等厚筛分过程进行了深入的三维离散元法模拟研究。揭示了等厚筛分过程中筛面颗粒的运动特征及透筛机理,阐明了筛面几何参数、振动参数及振动模式对等厚筛分过程的影响规律,获得了等厚筛分效果最佳时的筛面起始角、筛面倾角增量及筛面段数值,得到了较小的振动强度和振幅有利于提高筛分效率,在其值过小时,筛面颗粒群容易发生堆积,以及椭圆较直线和圆振动模式的筛分效率高等结论,明确了筛面长度与筛分效率之间的关系,为等厚筛分机的优化设计和合理操作提供了理论依据。
     为揭示颗粒形状对筛分过程的影响机理,本文对胶囊形和块状颗粒的等厚筛分过程进行了深入的数值模拟研究。研究结果表明,球形颗粒能够较充分地体现颗粒尺寸大小对筛分过程的影响作用,而非球形颗粒由于受力情况复杂、休止角和失效角增大、抗剪切能力、颗粒间堆积及自锁效应增强,从而影响了筛面物料的输送、分层和透筛效果。
     为了实现真实物料颗粒的精确模拟,本文基于分形理论提出了一种新的矿物颗粒分形仿真算法。运行结果表明,该算法能够生成较逼真的煤炭颗粒,为进一步提高颗粒物质三维DEM数值模拟研究的精度提供了新方法。
Screening is an important technology for separation of particles according to their sizes. Screening is also the source technology to realize energy saving and emission reduction, which has been widely used in many granular media industries, such as mineral process and so on. Screening process is a very complicated stochastic process. However, as the limited development level of physical testing techniques, we still lack insight understanding of the fundamental mechanism of particle motion and penetrating in screening process. So, this paper presents a systematic numerical study of the granular material segregation and vibration screening process by means of three-dimensional discrete element method (DEM) to provide theoretical basis for better understanding segregation mechanism, improving screening theory, proposing new screening method and developing new screening equipment. The key findings of this paper are as follows:
     Experimental studies of single particle free-falling and particles vibration segregating process were carried out using high-speed dynamic analysis system. DEM simulation results with real physical parameters were consistent with experimental results and the validity and reliability of 3D DEM were validated.
     Thorough numerical simulation studies of spherical and non-spherical particles vibration segregation process were carried out using 3D DEM. The influence of vibration parameters on segregation speed was analyzed. The optimum values of vibration amplitude, vibration intensity and size ratio for achieving fast segregation were obtained. On the basis of the changes of forces and kinetic energy between particles, segregation mechanism of non-spherical particles was explored and the reason that non-spherical particles were more active than spherical particles was also elucidated. Particle segregation theory in different vibration modes was supplemented. The method to explain particle segregation behaviors in different vibration modes was proposed, which is a comprehensive application of three mechanisms: void filling, sidewall-driven transport of particles and non-equipartition of energy, and the distribution of particle velocity vectors.
     Systematic numerical studies of linear, circular and elliptical vibration screening processes using 3D DEM were conducted. The concept of dynamic screening efficiency was proposed. Regression equations between amplitude, throwing index, vibration direction angel, inclination of screen deck and particle average velocity on the screen deck, screen deck length and the dynamic screening efficiency were obtained. Influence mechanism of vibration parameters on the screening process was elucidated. And the optimum values of vibration parameters for achieving the best screening performance were also obtained. Particulate matter vibration screening theory which can provide theoretical basis for the optimization of conventional screening machine and the development of new screening equipment was enriched.
     Thorough numerical simulation studies of banana screening process were carried out using 3D DEM. The motion characteristics and penetrating mechanisms of particles on the screen deck were revealed. Effects of geometric and vibrational parameters of screen deck and vibration modes on banana screening process were elucidated. The optimum values of initial angle of screen deck, increment of screen deck inclination, screen deck numbers were obtained when best screening performance was gotten. The following conclusions, such as smaller vibration intensity and amplitude will help improve screening efficiency, but the values are too small, accumulation of particles on the screen deck will occur, screening performance of elliptical vibration mode was better than linear and circular vibration modes were obtained. The relationship between screen deck length and screening efficiency was further confirmed, which can provide theoretical basis for the optimization of banana screen and reasonable operation.
     This paper presented a thorough numerical study of capsule shaped and bulk particles banana screening process for revealing the influence mechanism of particle shape on screening process. The results show that spherical particles can well embody the size influence on screening process. And non-spherical particles got bad effects of transportation, segregation and penetration due to complicated forces, increased repose and failure angle, increased anti-shear ability, packing and self-locking effect.
     A new mineral fractal simulation algorithm based on the fractal theory was proposed in this paper in order to achieve simulating real particle materials. The result shows that the algorithm can generate more realistic coal particles which can provide a new method to further improve the accuracy of particulate matter numerical simulation using 3D DEM.
引文
[1]陈清如.发展洁净煤技术推动节能减排[J].中国高校科技与产业化,2008(3): 65-67.
    [2]赵跃民.煤炭资源综合利用手册[M].北京:科学出版社,2004.
    [3]严峰.筛分机械[M].北京:煤炭工业出版社,1995.
    [4]发改能源2007.煤炭工业节能减排工作意见[J].中国煤炭,2007,9:8-10.
    [5] Jaeger H M, Nagel S R. Physics of the granular state[J].Science,1992,255(5051):1523- 1531.
    [6] Burtally N, King P J, Swift M R. Spontaneous air-driven separation in vertically vibrated fine granular mixtures[J]. Science,2002,295(5561):1877-1879.
    [7] Mullin T. Mixing and de-mixing[J]. Science,2002,295(5561):1851.
    [8]赵跃民,刘初升,张成勇.煤炭干法筛分理论与设备的进展[J].煤, 2008, 2:15-18.
    [9]赵跃民,刘初升.干法筛分理论及应用[M].北京:科学出版社,1999.
    [10]王国权.虚拟实验技术[M].北京:电子工业出版社,2004.
    [11]徐泳,孙其诚,张凌,等.颗粒离散元法研究进展[J].力学进展,2003,33(2):251-259.
    [12] Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: Theoretical developments[J]. Chemical Engineering Science,2007, 62(13):3378– 3396.
    [13] Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: A review of major applications and findings[J]. Chemical Engineering Science, 2008,63(23): 5728-5770.
    [14]焦红光.振动筛分过程解析[M].北京:煤炭工业出版社,2008.
    [15]孙刚.强化筛理论和设备大型化的研究[D].江苏徐州:中国矿业大学,1997.
    [16]尹守仁.筛分基础理论和筛分过程物料运动规律的研究[D].江苏徐州:中国矿业大学, 1999.
    [17]刘初升.弹性筛面上潮湿细粒煤炭筛分机理和弛张筛的研究[D].江苏徐州:中国矿业大学, 1997.
    [18]刘初升,陆金新.筛分过程中颗粒运动的非线性特性研究[J].煤炭学报,2009,34(4):556-559.
    [19]陆金新.振动筛分过程中的非线性特性研究[D].江苏徐州:中国矿业大学,2008.
    [20]陆金新,刘初升,聂金柱,等.振动筛分过程中单颗粒的运动特性分析[J].煤矿机械,2007,28 (11):66-68.
    [21]赵跃民,张曙光,焦红光,等.振动平面上粒群运动的离散元模拟[J].中国矿业大学学报, 2006,35(5):586-590.
    [22] Jiao H G, Zao Y M, Wang Q Q. Numerical study of collision and penetration behavior between particles and screen plate[J]. Journal of China University of Mining and Technology, 2006, 16(2):137-146.
    [23]尹守仁.筛分基础理论和筛分过程物料运动规律的研究[D].江苏徐州:中国矿业大学, 1999.
    [24]姜泽辉,荆亚芳,赵海发,等.振动颗粒物质中倍周期运动对尺寸分离的影响[J].物理学报, 2009,58(9):5923-5929.
    [25] Garcimartin A, Maza D, Ilquimiche J L, et al. Convective motion in a vibrated granular layer[J]. Physical Review E, 2002,65(2):031303/1-5.
    [26] Bizon C, Shattuck M D, Swift J B, et al. Patterns in 3D vertically oscillated granular layers: simulation and experiment[J]. Physical Review Letters, 1998,80(1):57-60.
    [27] Osamu S. Dilatancy, buckling, and undulations on a vertically vibrating granular layer[J]. Physical Review Letters, 2005,72(5):051302/1-7.
    [28]梁宣文,李粮生,侯兆国,等.垂直振动作用下二元混合颗粒分层的动态循环反转[J].物理学报,2008,57(4):2300-2306.
    [29]孙其诚,金峰.颗粒物质的多尺度结构及其研究框架[J].物理,2009,38(4):225-232.
    [30] Brown R L. The fundamental principles of segregation[J]. Journal of the Institute of Fuel, 1939,13:15?19.
    [31] Williams J C. The segregation of powders and granular materials[J].Fuel Society Journal, 1963,14:29–34.
    [32] Williams J C. The segregation of particulate materials:A review[J].Powder Technology, 1976,15(2): 245–251.
    [33] Rosatoa A D, Blackmoreb D L, Zhang N H,et al. A perspective on vibration-induced size segregation of granular materials[J]. Chemical Engineering Science, 2002,57(2):265-275.
    [34] Kudrolli A. Size separation in vibrated granular matter[J].Reports on Progress in Physics,2004,67(3):209-247.
    [35] Schr?ter M, Ulrich S, Kreft J, et al. Mechanisms in the size segregation of a binary granular mixture[J].Physical Review E, 2006,74(1): 011307/1-14.
    [36] Cleary P W, Sawley M L. DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge [J].Applied Mathematical Modelling,2002, 26(2): 89-111.
    [37] Cleary P W. The effect of particle shape on single shear flows[J].Powder Technology, 2008, 179(3):144-163.
    [38] Fraige F Y, Langston P A, Chen G Z. Distinct element modelling of cubic particle packing and flow [J].Powder Technology, 2008,186(3): 224-240.
    [39] Liffman K, Metcalfe G, Cleary P W. Granular convection and transport due to horizontal shaking[J].Physical Review Letters, 1997, 79(23): 4574-4576.
    [40] Cleary P W. Discrete element modelling of industrial granular flow applications [J].TASK Quarterly Journal, 1998,2 (3):385-415.
    [41]赵永志,江茂强,郑津.巴西果效应分离过程的计算颗粒力学模拟研究[J].物理学报,2009, 58(3):1812-1818.
    [42]梁宣文,李粮生,侯兆国,等.垂直振动作用下二元混合颗粒分层的动态循环反转[J].物理学报,2008, 57(4): 2300-2306.
    [43] Hong D C, Quinn P V, Luding S. Reverse Brazil nut problem:competition between percolation and condensation[J].Physical Review Letters,2001,86(15): 3423-3426.
    [44] Breu A P J, Ensner H M, Kruelle C A, et al. Reversing the Brazil-nut effect: Competition between percolation and condensation[J].Physical Review Letters,2003,90(1):014302/1-3.
    [45]姜泽辉,陆坤权,厚美瑛,等.振动颗粒混合物中的三明治式分离[J].物理学报,2003, 52(9):2244-2248.
    [46] Mullin T. Coarsening of self-organized clusters in binary mixtures of particles [J].Physical Review Letters,2000, 84(20): 4741-4745.
    [47]周迪文,陈十一,蔡庆东.两种不同尺度的颗粒在水平振动容器内分离规律的模拟[J].计算物理,2006,23(5):559-563.
    [48]郭长睿,蔡绍洪,杨洋.单层水平振动颗粒系统中颗粒分离的研究[J].山东大学学报(理学版),2007,43(3): 44-51.
    [49] Tennakoon S G K, Behringer R P.Vertical and horizontal vibration of granular materials: Coulomb friction and a novel switching state[J].Physical Review Letters, 1998, 81(4): 794-797.
    [50] Schnautz T, Brito R, Kruelle C A,et al. A horizontal Brazil-nut effect and its reverse [J].Physical Review Letters,2005,95(2): 028001/1-4.
    [51] Auma?tre S, Kruelle C A, Rehberg I. Segregation in granular matter under horizontal swirling excitation[J]. Physical Review E,2001,64(4): 041305/1-4.
    [52] Auma?tre S, Schnautz T, Kruelle C A, et al. Granular phase transition as a precondition for segregation[J].Physical Review Letters,2003,90(11): 114302/1-4.
    [53] Gaudin M. Principle of Mineral Dressing[M].New York,1939.
    [54] Taggart F. Handbook of Mineral Dressing Ores and Industrial Minerals[M]. New York,1984.
    [55] Mogensen F. A new method of screening granular materials[J].The Quarry Mangers’Journal, 1965,49(10):409-414.
    [56] Schultz W, Tppin B. Fundamentals of statistical screening[J].Transaction of the Society of Mining Engineers of AIME,1970,247(10):314-316.
    [57] Brereton T. Probability screening and the effect of major operating variables[J].Filtration andSeparation,1975,12(6):692-696.
    [58]闻邦椿,刘凤翘.振动机械的理论及应用[M].北京:机械工业出版社,1982.
    [59]陈清如,严峰.煤用概率分级筛的理论和应用[J].中国矿业大学学报,1982(2):25-33.
    [60]赵跃民.潮湿煤炭细粒干法筛分的研究[D].江苏徐州:中国矿业大学,1991.
    [61] Brereton T, Dymott K R. Some factors which influence screen performance[C].Proceedings on International Mineral Processing, London: Institution of Mining and Metallurgy, 1974:181-194 .
    [62]赵跃民,陈清如.煤用概率分级筛工艺参数的研究[J].中国矿业大学学报, 1987(4):22-30.
    [63] Ferrara G, Preti U, Schena G D. Modelling of screening operations[J].International Journal of Mineral Processing, 1987,22(1-4):193-222.
    [64] Standish N.The kinetics of batch sieving[J].Powder Technology, 1985,41(1):57-67.
    [65]王卫华,李夕兵.离散元法及其在岩土工程中的应用综述[J].岩土工程技术, 2005,19(4): 178-180.
    [66] Mishra B K, Mehrotra S P. A jig model based on the discrete element method and its experimental validation[J]. Mineral processing, 2001,63(4):177-189.
    [67] Asmar B N, Langston P A, Matchett A J, et al. Validation tests on a distinct element model of vibrating cohesive particle systems[J].Computers and Chemical Engineering,2002,26(6): 785-802.
    [68] Cleary P W, Sawley M L. DEM modelling of industrial granular ?ows: 3D case studies and the effect of particle shape on hopper discharge[J].Applied Mathematical Modelling, 2002, 26(2):89-111.
    [69] Ketterhagen W R, Curtis J S, Wassgren C R, et al. Granular segregation in discharging cylindrical hoppers: A discrete element and experimental study[J].Chemical Engineering Science,2007,62(22): 6423-6439.
    [70] Ketterhagen W R, Curtis J S, Wassgren C R.Modeling granular segregation in flow from quasi-three-dimensional,wedge-shaped hoppers[J].Powder Technology,2008,179(3):126-143.
    [71] Mukherjee A K, Mishra B K. Experimental and simulation studies on the role of fluid velocity during particle separation in a liquid–solid fluidized bed[J].International Journal of Mineral Processing, 2007,82(4):211-221.
    [72] Campbell C S. Granular material flows—an overview[J].Powder Technology,2006,162(3): 208-229.
    [73] Cleary P W. Large scale industrial DEM modeling[J].Engineering Computations,2004, 21(2-4): 169–204.
    [74] Anandarajah A, Lavoie D. Numerical simulation of the microstructure and compressionbehaviour of Eckernf?rde Bay sediments[J].Marine Geology,2002,182 (1-2):3-27.
    [75] Kopf A, Brown K M. Friction experiments on saturated sediments and their implications for the stress state of the Nankai and Barbados subduction thrusts[J].Marine Geology,2003,202 (3-4):193-210.
    [76] Herbst J, Potapov A, Hambidge G, et al. Modeling of diamond liberation and damage for Debswana kimberlitic ores[J].Minerals Engineering,2008,21(11):766-769.
    [77] Polojarvi A, Tuhkuri J. 3D discrete mumerical modeling of ridge keel punch through tests[J].Cold Regions Science and Technology,2009,56(1):18-29.
    [78] Price M, Morrison G. Estimating 3D particle motion from high-speed video for simulation validation[J].Engineering Computations,2009,26(6):658-672.
    [79] Rougier E, Munjiza A, Lathama J P. Shape selection menu for grand scale discontinua systems[J]. Engineering Computations,2004,21(2):343-359.
    [80] Taylor M A, Garboczi E J, Erdogan S T, et al. Some properties of irregular 3-D particles[J]. Powder Technology, 2006,162(1):1-15.
    [81] Wang L, Park J Y, Fu Y. Representation of real particles for DEM simulation using X-ray tomography[J].Construction and Building Materials, 2007,21(2):338-346.
    [82] Kruggel-Emden H, Simsek E, Wirtz S, et al. Modeling of granular ?ow and combined heat transfer in hoppers by the discrete element method (DEM)[J].Journal of Pressure Vessel Technology,2006,128 (3):439-444.
    [84] Nakamura H, Tokuda T, Iwasaki T, et al. Numerical analysis ofparticlemixing in a rotating ?uidized bed[J].Chemical Engineering Science,2007,62 (11):3043-3056.
    [85] Kruggel-Emden H, Simsek E, Wirtz S, et al. A comparative numerical study of particle mixing on different grate designs through the discrete elementmethod[J].Journal of Pressure Vessel Technology,2007,129 (4):593-600.
    [86] Zhong W Q, Xiong Y Q, Yuan Z L, et al. DEM simulation of gas–solid ?ow behaviors in spout-?uid bed[J].Chemical Engineering Science,2006,61(5):1571-1584.
    [87] Moysey P A, Thompson M R. Modelling the solids in?ow and solids conveying of single-screw extruders using the discrete element method[J].Powder Technology, 2005, 153 (2):95-107.
    [88] Kruggel-Emden H, Wirtz S, Scherer V. An analytical solution of different configurations of the linear viscoelastic normal and frictional–elastic tangential contact model[J].Chemical Engineering Science,2007,62 (23):6914-6926.
    [89] Ji S Y, Shen H H. Effect of contact force models on granular ?ow dynamics[J].Journal of Engineering Mechanics-ASCE,2006,132 (11):1252-1259.
    [90] Kock I, Huhn K. Influence of particle shape on the frictional strength of sediments—A numerical case study[J].Sedimentary Geology, 2007,196(1-4):217-233.
    [91] Latham J P, Munjiza A, Garcia X, et al. Three-dimensional particle shape acquisition and use of shape library for DEM and FEM/DEM simulation[J].Minerals Engineering, 2008,21(11): 797-805.
    [92] Kruggel-Emden H, Rickelt S, Wirtz S. A study on the validity of the multi-sphere Discrete Element Method[J].Powder Technology, 2008,188(2):153-165.
    [93] Limtrakul S, Rotjanavijit W, Vatanatham T. Lagrangian modeling and simulation of effect of vibration on cohesive particle movement in a fluidized bed[J].Chemical Engineering Science, 2007,62(1-2):232-245.
    [94] Kruggel-Emden H, Wirtz S, Scherer V. A study on tangential force laws applicable to the discrete elementmethod(DEM) for materials with viscoelastic or plastic behavior[J]. Chemical Engineering Science,2008,63(6):1523-1541.
    [95] Murase K, Mochida T, Sagawa Y, et al. Estimation on the strength of a liquid bridge adhered to three spheres[J].Advanced Powder Technology,2008,19(4):349-367.
    [96] Gopalkrishnan P, Manas-Zloczower I, Feke D L. Modeling time-dependent forces on liquid bridge interactions between dissimilar particles[J].Advanced Powder Technology,2008, 19(3):277-292.
    [97]冯绍灌.电子计算机在选煤中的应用[J].选煤技术,1986(01):34-42.
    [98] Li J, Webb C, Pandiella S S, et al. A numerical simulation of separation of crop seeds by screening– effect of particle bed depth[J].Food and Bioproducts Processing: Transactions in Chemical Engineering,2002,80(2):109-117.
    [99] Li J, Webb C, Pandiella S S, et al. Discrete particle motion on sieves—a numerical study using the DEM simulation[J].Powder Technology, 2003,133(1-3): 190-202.
    [100] Cleary P W. Industrial particle flow modeling using discrete element method[J].Engineering Computations,2009,26(6):698-743.
    [101] Dong J K, Yu A B, Brake I. DEM simulation of particle flow on a multi-deck banana screen[J].Minerals Engineering,2009,22(11):910-920.
    [102] Cleary P W, Sinnott M D, Morrison R D. Separation performance of double deck banana screens–Part 1: Flow and separation for different accelerations[J].Minerals Engineering, 2009, 22(14):1218-1229.
    [103] Cleary P W, Sinnott M D, Morrison R D. Separation performance of double deck banana screens–Part 2:Quantitative predictions[J].Minerals Engineering,2009,22(14):1230–1244.
    [104] Cleary P W. DEM prediction of industrial and geophysical particle ?ows[J].Particuology,2010,8(2):106-118.
    [105]赵跃民,焦红光,王全强,等.筛面配置对分离粒度及筛分效率影响的离散元模拟[C].中国颗粒学会2006年年会暨海峡两岸颗粒技术研讨会,北京:中国颗粒学会,2006,8:120-123.
    [106]赵跃民,张曙光,焦红光,等.振动平面上粒群运动的离散元模拟[J].中国矿业大学学报, 2006,35(5):586-590.
    [107]焦红光,赵跃民.用颗粒离散元法模拟筛分过程[J].中国矿业大学学报,2007, 36(2):232-236.
    [108] Jiao H G, Zhao Y M, Wang Q Q. Numerical study of collision and penetration behavior between particles and screen plate[J]. Journal of China University of Mining & Technology, 2006,16(2):137-146.
    [109] Chen Y H, Tong X. Application of the DEM to screening process: a 3D simulation[J]. Mining Science and Technology,2009,19(4):493-497.
    [110] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979,29(1):47-65.
    [111]孙其诚,王光谦.颗粒流动力学及其离散模型评述[J].力学进展,2008,38(1):87-100.
    [112]孙其诚,王光谦,胡凯衡.颗粒物质力学几个关键问题的思考[J].自然科学进展, 2008,18(10): 1104-1110.
    [113]孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009.
    [114]王泳嘉,刑纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社, 1991.
    [115]赵永志,江茂强,徐平,等.颗粒堆内微观力学结构的离散元模拟研究[J].物理学报,2009, 58(3):1819-1825.
    [116]赵永志,程易.水平滚筒内二元颗粒体系径向分离模式的数值模拟研究[J].物理学报, 2008, 57(1):322-328.
    [117] Johnson K L(英)著,徐秉业等译著.接触力学[M].北京:高等教育出版社,1992.
    [118] Mindlin R D, Deresiewicz H. Elastic spheres in contact under varying oblique forces[J]. Journal of Applied Mechanics,1953,20(3):327-344.
    [119] Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids[C]. Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences),1971,324(1558):301-313.
    [120] Savkoor A R, Briggs G A D. The effect of tangential force on the contact of elastic solids in adhesion[J].Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences),1977,356(1684):103-114.
    [121] Thornton C. Interparticle sliding in the presence of adhesion[J].Journal of Physics D(Applied Physics),1991,24(11):1942-1946.
    [122] Campbell C S, Brennen C E. Computer simulation of granular shear flows[J].Journal of Fluid Mechanics,1985,151:167-188.
    [123] Campbell C S, Brennen C E. Chute flows of granular materials: some computer simulations[J].Journal of Applied Mechanics,1985,52(1):172-178.
    [124] Oda M, Iwashita K, Kakiuchi T. Importance of particle rotation in the mechanics of granular materials[M].Rotterdam: Balkema,1997.
    [125] Alberto D R, Francesco P D M. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J].Chemical Engineering Science, 2004, 59(3): 525–541.
    [126] Langston P A, Tüzün U, Heyes D M. Discrete element simulation of granular flow in 2D and 3D hoppers. Dependence of discharge rate and wall stress on particle interactions[J]. Chemical Engineering Science,1995,50(6):967-987.
    [127] Zhou Y C, Wright B D, Yang R Y, et al. Rolling friction in the dynamic simulation of sandpile formation[J].Physica A,1999,269(2-4):536-553.
    [128] Tijskens E, Ramon H, De Baerdemaeker J. Discrete element modelling for process simulation in agriculture[J].Journal of Sound and Vibration,2003,266(3):493-514.
    [129] Asmar B N,Langston P A,Matchett A J, et al. Validation tests on a distinct element model of vibrating cohesive particle systems[J].Computers and Chemical Engineering,2002,26(6): 785-802.
    [130] Mishra B K. A review of computer simulation of tumbling mills by the discrete element method: Part I-contact mechanics[J].International Journal of Mineral Processing,2003,71 (1-4):73-93.
    [131] Iwai T, Hong C W, Greil P. Fast particle pair detection algorithms for particle simulations[J]. International Journal of Modern Physics C,1999,10(5):823–837.
    [132] Ning Z, Boerefijn R, Ghadiri M, et al. Discrete element simulation of impact breakage of lactose agglomerates[J].Advanced Powder Technology,1997,8(1):15-37.
    [133] Rosato A, Prinz F, Standburg K J, et al.Monte carlo simulation of particulate matter segregation[J].Powder Technology, 1986, 49(1):59-69.
    [134] Rosato A D, Lan Y, Wang D T. Vibratory particle size sorting in multi-component system[J].Powder Technology, 1991,66(2):149-160.
    [135]姜泽辉,王运鹰,吴晶.窄振动颗粒床中的运动模式[J].物理学报,2006,55(9):4748-4752.
    [136] Langston P A, Al-Awamleh M A, Fraige F Y, et al. Distinct element modeling of non- spherical frictionless particle flow[J].Chemical Engineering Science,2004,59(2):425-435. 14 2
    [137] Rosato A, Strandburg K J, Prinz F, et al. Why the Brazil nuts are on top: size segregation of particulate matter by shaking[J].Physical Review Letters,1987,58(10):1038-1040.
    [138] Grossman E L. Effects of container geometry on granular convection[J].Physical Review E,1997,56(3):3290-3300.
    [139]刘初升,赵跃民,黄晓徐.振动筛筛分过程的计算机仿真研究[J].过程工程学报,2004,4: 261-264.
    [140]王峰,王皓.筛分机械[M].北京:机械工业出版社,1998.
    [141]王新文.物料群颗粒与振动床面碰撞运动理论分析[J].矿山机械,2003(10):46-48.
    [142]《选矿手册》编辑委员会.选矿手册(第二卷,第一分册)[M].北京:冶金工业出版社,1993.
    [143] Standish N, Bharadwaj A K, Hariri-Akbari G. Study of the effect of operating variables on the efficiency of a vibrating screen[J].Powder Technology,1986,48(2):161-172.
    [144]韦鲁滨,赵跃民,陈清如.煤用概率分级筛筛分过程的仿真研究[J].煤炭学报,1999,24(1): 103-107.
    [145] Stejskal J,王峰译.椭圆振动筛[J].矿山机械,1984(5):36-39.
    [146]贺孝梅.超静定网梁结构大型振动筛动态设计研究[D].江苏徐州:中国矿业大学,2009.
    [147]张一敏.固体物料分选理论与工艺[M].北京:冶金工业出版社,2007.
    [148]王淀佐,卢寿慈,陈清如,等.矿物加工学[M].徐州:中国矿业大学出版社,2003.
    [149] Cleary P W, Robinson G K, Golding M J, et al. Understanding factors leading to bias for falling-stream cutters using discrete element modeling with non-spherical particles[J]. Chemical Engineering Science,2008,63(23):5681-5695.
    [150] Delaney G W, Cleary P W. Fundamental relations between particle shape and the properties of granular packings[C].Powders and Grains 2009. 6h International Conference on Micromechanics of Granular Media,Golden,CO,USA: American Institute of Physics, 1145: 837-840.
    [151] Rothenburg L, Bathurst R J. Numerical simulation of idealized granular assemblies with plane elliptical particles[J]. Computers and Geotechnics,1991,11(4):315-329.
    [152] Rotheburg L, Bathurst R J. Micromechanical features of granular assemblies with planar elliptical particles[J].Geotechnique,1992,42(1):79-95.
    [153] Munjiza A, Latham J P. Comparison of experimental and FEM/DEM results for gravitational deposition of identical cubes[J]. Engineering Computations, 2004,21(2-4):249-264.
    [154] Latham J P, Munjiza A. The modeling of particle systems with real shapes[J].Philosophical Transactions of the Royal Society,2004,362(1822):1953-1972.
    [155] Williams J R, Pentland A. Superquadrics and modal dynamics for discrete elements in interactive design[J]. Engineering Computations,1992,9(2):115-127.
    [156]孙博文.分形算法与程序设计—Visual C++实现[M].北京:科学出版社,2004.
    [157]刘初升,赵啦啦,闫俊霞,等.矿物颗粒的随机分形仿真算法研究[J].工程图学学报, 2009,30(6):66-70.
    [158]谢和平,张永平,宋晓秋等.分形几何—数学基础与应用[M].重庆:重庆大学出版社,1991.
    [159]常进,何援军,田海山.基于OpenGL的机载图形生成算法[J].工程图学学报, 2008,29(3):50-55.
    [160]和平鸽工作室.OpenGL高级编程与可视化系统开发—高级编程篇(第二版)[M].北京:中国水利水电出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700