用户名: 密码: 验证码:
塔里木盆地三叠系层序结构及沉积充填特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塔里木盆地是我国西气东输的主要能源基地,油气资源十分丰富,资源量超过100×108t,被地质学家称为我国油气工业的“希望之海”。三叠系碎屑岩储层作为主要勘探目标之一,多年勘探实践已在塔河-轮南地区取得了显著的勘探成效,同时阿瓦提断陷西北部地区发现了良好的油气显示,总体显示了巨大的勘探潜力。
     前人对盆地内不同构造单元(尤其在塔北地区)的三叠系沉积相及层序地层特征进行过研究,然而因受资料限制、研究范围不同及采用的层序地层理论学派不同,导致前人对台盆区三叠系层序地层研究程度及认识差异较大,迄今还未建立比较认可的、贯穿全区的层序划分方案。同时对盆地沉积相类型、平面展布、充填演化及储集砂体展布的研究也较薄弱,从而制约了对三叠系有利勘探区带和油气富集规律的深入认识。
     针对以上存在问题,本文以经典层序地层学和现代沉积学理论为指导,把台盆区三叠系作为整体进行解剖,在研究区354条骨干地震测网、120多口钻测井资料、岩芯及大量分析化验等资料的基础上,从宏观的地震层序分析入手,依据盆地三级层序界面识别和内幕结构划分,采取局部与整体相结合,充分应用区域地震剖面进行全盆层序格架的整体解释,并在地震层序格架指导下进行井震标定,开展钻井层序的细分对比,并依据古生物标志,最终建立了台盆区统一的层序地层格架,统一了不同构造单元的地层划分方案,进一步总结研究区坳陷盆地特色的层序地层发育模式。在等时地层格架基础上,结合岩石类型、结构特征、沉积构造、测井相、地震相和物源供给系统分析等多种手段,系统分析台盆区各层序沉积相类型、发育特征、纵横向展布规律。最终应用于台盆区潜在的岩性地层圈闭类型和控制因素分析,并对重点区块有利勘探区带进行预测,从而为盆地三叠系整体的油气勘探部署提供依据。
     通过系统分析研究,本论文得到以下主要成果性认识:
     1.此次在台盆区自下而上识别出T48、T46a2、T46a1、T46h、T46等5个层序界面,将三叠系划分为T-SQ1-T-SQ4共4个三级层序。通过全区地震层序解释,将三叠系底界由此前T50变更为T48,同时重新厘定了三叠系柯吐尔组和二叠系沙井子组分界面。该界面在塔中地区大部单纯从岩性、颜色上难以区分。
     2.本次地震层序解释表明,虽然塔中和塔河地区三叠系地层组均采用了3分方案,塔河地区柯吐尔组与塔中地区三叠系下部均发育厚层泥岩,岩性组成上有着可比性,在层序格架上,塔中地区三叠系下部厚层泥岩为T-SQ1层序湖扩至高位体系域早期沉积;而塔河地区T-SQ1层序普遍缺失,柯吐尔组厚层泥岩为T-SQ2层序的湖扩至高位体系域早期沉积。总体上,塔中和塔河地区地层划分方案上呈错位对接关系。此前划分为岩石地层方案,明显存在穿时现象。
     3.对台盆区层序界面识别和典型内幕结构解析看来,层序低位、湖扩、高位体系域“三元”结构是毋庸置疑的。由于所处盆缘位置不同以及湖盆坡度十分宽缓的条件下,小的湖平面变化即能造成湖岸线的迁移距离远,低位体系域时期湖盆范围急剧萎缩,造成低位体系域分布范围小,厚度薄,普遍缺乏大型前积反射的特征结构,常常不发育低位扇体,另外,缓坡高部位常常缺失低位体系域。湖扩体系域呈现远距离的上超,高位体系域具波及范围广泛的平缓前积反射,与陆架坡折背景的发育低位扇、低位楔具高角度“S”型前积反射特征有所不同。台盆区作为前陆盆地系统的隆后盆地单元,其发育演化及层序结构受控于挤压挠曲作用过程。单个层序内沉降中心向北迁移以及多个层序沉降中心总体向北迁移的特征,即是层序受控于幕式挤压挠曲作用的具体体现。
     4.层序结构及内幕沉积演化方面,台盆区三叠纪湖盆坡缓水浅、沉积物供给丰富,总体表现为宽浅型坳陷湖盆背景下大型辫状河三角洲广泛发育的面貌,相应发育了辫状分流河道、水下分流河道、河口坝、远沙坝4种主要有利储集砂体类型。半深湖亚相仅在湖扩体系域时期发育,除此之外,大多为宽浅型滨浅湖-浅湖背景。三角洲平原上河道长距离向水下延伸,形成了特色的水下河道,外加台盆区湖平面变化幅度小、对沉积物供给的抑制作用小等原因,三角洲进积序列中先期堆积的河口沙坝较细粒沉积体,常因受向湖盆方向延伸的后期水下分流河道冲刷截切而保存不完整,并以水下分流河道砂体逐渐占优势,形成辫状河三角洲体系中以水下分流河道砂体为骨架砂体的重要特征,平面上整体表现为不断向盆地腹部推进的、相互叠置的大型三角洲复合体。最终,一个三级层序内部多表现为辫状河三角洲→滨浅湖→辫状河三角洲的退积→前积演化序列,辫状河三角洲在低位体系域、湖扩体系域早期以及高位体系域中晚期发育普遍,湖扩体系域中晚期至高位体系域早期则普遍由滨浅湖-半深湖厚层泥岩组成。
     5.鉴于三叠系储集砂体在台盆区广大地区极为发育、储集性能较好、分布较广、所形成的油气藏为次生油气藏、有利圈闭类型多为岩性—地层及构造—岩性复合圈闭等特征,认为台盆区油气成藏的关键应为是否具有效的输导及封堵遮挡条件。研究认为,塔北南部-顺托果勒北部斜坡部位,满西-顺托果勒西部斜坡部位和阿瓦提北部斜坡部位具有良好的勘探前景。
Tarim Basin is an important energy basement for transporting nature gas from the west to the east. It has plenty of petreoleum resource that is more than 100×108 t, so Tarim Basin is known to geologists as the oil and gas industry's hope. The Triassic is one of the most significant petroliferous strata..A series of oil and gas pool has been found in Triassic strata in Tahe-Lunnan area over the past few years, at well as good evidences of oil and gas have been acquired in the northwest of Awati aera. It is, therefore, showing a huge exploration potential.
     Although predecessors have researched the sedimentation and sequence stratigraphy in different tectonic units (especially in Tabei area), the basin wide sequence stratigraphy is researched little. However, due to data limitations, the study area and the use of different different theoretical of sequence stratigraphy, different people have quite different ideas on Triassic. Until now, authorized and trans- region sequence stratigraphic program has not been established. At the same time, because of the limited research on sedimentary facies,sedimentary system, filling evolution and sandbody distribution, the deep cognizance of oil accumulation was weak. Above all, the study of favorable exploration area and oil-gas accumulational regularity is restricted.
     To solve the above problems, the study is under the theoretical guidance of sequence stratigraphy, contemporary sedimentology, petroleum geology and geophysics, and the overall research of the whole basin is emphasized. We analyzed the 354 seismic data, more than 120 logging and drilling core data of Triassic in Tarim Basin. From a macro seismic sequence analysis, depending on the identification of sequence and system tract boundaries, combining the part and whole of the basin, fully using the regional basin-wide seismic interpretation, carrying out the meticulous comparisonby of drilling sequence in the basement of synthetic demarcation, and combining the palaeontologic marker, a unified sequence stratigraphic framework between well and seismic is established in platform area, and a stratigraphic program in different tectonic units is unified. To the further, the sequence stratigraphic characteristics and models of the depression basin in study area is totally summed up. On the basis of isochronal stratigraphic framework, with the outcop observation, core description,and log facies analysis, combing with rock ty -pe,depositional texture, structure characteristics, ect, types of sedimentary facies, development characteristics, and vertieal and horizontal distribution are analyzed. Eventually the research is used to analyse the types,and control factors of potential lithological and stratigraphical traps and to predict favorable exploration area at the key block, so it will improve the accuracy of reservoir prediction and provide foundation for integral deployment of petroleum exploration.
     The conclusions of this thesis can be summarized as follows:
     1. Five isochronous sequence boundaries are developed, the bottom-up is T48, T46a2, T46a1, T46h, T46, and four third-order sequences are divided from T-SQ1 to T-SQ4. By the the regional basin-wide seismic interpretation program, the basal boundary is changed from T50 to T48. So the boundary of Ketu'er formation of Triassic and Sajingzi formation of Permian is amended, which is hard to be distinguished by tailored lithologic character and color.
     2. By the the the regional basin-wide seismic interpretation program, although both Tazhong and Tabei area are used the 3 sub-programs, due to the thick mudstone in basal Triassic.and the similarity of the mudstone. The thick mudstone in basal T-SQ1 sequence in Tazhong area is formed the deposition during the TST to early HST. Whereas T-SQ1 sequence is widespread absent in Tahe area, The thick mudstone belongs to T-SQ2 sequence during the TST to early HST. Overall, the stratigraphic program between Tazhong and Tahe area is misplaced. Prior program was divided by rock formation, which results in the diachronous phenomenon.
     3. From the identification of sequence boundaries and analysis of typical inside structure, the "Three triple" structure include LST, TST and HST is beyond doubt.Due to the different positions of the basin margin as well as the conditions of very wide and gentle slope in the lake, small changes of lake level can cause the long-distance migration of shoreline, the lake range is rapidly declined during LST, resulting a small range, thin thickness and the lackage of low fan bodies and large-scale foreset reflection configuration. besides, LST is widespread absent in the slope of high position. The ultra-long-distance onlap is widely developed during TST. The typical feature of HST is that a wide range of gentle foreset reflection is well developed. This is quite different from the pattern of shelf- break background, which develops the low fan and a low wedge with high angle "S" type characteristics. The platform area is the uplift backward unit of foreland basin system, its evolution and sequence structure is controlled by extrusion process. The feature that settlement center within a single sequence and multiple sequence is migrated northward is the concrete manifestation. That is, sequence is controlled by the episodic and bending process.
     4. In the terms of sequence structure and sedimentary inside evolution, with an environment with gentle slope, shallow water and rich deposition, the braided river delta in the Triassic of platform area was deposited extensively in the shore- shallow lake background,which represent the deposition of broad-shallow depression lake basin. The corresponding 4 kinds of favorable reservoir sand is formed:braided channel, underwater distributary channel, channel mouth bar and distal bar. bathyal facies is only developed during the TST and early HST. Braided channel extends to the underwater with a long distance, the typical underwater channel is formed. And in the background of a small lake level change, the more fine-grained sedimentary bodies of channel mouth bar formed pre-stacked plot in delta sequence are not preserved completely by the erosion and cut-off of posterior underwater distributary channel. At last sand bodies of underwater distributary channel is gradually dominated and the important feather is they're the key sandbodies. They show the constantly advanced to the abdomen of basin and mutually overlying complex delta bodies Finally, the third sequence is "retrogradation→progradation" evolutionary of the internal braided river delta→brink-shallow lake→braided river delta. And braided river delta is developed widespreadly in the LST, early TST and middle-late HST, the shallow lake and demi-deep lake thick mudstone is developed during late TST and early HST.
     5. In view of the ideas that Triassic reservoir sandbodies are extremely developed, reservoir performance is better, distribution is large, secondary hydrocarbon reservoir is the main reservoir and favorable traps are lithologic-stratigraphic and complex structural lithologic traps, the key term of reservoir is whether has valid conduction and blankoff- guarded element. Studies suggest that the following three slope positions have a good exploration prospects:south Tabei-Shunbei area, Manxi-Shunxi area and south Awati area.
引文
[1]王华,任建业,王家豪,等.层序地层学的基本原理、方法与应用[M].武汉:中国地质大学出版社,2007.1-498.
    [2]Van Wagoner, J. C, Mitchum, R. M., Campion, K. M. and Rahmanian, V. D., et al, Siliclastic sequence stratigraphy in well logs, cores, and outcropconcepts for high- resolution correlation of time and lacies:AAPG Methods in Exploration Series 7,1990.55.
    [3]Catuneanu, C, Abreu. V, Bhattacharya, P, J, et al, Towards the standardization of sequence stratigraphy [J], Earth-Science Reviews,2009 (92):1-33.
    [4]陈旭,陈红汉,董玉文.地震沉积学研究方法评析[J].沉积与特提斯地质,2010,30(1):54-60.
    [5]中国石油天然气股份有限公司勘探与生产分公司,岩性地层油气藏勘探理论与实践[M].北京:石油工业出版社,2005.202-248.
    [6]贾承造,赵政璋,杜金虎,等.中国石油重点勘探领域—地质认识、核心技术、勘探成效及勘探方向[J].石油勘探与开发,2008,35(4):385-396.
    [7]李明,刘晓.岩性地层油气藏地球物理勘探技术与应用[M].北京:石油工业出版社,2005.1-5.
    [8]王英华,鲍志东,朱筱敏.沉积学及岩相古地理学新进展[M].北京:石油工业出版社,1995.8-182.
    [9]曾允孚,覃建雄.沉积学发展现状与前瞻[J].成都理工大学学报,1999,26(1):1-7.
    [10]刘宝增,韩作振,杨仁超.当代沉积学研究进展、前瞻与思考[J].特种油气藏,2006,13(5):1-9.
    [11]于兴河,郑秀娟.沉积学的发展历程与未来展望[J].地球科学进展,2004,19(2):173-182.
    [12]贾承造.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997.1-438.
    [13]贾承造.塔里木盆地中新生代构造特征与油气[M].北京:石油工业出版社,2004.1-89.
    [14]陈旭,董玉文,郝广雷.塔中地区早二叠世岩浆活动特征及石油地质意义[J].地质科技情报,2010,30(5):78-83.
    [15]王招明.塔里木盆地油气勘探与实践[M].北京:石油工业出版社,2004.6-89.
    [16]赵治信,雍天寿,贾承造,等.塔里木盆地地层系统[M].北京:石油工业出版社,1997.160-182,
    [17]贾承造,张师本,吴绍祖,等.塔里木盆地及周边地层研究[M].北京:科学出版社,2004.1-393.
    [18]车长波,杨虎林,李玉喜,等.中国天然气勘探开发前景[J].天然气工业,2009,28(4): 1-4.
    [19]何宏,郭建华,彭苏萍,等.库车前陆盆地三叠系层序地层研究[J].石油勘探与开发,2002,29(3):32-36.
    [20]张希明,刘青芳,王贵全.塔里木盆地北部三叠—侏罗系砂岩碎屑组分与板块构造位置关系的研究[A].见:康玉柱编.中国塔里木盆地石油地质文集[C].北京:地质出版社,1996.92-97.
    [21]王龙樟.塔里木盆地阿瓦提-满加尔坳陷三叠—侏罗纪沉积物源变迁[J].地球科学—中国地质大学学报,2000,22(2):39-42.
    [22]傅恒,宋杉林,刘海兴.塔北-塔中盆地三叠纪陆相层序地层划分及沉积演化[J].沉积与特斯地质,2002,22(2):32-46.
    [23]吕雪雁,朱筱敏,申银民,等.塔里木盆地台盆区三叠系层序地层研究和有利勘探区预测[J].石油勘探与开发,2002,29(1):32-35,
    [24]顾家裕.塔里木盆地沉积相与油气[M]北京:石油工业出版社,2003.192-220.
    [25]高岩,赵秀歧,张伟,等.塔里木盆地层序地层特征与非构造圈闭勘探[M].北京:石油工业出版社,2004.80-245.
    [26]黄兴文,于兴河,郑秀娟,等.草湖凹陷东部T-J层序地层与沉积体系[J].天然气工业,2006,26(3):23-25.
    [27]刘辰生,郭建华.新疆阿克库勒地区三叠系中油组层序地层学研究[J].地层学杂志,2008,32(1):42-45.
    [28]党青宁,赵宽志,孙雄伟,等.阿瓦提凹陷三叠系地震相特征及有利勘探区预测[J].新疆石油地质,2009,30(2):208-211.
    [29]Zhang Lei, Wang Yingmin, Yang Ting, et al. Triassic middle oil-member favorite trap prediction in Akeyasu area [J]. Oil Geophysical Prospecting,2009,44(6):739-746
    [30]马水平,王志宏,田永乐,等.地震反射同相轴的地质含义[J].石油地球物理勘探,2010,45(3):454-457.
    [31]刘朋波,蒲仁海,刘娟霞.松辽盆地十屋断陷前积反射特征及意义[J].石油地球物理勘探,2010,45(1):115-121.
    [32]郭学斌,李子顺.应用高分辨率地震技术识别下切谷-松辽盆地杏树岗泉头组解释实例[J].石油地球物理勘探,2010,45(增刊1):154-157.
    [33]隋风贵,赵乐强.济阳坳陷不整合结构类型及控藏作用[J].大地构造与成矿学,2006,30(2):161-167.
    [34]Richard V, Heermance, Jie Chen. Chronology and tectonic controls of LateTertiary deposition in the southwestern Tian Shan foreland, NWChina [J]. Basin Research,2007(19), 599-632.
    [35]Patrick I, McLaughlin, Carlton E. High-resolution sequence stratigraphy of a mixed carbonate- siliciclastic, cratonic ramp (Upper Ordovician; Kentucky-Ohio, USA):insights into the relative influence of eustasy and tectonics through analysis of facies gradients [J]. Science direct,2004,40(2):267-294.
    [36]Gao, D, Shumaker, R. C., Wilson, T. H, Along-axis segmentation and growth history of the Rome Trough in the central Appalachian basin, AAPG Bulletin,2000(80):75-99.
    [37]严德天,王华,王家豪,等.库车前陆盆地白垩系层序地层样式及控制因素分析[J].沉积学报,2006,24(6):841-848.
    [38]王家豪,王华,陈红汉,等.库车前陆盆地前渊带层序地层分析—以白垩系卡普沙良群为例[J].地质科技情报,2005,24(1):25-29.
    [39]王家豪,王华.库车前陆盆地东部白垩系—下第三系层序地层及其构造响应研究[M].武汉:中国地质大学出版社,2006.1-108.
    [40]王家豪,王华,肖敦请,等.陆相伸展性盆地二级层序的厘定[J].石油学报,2009,30(6):870-875.
    [41]张翔.塔里木盆地志留系层序地层学研究及意义.[博士学位论文].成都:成都理工大学,2009.
    [42]邹才能.大油气区形成与分布[M].北京:科学出版社,2010.50-121.
    [43]韩文功.地震剖面的极性问题[J].石油地球物理勘探,1994,29(6):769-772.
    [44]郭栋,韩文功,杨玉龙.车西高分辨率地震资料精细层位标定方法[J].石油地球物理勘探,2001.10,36(5):533-539.
    [45]李丕龙,冯建辉,陆永潮,等.准噶尔盆地构造沉积与成藏[M].北京:地质出版社,2010.5-340.
    [46]Donaldon A C. Pennsylvanian sedimentation of central Appalachians [J]. The Geological Society of America Inc.1974, Special Paper:147-481.
    [47]邹才能,赵文智,张兴阳,等.大型敞流湖盆浅水三角洲与湖盆中心砂体的形成与分布[J].地质学报,2008,82(6):813-824.
    [48]Ganil M R, Bhattacharya J P, Basic building blocks and process variability of a Cretaceous delta:internal facies architecture reveals a more dvnamic interaction of river, wave, and tidal processes than is indicated by external shape, Journal of Sedimentary Research[J]. 2007,77(4):284-302.
    [49]李思田,程守田,杨世恭,等.鄂尔多斯盆地东北部层序地层及沉积体系分析[M].北京:地质出版社,1992.13-21.
    [50]朱伟林,李建平,周心怀,等.渤海新近系浅水三角洲沉积体系与大型油气田勘探[J].沉积学报,2008,26(4):575-582.
    [51]楼章华,兰翔,卢庆梅,等.地形、气候与湖平面波动对浅水三角洲沉积环境的控制作用[J].地质学报,1999,73(1):83-92.
    [56]吴小红,吕修祥,周心怀,等.黄河口凹陷浅水三角洲沉积特征及其石油地质意义[J].石油与天然气地质,2010,31(2):165-172.
    [57]朱筱敏,张义娜,杨俊生,等.准噶尔盆地侏罗系辫状河三角洲沉积特征[J].石油与天然气地质,2008,29(2):244-251.
    [58]王家豪,姚光庆,赵彦超.浅水辫状河三角洲发育区短期基准面旋回划分及其储层宏观特征分析[J].沉积学报,2004,22(1)87-94.
    [59]张昌民,尹太举,朱永进,等.浅水三角洲沉积模式[J].沉积学报,2010,28(5):933-943.
    [60]Zhu Hongtao, Chen Kaiyuan, Liu Keyu, et al. A sequence stratigraphic model for reservoir sand-body distribution in the lower Permian Shanxi formation in the Ordos Basin, northern China[J]. Marine and Petroleum Geology,2008(25):731-743.
    [61]朱筱敏.沉积岩石学[M].北京:石油工业出版社,2008.1-384.
    [62]于民凤,程日辉,那晓红.陆相盆地主要沉积微相的测井特征[J].世界地质,2005,24(2):182-187.
    [63]马正.油气测井地质学[M].武汉:中国地质大学出版社,1994.91-104.
    [64]陈纲,王中文,王湘文.河流沉积微相与测井相研究[J].测井技术,1996,5(20):335-340.
    [65]张强,朱筱敏,王贵文.层序地层学测井资料分析[J].层序地层学及其在油气勘探开发中的应用论文集,1997:211-215.
    [66]徐怀大,陈俊生.地震地层学(在油气勘探中的应用)[M].北京:石油工业出版社,1989.125-136.
    [67]Brown. L. F. and W. L. Fisher. Seismic stratigraphic interpretation of drpositional systems: example from Brazil rift and pull-apart basins,in C. E. Paayton. Sesismic stratigaphy applications to hydrocarbon exploration. AAPG Memoir,1977(26),213-248.
    [68]G. Ercilla, S. Garcia-Gil. High-resolution seismic stratigraphy of the Galicia Bank Region. and neighbouring abyssal plains Iberian continental margin[J]. Marine Geology,2008, 249(1):108-127.
    [69]李会军,吴泰然,吴波,等.中国优质碎屑岩深层储层控制因素综述[J].地质科技情报,2004,23(4):76-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700