用户名: 密码: 验证码:
三维可视化技术在经皮肝胆道硬镜碎石(PTCSL)治疗肝胆管结石中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     肝胆管结石病是我国长江以南、沿海一带、西南地区,尤其是广大农村地区的多发病,也常见于东南亚及日本,是具有强烈区域分布的疾病。其病情顽固、复发率高、易引起严重的并发症。手术治疗是其主要方式,然而,肝脏及其内部管道结构本身就存在较多变异,结石患者的肝脏出现变形、转位,合并肝内血管与胆管变异的几率更高。另外由于肝胆管结石的分布广泛,且胆管狭窄位置不确定等原因是造成肝胆管结石术后复发及再次手术的两个主要因素。
     近年来十二指肠镜、胆道镜、腹腔镜的应用,使得剖腹手术率减少。但不管哪一种方法,目前结石的复发率仍很高达32.6%,纤维胆道镜虽然能将结石取净率提高至80%,但纤维胆道镜很难解决严重的胆管狭窄问题。对反复多次手术的患者,其胆道、肠的正常解剖通路已发生改变,十二指肠镜也无能为力。1972年日本高田氏,1981年Nimura先后报道了经皮肝胆道镜技术(percutaneous Transhepatic Cholangioscopy,PTCS)在治疗肝胆管结石方面的优越性,国内1985年由张宝善教授率先引进推广。但传统PTCS方法,其治疗时间很长,易发生出血、胆漏、胆道感染、腹膜炎等并发症,外科医生与患者较难接受。
     肝胆管结石在诊断方面使用的影像学检查有:B超、CT、MRI、MRCP、 ERCP等,由于这些检查手段都存在瓶颈,无法立体显示肝胆管结石的大小、部位、胆管狭窄的部位、长度、程度,缺乏胆管系统与肝内脉管系统的立体解剖关系。难以制定合理化的手术预案,实现肝胆管结石手术的精准治疗。
     近年来,数字医学技术在肝胆管结石、肝脏肿瘤及肝移植等肝脏疾病诊疗方面已显示其重要的应用价值。上世纪90年代以后三维可视化技术迅猛发展,使虚拟现实技术,可视化技术、快速成型技术、三维图象的控制与测量等技术的结合,为医生提供了一个可视化的虚拟现实环境,可在接近真实的虚拟模型上模拟手术过程,选择最佳手术方案指导实际手术。本研究将MI-3DVS (medical images three-dimensional visualization system)(软件专利号:2008SR18798)技术应用于肝胆管结石患者中的胆道数字化解剖,对肝胆管结石进行分型诊断和指导设计个体化手术预案。同时模拟优化经皮肝胆道硬质胆道镜碎石术(Percutaneous Transhepatic Cholangioscopic Lithotripsy PTCSL)的手术过程,进一步提高肝胆管结石疾病的术前诊断率、PTCSL手术治疗的精准性、降低肝胆管结石术后残石率、复发率及术后并发症,提高临床疗效。
     一MI-3DVS技术在胆道解剖、肝胆管结石肝脏分段、疾病分型的研究
     目的:
     1.研究胆道系统解剖数字化,采用CT数据和MI-3DVS技术对肝胆管结石患者的肝脏、肝内管道、结石的三维重建,实现重建的胆道系统结石肝脏分段特点、数字化肝胆管结石的疾病分型。2.研究.基于数字化肝脏分段、疾病分型的基础上,改进传统PTCS的通道建立方法,优化PTCSL通道建立时间;选择最佳硬质胆道镜的胆道手术入路。方法:
     1.1研究对象:2007年1月至2013年12月南方医科大学珠江医院、广州医科大学附属第一医院收治肝胆管结石患者的39例,其中男性20例,女性19例;年龄31-84岁,平均(50.6±11.5)岁。
     1.2CT数据的采集所用设备、参数,数据的分割,肝脏和脉管系统的三维重建方法见文献1。
     2.基于MI-3DVS个体化肝脏分段、肝胆管结石疾病分型
     在肝脏、门静脉、肝静脉、肝动脉和胆管三维重建基础上,利用Couinaud肝段划分法,进行三维可视化肝脏分段。再结合《2011中国肝胆管结石病诊断治疗指南》分型、日本Nakayama分型,Tsunoda分型依据,进行数字化肝胆管结石的疾病分型。
     3. PTCSL通道建立时间
     本研究采用两种PTCSL通道建立时间:一种是在MI-3DVS系统指导下于PTBD术后5-7d,直接经皮肝扩张胆道造瘘至18-20F、瘘道内置保护性鞘管建立PTCSL通道,同时应用硬质胆道镜辅助进行Ⅱ期碎石、取石;另一种是在MI-3DVS系统精确指导下经B超、C臂机、CT定位直接穿刺并扩张目标胆管窦道至16-18F,窦道内置保护性鞘管建立PTCSL通道,进行Ⅰ期碎石、取石手术。
     4. MI-3DVS指导PTCSL精准手术入路
     本研究应用MI-3DVS软件的适应区域生长算法对胆道系统进行精确分割,三维重建后能整体显示胆道系统树状结构,明确结石分布的位置、结石的形态大小及数量,同时还能精确显示胆管与血管的空间位置,在指导实际PTCSL手术时,可避开肝静脉、门静脉等大血管以及腹腔和胸腔脏器,选择精准穿刺胆管部位。
     结果:
     1.肝脏及肝内外血管系统的三维重建
     肝脏、肝内外胆管血供的3D模型立体感强,可多方位自由旋转,能真实反映肝脏的实际体积和肝脏的解剖结构,清晰显示肝内外胆管血供的来源及分布特点,并且通过调节肝脏的透明度显示出门静脉系统、肝静脉系统、肝动脉系统结构,形态逼真,立体感强。
     2.胆道系统及结石的三维重建
     本研究通过MI-3DVS数字化胆道解剖系统,能真实反映肝内胆管树立体形态,以及胆管狭窄、扩张的长度和直径,清晰显示结石的部位、大小、数量、以及胆管系统和肝内三大血管系统的立体解剖结构关系。通过其可计算出胆管狭窄情况:①胆管狭窄19例48.7%(19/39),95%CI(95%置信区间)为33.4%-64.4%;②无胆管狭窄20例51.3%(20/39),95%CI为35.6%-67.0%(图1-49-1-60)。
     3.MI-3DVS对肝胆管结石患者肝脏个体分段,对结石分布和胆管病变部位做出了精确的三维定位诊断。结合三维重建结石的部位、狭窄胆管程度采用:病变胆管、结石分布位置(location,L)、胆管狭窄程度(stenosis,S)、胆管扩张程度(distention,D)、肝硬化、门脉高压症(cirrhosis,C)等因素对肝胆管结石进行数字化的疾病分型诊断。如肝胆管结石(LⅡ、Ⅵ、Ⅶ, SⅡ、Ⅵ、Ⅶ, DⅡ3.Ⅵ3.Ⅶ3. C):表明肝第1Ⅱ、Ⅵ、Ⅶ结石,Ⅱ、Ⅵ、Ⅶ段胆管重度狭窄,远端胆管扩张,肝硬化。
     4. PTCSL通道建立时间
     本组39例肝胆管结石患者中,MI-3DVS指导下PTCSL通道建立时间比传统PTCS通道时间明显缩短,从Ⅰ期PTCSL通道取结石者16例,Ⅱ期PTCSL通道取石者23例,都符合PTCSL手术。
     5. PTCSL精准手术入路:
     本组39例肝胆管结石患者中,PTCSL的取石次数:1次取石有14次;2次取石有18次;3次取石有4次;4次取石有2次;5次取石有1次。穿刺入路:①左外侧入路穿刺24例61.5%(24/39)95%CI为46.3%-76.8%,结石取净有19例,残余结石5例,结石取尽率79.2%(19/24)95%CI为62.9%-95.4%;②右侧入路穿刺8例35.9%(14/39)95%CI为20.8%-51.0%,结石取净有3例,残余结石5例,结石取尽率37.5%(3/8);③左外、右侧同时入路穿刺7例,17.9%(7/39)95%CI为8.0%-33.0%,结石取净有5例,残余结石2例。
     结论:
     1.基于MI-3DVS三维重建可实现胆道数字化解剖,获得的三维图像对病变胆管部位与周围血管及脏器等重要解剖结构的显示更加清晰直观,对肝胆管结石可作出精确的术前诊断。
     2.基于MI-3DVS对肝胆管结石患者个体化肝脏分段解剖特征,结合数字化疾病分型,优化PTCSL通道建立缩短扩张窦道取石周期、减少扩张次数、降低胆漏、出血、假道形成等并发症;对制定精准PTCSL手术入路方式有更加实际的临床指导意义。
     二MI-3DVS技术在经皮肝胆道硬镜碎石(PTCSL)个体化治疗肝胆管结石中的应用研究
     目的:
     1.研究腹部医学图像三维可视化系统(MI-3DVS)在经皮肝胆道镜碎石(PTCSL)治疗肝胆管结石决策中的价值。
     2.比较研究基于MI-3DVS辅助的PTCSL与传统肝切除术在肝胆管结石病治疗中的临床效果。
     方法:
     1.研究对象:南方医科大学珠江医院、广州医科大学附属第一医院收治的肝胆管结石患者81例的临床资料,其中39例基于三维可视化技术在PTCSL碎石术(A组),其中男20例,女19例,年龄56.2±13.8岁,病程3个月—10年;42例3D指导下行肝叶切除术(B组),其中男21例,女21例,年龄49.9±11.5岁,病程4个月—9.5年。两组患者在性别、年龄、术前肝功能、发病部位、有无合并肝内胆管一般位置的狭窄及肝脏萎缩等的临床资料方面比较,差异无统计学意义(P>0.05),具有可比性。
     2.CT数据的采集所用设备、参数,数据的分割,肝脏和脉管系统的三维重建方法见同1.2
     3.肝胆管结石的虚拟PTCSL手术
     在FreeForm Modeling System中对三维重建模型及各组成部分进行放大、缩小、旋转,透明等操作,全方位观察病变胆管各结构或细节,根据结石分布、胆道系统病变情况选择合理PTCSL手术预案,利用力反馈设备PHANTOM和自行开发设计的PTCSL手术器械进行肝胆管结石的虚拟仿真PTCSL手术,以确定最佳PTCSL手术方案。
     4.A组的PTCSL手术
     在MI-3DVS系统指导下,精确选择穿刺胆管入路。采用两种方法:一种是Ⅱ期取石:通常在B超、C臂X线机、CT引导下经皮肝穿刺胆管,后放置8F导管引流。于经皮肝胆道引流(percutaneous transhepatic biliary drainage, PTBD)一周后,在静脉麻醉或硬膜外麻醉下在原PTBD引流的瘘道,用8-16F系列扩张器一次性扩张直至16-18F。留置16F或18F的鞘管用硬质胆道镜辅助碎石、取石。另一种是Ⅰ期取石:在影像定位下穿刺目标胆管成功后,直接扩张胆管瘘道至16-18F后,留置保护性鞘管用硬质胆道镜辅助碎石、取石。术后根据胆道造影观察结石残留情况,明确拔管时间。
     5.B组的开腹肝脏切除手术
     采用MI-3DVS对肝胆管结石患者CT图像数据进行三维重建后,可以清晰地显示结石大小、部位、形态和在肝脏的空间立体位置;准确地显示结石与肝静脉、门静脉、肝动脉、下腔静脉和腹腔血管的关系,从而进行个体化肝脏分段,计算整个肝脏体积、切除肝脏体积以及残留肝脏体积;切除有病变肝胆管结石的肝叶。
     6.纳入标准:
     本次研究共纳入患者81例。三维重建标准:肝内胆管扩张;肝切除术标准:①肝胆管结石伴有肝段的纤维化、萎缩;②肝胆管结石相应胆管严重狭窄,疑有肝胆管癌变可能;③病变胆管合并肝脓肿。排除标准:肝胆管结石合并其他严重疾病、不适合采取本次研究治疗手段进行治疗的患者。
     7.观察指标:
     比较A组和B组患者的手术相关数据(手术时间、术中失血量和术中输血量)、术后住院时间、肝内胆管狭窄残留率、死亡率和并发症发生率和术前、术后实验室检查结果。术后随访所有病例采用电话结合门诊随诊方式进行。
     8.统计学处理:应用统计学软件SPSS19.0,计量资料用t检验,计数资料用卡方检验分析,P<0.05为差异有统计学意义。
     结果:
     1.三维重建肝内胆道系统和血管系统立体解剖结构
     本组81例患者肝脏、胆道系统、血管系统三维重建的立体模型形态逼真、解剖结构标志正确。
     2.术中结果
     两组术后住院天数基本相同。A组患者术中输血量(0vs.195.7±205.7ml)和术中失血量(20.6±25.9vs.256.1±155.8ml)显著少于B组患者,差异有统计学意义(P<0.05);A组患者的手术时间比B组患者显著减短(127.8±78.7vs.213.2±50.9min;P<0.05)差异有统计学意义见表3。在A组39例患者中,Ⅰ型6例,Ⅱa型5例,Ⅱb型1例,Ⅱc型1例,E型26例,重建模型与术中所见均符合,2例患者因肝胆管变异,难以行PTCSL手术,仿真手术方案与实际手术方式符合率为95%(37/39);在B组42例患者中,Ⅰ型7例,Ⅱa型2例,Ⅱb型2例,Ⅱc型1例,E型30例
     3.术后结果
     A组和B组的即可结石残留率比较(2.6%vs.18.6%;P<0.05)和最终结石残留率比较(5.3%vs.23.8%;P<0.05),差异有统计学意义。两组肝内胆管狭窄残留率比较(1.8%vs.14.3%;P<0.05),差异有统计学意义。共有22例患者出现并发症,A组和B组分别为10例(25.6%)和12例(28.6%)。术后实验室检查结果见表6。与B组患者相比,A组患者在血清转氨酶水平、血清胆红素水平、血清白蛋白水平和凝血酶原时间方面均无显著优势。但A组患者的血红蛋白水平显著高于B组(116.3±16.0vs.108.0±13.9g/L;P<0.05)。
     4.随访结果
     患者随访时间为2-85个月(中位数31个月),随访率为100%(81/81)。15例患者结石复发(A组2例,B组10例)。A、B两组患者的结石复发率(12.8%vs.23.8%;P>0.05),差异无统计学意义。所有复发结石均位于右叶,其中2例(A组)有1例是右后肝胆管结石复发,1例是右前肝胆管结石复发。A组胆管炎复发率明显低于B组患者(5.1%vs.23.8%;P<0.05),差异有统计学意义。A组1例复发胆管癌并胆肠吻合口结石患者术后13个月因肿瘤转移,并发MODS死亡,至数据分析时再无患者死亡。
     结论:
     基于三维重建技术的PTCSL与开放性肝切除术治疗肝胆管结石的比较,前者手术时间更短,即可结石残留率、最终结石残率均更低,而结石复发率无差别,为不能耐受开腹手术和术后残留结石患者提供了新的技术手段,达到肝胆管结石的数字化微创外科治疗目的。但是三维重建技术的PTCSL对分期取石、针对肝叶萎缩的肝胆管结石疗效不显著的问题。
     三MI-3DVS技术指导硬质胆道镜在治疗肝胆管结石中的应用研究
     目的:
     研究基于腹部医学图像三维可视化系统(MI-3DVS)指导硬质胆道镜治疗肝胆管结石中的诊疗价值。
     方法:
     1.研究对象:收集自2007年1月至2013年12月77例南方医科大学珠江医院、广州医科大学第一附属医院肝胆管结石患者,其中男性34例,女性43例;年龄30~75岁,平均(53.2±13.8)岁。其中有1次胆道手术史者20例,2次10例,3次5例。胆-肠吻合手术史10例,胆道肿瘤3例,胆道梗阻3例。
     2.CT数据的采集所用设备、参数,数据的分割,肝脏和脉管系统的三维重建方法见同1.2
     3.虚拟硬质胆道镜和内置保护性鞘管辅助治疗肝胆管结石手术:
     根据三维重建模型中结石分布、胆道系统病变情况,选择四种手术方式:开腹手术、腹腔镜胆道探查手术、经皮肝造瘘取石手术、经胆道窦道取石手术中最合理的一种行硬质胆道镜和内置保护性鞘管辅助治疗肝胆管结石手术预案,利用力反馈设备PHANTOM和自行开发设计的硬质胆道镜、鞘管手术器械进行肝胆管结石的虚拟仿真碎石手术。
     4.硬质胆道镜辅助下碎石的术式决策及手术效果评价:
     术前通过对77例患者肝胆管结石3D模型进行三维可视化观察,详细了解肝胆管结石分布的部位、大小、胆管系统与肝内脉管系统立体关系的特点,并进行术前规划,选择四种手术方案中最佳的手术方式。观察术中碎石情况、术后结石取尽率、结石复发率、并发症发生情况等。
     结果:
     1.三维重建肝内胆道系统和血管系统立体解剖结构
     本组77例患者三维重建的立体模型形态逼真、解剖结构标志正确。在肝脏透明化处理情况下,可清楚观察到肝胆管结石的大小、数量、部位及胆管狭窄程度和范围;观察到肝胆管结石分布、胆管系统病灶与周围组织器官的相互关系。其中胆管狭窄率31.2%(24/77,95%CI为18.1%-49.2%)。
     2.肝胆管结石仿真硬质胆道镜和内置保护性鞘管辅助手术
     在仿真手术环境中,可明确肝内结石分布以及胆道系统与肝脏周围器官的情况,以及肝内血管树的改变,据此选择最佳的手术方式:本组77例肝胆管结石患者中,其中开腹手术3D指导硬质胆道镜碎石手术8例;3D指导下腹腔镜联合硬质胆道镜碎石手术13例;3D指导下PTCSL取石手术39例;3D引导下经胆道窦道行保护性鞘管辅助硬质胆道镜碎石手术17例。
     3.三维可视化技术在硬质胆道镜和内置保护性鞘管辅助手术的临床应用
     根据三维视频和截图的观察分析,以及77例患者的反复仿真手术的演练,制定出个体化的手术预案。77病例中有3例患者因肝胆管变异,难以行保护性鞘管辅助硬质胆道镜碎石手术,仿真手术方案与实际手术方式符合率为95%(73/77),95%CI为89.9%-99.8%。术中出血量(18.47±1.27),95%CI为15.94-21.00ml。患者术后残余结石有21例,结石残留率为31.8%(24/77),95%CI为20.8%-41.5%。术后并发症率为10.6%(8/77):95%CI为3.6%-17.2%,有胸腔胆汁漏1例;胸腔积液各1例,均放置胸腔引流管引流后治愈;慢性胆管炎1例;伤口感染2例;出血2例,术后出血发生率为3%(2/77),95%CI为0.0%-6.1%(出血量分别为400ml和1500ml),经引流管灌注去甲肾上腺素生理盐水等非手术方法治愈;胸腔胆汁漏,胸腔积液各1例,均放置胸腔引流管引流后治愈。术后平均住院时间(14.7±4.3)d。1例复发胆管癌并胆肠吻合口结石患者术后13个月因肿瘤转移,并发MODS死亡。
     结论:
     三维可视化技术针对不同的肝胆管结石的数字化疾病分型,为开腹手术、腹腔镜胆道探查手术、经皮肝造瘘取石手术、经胆道窦道取石手术中选择最佳手术方式提供重要依据。真正达到肝胆管结石个体化治疗,最大程度降低术后结石残留率、结石复发率、减少了术后并发症。
Background of study
     Hepatolithiasis is frequent and common not only in the south of the Yangtze River, coastal area, southwest area, especially in the vast rural areas in China but also in Southeast Asia and Japan. The disease is characterized by the disease resistance, high recurrence rate and susceptibility of severve complications. Currently, the solution to it points to hepatectomy. However, the structures of liver and its internal tract themselves have many variations. Meantime hepatolithiasis sets on frequently with deformation, translocation, and intrahepatic vascular and bile duct variations. Moreover, the extensively distributed intrahepatic bile duct stones together with uncertain location of bile duct stenosis, often undermine the curative effect of hepatectomy which may come out with the narrow bile duct and residual stones in spite of hopefully removing the lesions which lead to postoperative recurrence and re-operation of hepatolithiasis.
     In recent years, the applications of duodenoscopy, choledochoscopy and laparoscopy has resulted in the decrease of the laparotomy rate. To surgeons' annoyance, all these approaches go weak in lowering the current stone recurrence rate, which is as high as32.6%. Although the choledochoscopy is reported to be effective in the stones clearance at a rate of80%, the fiber choledochoscopy is still difficult to solve the serious bile duct stenosis. For most of the patients with repeated operations, the changed normal anatomical channels of the biliary tract and intestines make the duodenoscopy unable. The percutaneous transhepatic cholangioscopy (PTCS) and its advantages are reported by the Japanese Takata (1972) and Nimura (1981). The PTCS shows its superiority in the treatment of hepatolithiasis and is introduced by Professor Zhang Baoshan (1985). But the traditional PTCS method has its shortcomings like long treatment duration, susceptibility to bleeding, bile leakage, biliary tract infection, peritonitis and other complications so that it is difficult to be accepted by surgeons and patients.
     Diagnostically, hepatolithiasis is also problematic in that so far the sophisticated instruments including B-ultrasound, CT, MRI, MRCP, and ERCP are not all specific in that they all are limited in demonstrations of the size and location of stones, the location, length and degree of bile duct stenosis, and the3D anatomies of bile duct system and intrahepatic vasculature. As a result, this bottleneck makes it difficult to plan a rational operation and reach an accurate treatment of hepatolithiasis operation.
     In recent decades, the digital medical technologies have shown their important application value in the diagnosis and treatment of liver diseases. Since1990, the rapidly-developed three-dimensional visualization technology allows surgeons to simulate the surgical approaches on a virtual model so as to optimize an ideal one directing the real surgical manipulation. In this study, the three-dimensional visualization system of abdominal medical images (MI-3DVS)(software Patent No.:2008SR18798) was applied in the digital biliary tract anatomy of hepatolithiasis to diagnose hepatolithiasis by typing and guiding the design of individual operation as well. At the same time, the operation process of percutaneous transhepatic cholangioscopic lithotripsy (PTCSL) was simulated and optimized to further improve the preoperative diagnosis rate of hepatolithiasis and the accuracy of PTCSL operation treatment, thereby reducing the postoperative residual stone rate, recurrence rate and complications and improving the clinical efficacy of patients with hepatolithiasis.
     I. The application of MI-3DVS technology in bile duct anatomy, hepatolith liver segmentation, clinical typing and PTCSL channel construction Objective:
     1. To study the digital three-dimensional reconstruction of biliary anatomy by using spiral CT with image post-processing workstation and abdominal medical image three-dimensional visualization system (MI-3DVS), to make the3D reconstruction of the liver, biliary tract system, intrahepatic vasculature and stones of patients with hepatolithiasis, and to realize the anatomical digitization of hepatobiliary system;
     2. To study the biliary tracts of live human hepatolithiasis by MI-3DVS based on the3D reconstruction of biliary system to anatomize and improve the traditional channel construction of percutaneous transhepatic cholangioscopy (PTCS), choose the best rigid choledochoscope biliary surgical approach and optimize the channel construction time of PTCSL.
     Methods:
     1.1Subjects:39patients with hepatolithiasis admitted to the Department of Hepatobiliary Surgery of Zhujiang Hospital, the First People's Hospital of Shunde, Southern Medical University and the First affiliated Hospital of Guangzhou Medical University1from January2007to September2013were recruited in the study, male20cases, female19; aged31to84years, averaged (50.6±11.5) years old.
     1.2CT date and Equipments
     In accordance to those from1
     2. Individualized liver segmentation and typing of hepatolithiasis based on MI-3DVS
     Using the3D reconstructions of portal vein, hepatic vein, bile duct and hepatic artery of liver, the liver was divided into four segments along the three intrahepatic major hepatic veins, each containing a portal vein branch, and further into sub-segments using vena cava as a center which were then named segments I-VIII counterclockwise. Finally, the digital typing of hepatolithiasis was conducted based on the above results combined with2011China Hepatolith Disease Diagnosis and Treatment Guidelines, Nakayama Parting and Tsunoda Classification.
     3. Optimization of PTCSL channel construction time
     The traditional PTCS channel construction time isl week for the percutaneous transhepatic biliary drainage (PTBD). Thereafter, distention is performed for2-3times a week,2F each time until the fistula tract is extended by16~18F. After2-3weeks prepartion, the lithotomy is performed by use of fiber choledochoscope. In this study, two kinds of optimized PTCSL channel construction were used:PTBD was directly performed based on the MI-3DVS.5-7d after PTBD, percutaneous transhepatic fistulization was made to18-20F and a PTCSL channel was constructed in built-in protective sheath of fistula. At the same time, lithotrity and stage II lithotomy were performed using rigid choledochoscope. Under precise guidance of the MI-3DVS system, for the other method, the target bile duct sinus was punctured and expanded directly to16-18F via B ultrasound, and C arm machine positioning, a PTCSL channel was constructed in built-in protective sheath of fistula and meanwhile lithotrity and stage I lithotomy were performed.
     4. PTCSL precise surgical approach guided by MI-3DVS MI-3DVS software adaptive region growing algorithm was used for precise segmentation of the biliary system. The3D reconstructed biliary system displayed the biliary arbors as a whole, clearly positioning the distributions, forms, sizes and number of stones and at the same time accurately presenting the spatical positions of the bile duct and blood vessels. In the practical PTCSL,an accurate puncturation into bile duct was done and the major vessels like hepatic vein and portal veins, and abdominal and thoracic cavity viscera could be protected.
     Results:
     1. Three-dimensional reconstruction of the liver and intra/extra-hepatic vascular system.
     The constructed3D models of the blood supply of liver and intra/extra-biliary was vivid in stereoscopic view and rotatable freely in multiple directions so as to reflect the actual volume and anatomical structure of liver and clearly present the sources and distributions of blood supply of intra/extra-biliary. Importantly, it showed clearly the main portal vein, left and right main portal vein as well as branches of each lobe and segment of portal vein system via adjusting the transparency of the liver. Meanwhile, it clearly displayed the distributions of branches of three main hepatic veins within the liver, and the spatial anatomic structure of hepatic veins entering to supra-and inferior-hepatic vena cava as well as the abdominal aorta, celiac trunk and its branches structure.
     2. The3D reconstruction of biliary system and stones
     The image segmentation was performed for the data of each phase of biliary system by using MI-3DVS technique, and the specific information contained in each phase was integrated into a complete3D image of biliary tract by using the automatic registration function of the system. Digital bile duct anatomy system reflected really the stereo shape of intrahepatic biliary tree, the length and diameter of bile duct stenosis or distention, and the location, size, number of stones, and even the stereo anatomical structural relationship between bile duct system and intrahepatic three vascular systems. Based on the reconstructed model, intrahepatic bile duct stenoses:were calculated among the subjects in the study:(1)19cases contracted bile duct stenosis (48.7%,19/39),95%CI ranged between36.4%-60.5%;(2)20cases did not contract bile duct stenosis (51.3%,40/77),95%CI ranged between39.5%-63.6%.
     3. The individualized segmentation and precise localization of calculi and lesions in the bile ducts based on MI-2DVS. The digital typing diagnosis of hepatolithiasis was made according to localizations of diseased bile duct and stones, stenosis of the bile duct, distention of bile duct, cirrhosis and cirrhosis based on the MI-3DVS. For example, hepatolith with the various types of LⅡ, Ⅵ,Ⅶ, SⅡ, Ⅵ, Ⅶ, DⅡ3, Ⅶ3.and C indicated hepatic stones with type Ⅱ,Ⅵ and Ⅶ, severe stenosis at the stages of Ⅱ, Ⅵ and Ⅶ, severe stenosisat the stages of Ⅱ, Ⅵ and Ⅶ, distal expansion of bile duct and even hepatic cirrhosis.
     4. Time for PTCSL channel construction
     For the39cases of hepatolithiasis, the time span for constructing PTCSL channel under the guidance of MI-3DVS was significantly shorter than the traditional PTCS channel construction.In the study, PTCSL was suitable for16cases undergoing stage Ⅰ lithotomy and23cases underdoing stage Ⅱ lithotomy.
     5. PTCSL precise surgical approach:
     For39patients with hepatolith, the times for lithotomy by PTCSL included:1-time lithotomy for14times; twice lithotomy for18times,3-times lithotomy for4times;4-times lithotomy for2times and5-times lithotomy for once. Puncturation approaches included:(1) the left lateral puncturation in24cases, taking up61.5%(24/39),95%CI ranging between48.8%-72.4%. The stone clearance was done in19cases, and residual calculi happened in5cases, with a clearance rate of79.1%(19/24),95%CI ranged between34.9%-59.0%;(2) right approaches in8cases, taking up20.5%(14/39),95%CI ranged between11.4%-31.1%, with a clearance rate of37.5%(3/8);(3) left external/right approaches in7cases, taking up17.9%(7/39),95%CI ranged between8.0%and33%, wich a clearance in5cases and residual stones ini2cases.
     Conclusions:
     1. Based on the three-dimensional reconstruction of MI-3DVS of the biliary tract digital anatomy, the liver and its adjacent organs, abdomen blood vessels, and intrahepatic tract system were observed from a stereo perspective so that a precise preoperative diagnosis could be made for hepatolithiasis.
     2. Based on MI-3DVS individualization of segmented anatomical characteristics of liver in patients with hepatolith and combined with digital disease classification, the time for optimizing PTCSL channel was significantly shortened, the frequency for distention was reduced and the complications such as bile leakage, bleeding, false way formation were refrained from. Clinically, it is of great value to make precise the PTCSL surgical approach
     II. Application of MI-3DVS in PTCSL for individualized treatment of hepatolith
     Objective:
     1. To study the value of MI-3DVS in decision of treatment plans for PTCSL.
     2. To compare clinical effects MI-3DVS-aided PTCSL with those of traditional hepatectomy for treating hepatolith.
     Method:
     1. The subjects::The clinical data of81patients with hepatolithiasis admitted at the Department of Hepatobiliary Surgery of Zhujiang Hospital, the First People's Hospital of Shunde, Southern Medical University and the First Affiliated Hospital of Guangzhou Medical University were retrospectively analyzed. Of all the patients, 39(20male, female19cases, aged56.2±13.8years, with a course of3months to10years) receiving MI-3DVS-aided PTCSL were assigned as group A, and the other42(male:21, female:21; aged49.9±11.5years; with a course of4months to9.5years) receiving traditional hepatectomy guided by MI-3DVS. There were statistically insignificant differences between the two groups in terms of gender, age, preoperative liver function, location of lesions, intrahepatic bile duct stenosis and hepatic atrophy (P>0.05).
     2. The equipment and parameters used for CT data acquisition,, data segmentation, and the3D reconstruction of the liver and its vasculatures were the same as in the section1.2.
     3. Virtual PTCSL for hepatolithiasis
     In FreeForm Modeling System, the3D reconstruction hepatobiliary model was zoomed, rotated, transparentized to observe the pathological changes of bile duct or details of each structure. Based on the data, then, virtual PTCSL was performed using PHANTOM and self-developed PTCSL instruments to make a best PTCSL scheme.
     4. PTCSL in group A
     Before PTCSL, an accurate approach was chosen for biliary puncturation under the direction of MI-3DVS system. Then PTCSL was performed in two ways:1) Stage II lithoclasty and lithotomy:Puncturation of biliary duct was performed under the guidance of US, C arm X-ray machine and CT, followed by intubation of8F for drainage. After a week, the duct was dilated to16-18F along the fistulous tract for drainage using the dilators of16-18F series under intravenous or epidural anesthesia. Finally the shealth for16F or18F dilator was used to allow a rigid choledochoscope for stage II lithotripsy and lithotomy.2) Stage I lithoclasty and lithotomy:After successful puncturation of biliary duct, a fistulous tract in the duct was made and dilated directly to16-18F and then the shealth for16F or18F dilator was used to allow a rigidcholedochoscope for stage I lithoclasty and lithotomy. After operation, postoperative biliary imaging was done to check if there were residue stones and extubation time was specified.
     5. Open hepatectomy in group B
     CT data of patients with hepatolith conducted by MI-3DVS can clearly show stone size, position, shape, and a three-dimensional position; It also can accurately show the relationshap between stones and hepatic vein, portal vein and hepatic artery and inferior vena cava and the abdominal blood vessels, thus to individualized liver segmentation, computing the liver volume, resection of liver volume and residual liver volume; have hepatolith lob lesions off.
     6. Inclusion standards
     The standard for3D reconstruction included presence of dilated intrahepatic bile ducts. Standards for hepatectomy:(1) cholangiolithiasis combined with liver fibrosis and atrophy;(2) cholangiolithiasis with severe biliary stenosis and liver cancer;(3) diseased bile duct combined with hepatic abscess. Exclusion criteria: cholangiolithiasis combined with other serious diseases, not suitable for the treatment in the study. Finally, our study included81cases of patients.
     7. Observation indexes
     The indexes include operation-related data (including time for operation, intraoperative blood loss, and intraoperative blood transfusion volume), hospital stay, postoperative residual intrahepatic bile duct stricture rate, mortality and complication rate, and preoperative and postoperative laboratory test results. The postoperative follow-ups were done by telephone calls or outpatient visits.
     8. Statistical treatment:the application of statistical software SPSS19.0, measurement data using t test, Chi-square analysis, P<0.05was statistically significant.
     Results:
     1. Three-dimensional anatomical structure of3D reconstructed intrahepatic biliary system and cardiovascular system
     3D reconstructed liver, biliary and cardiovascular system of39patients were vivid anatomically and suitable for the typing of cholangiolithiasis as well as simulated PTCSL.
     2. Operative results
     The duration of hospital stay was the same generally between the two groups. The intraoperative blood transfusion volume and intraoperative blood loss in group A were both significantly less than in group B, the difference was statistically significant (0vs.195.7±205.7ml;20.6±25.9vs.256.1±155.8ml, P<0.05). The operation time in group A was significantly shorter than in group B(127.8±78.7vs.213.2±50.9min, P<0.05), as shown in Table3. In39patients of group A,6cases belonged to type I,5cases type Ha,1case type Ⅱb,1case type IIc,and26cases type E, which all accorded with the types verified in the reconstructed model. Only2patients were excluded for PTCSL due to hepatobiliary deformations. The simulated operative schemes coincided with the actual schemes for hepatectomy by95%(37/30). In the42patients of group B,7cases belonged to type I,2cases type Ha,
     2cases type Ⅱb, type1Ⅱc case and30cases type E.
     3. The postoperative outcomes
     There were significant differences between the two groups in the calculi residual rate (2.6%vs.18.6%, P<0.05), the final residual rate (5.3%vs.23.8%, P<0.05) and the intrahepatic bile duct stricture retention rate (1.8%vs.14.3%, P<0.05)..A total of22patients came out with complications,(10cases (25.6%) in group A and12cases (28.6%) in group B). Postoperative laboratory examinations in Table6showed no significant differences in terms of the levels of serum transaminase, serum bilirubin, serum albumin as well as the thrombin time between the two groups. But the hemoglobin level was significantly higher than that of group B (116.3±16.0vs.108.0±13.9/L, P<0.05).
     4. Follow-up results
     Patients were followed up for2-85months with a mean of31.1months, and the follow-up rate was100%(81/81).15patients came out with recurrence of cholangiolithiasis (2cases in group A and10in group B). There was no statistically significant difference between the two groups in the rate of cholangiolithiasis recurrence (12.8%vs.23.8%, P>0.05). All calculis at the recurrence were located in the right lobe:one in the right posterior hepatobiliary duct and another in right anterior hepatobiliary duct. The recurrence rate of cholangitis in group A was lower than that in group B (5.1%vs.23.8%, P<0.05). In group A,1patient contracted bile duct carcinoma combined with intestinal anastomotic stone and died of tumor metastasis with MODS13months after operation. With the exception, no other patients died until data analysis was done.
     Conclusion:
     In comparison with the open hepatectomy, PTCSL based on3D reconstruction technology is more advantageous for its shorter operation duration, lower rate of caculi residuals as well as identical rate of calculi recurrence. Therefore, it allows us to have a more reasonable access to the cure of cholangiolithiasis by using digital minimally invasive technology, even though its curative effect in lithotomy as well as in the treatment of cholangiolithiasis combined with hepatic lobe atrophy was not remarkable.
     III. Application of rigid choledochoscope guided by MI-3DVS in the treatment of cholangiolithiasis
     Objective:
     To study the effect of MI-3DVS on PTCSL for the treatment of cholangiolithiasis.
     Method:
     1. Subjects of study:77patients with hepatolithiasis admitted in the Department of Hepatobiliary Surgery of Zhujiang Hospital, the First People's Hospital of Shunde, Southern Medical University and the First affiliated Hospital of Guangzhou Medical University from January2007to September2013, male24cases,female14cases, aged30-75years old, average (53.2-13.8) years. Among them,20patients underwent biliary surgery for once,10for twice, and5for3times; another10patients underwent biliary-intestinal anastomosis. Besides,3patients had biliary tumors and another3biliary obstruction.
     2. The equipment and parameters used for CT data acquisition,, data segmentation, and the3D reconstruction of the liver and its vasculatures were the same as in the section1.2.
     3. The use of virtual rigid choledochoscope and built-in protective sheath for the treatment of cholangiolithiasis:
     According to calculi distribution and biliary lesions in the3D reconstruction model, four operative modes were made:open surgery, laparoscopy on bile duct, lithotomy by percutaneous hepatocholangiostomy, and The stone with biliary fistula. Among them, The stone with biliary fistula was the most reasonable for the virtual rigid choledochoscope and built-in protective sheath based on PHANTOM for the simulation lithotripsy.
     4. The effect of lithotomy aided by virtual rigid choledochoscope
     Before real lithotomy, the3D models of cholangiolithiasis on the imaging data of the77patients were constructed to visually investigate the distributions and sizes of hepatolith, and the stereo vision of bile duct and intrahepatic vascular system in details. Based on the individual characteristics of each case, an optimal operative scheme was chosen and manipulated. The rate for removing stones, the recurrence rate of cholangiolithiasis and complications were investigated.
     Results:
     1. The3D anatomic structures of intrahepatic biliary system and cardiovascular system in MI-3DVS
     The3D reconstructed liver, biliary and cardiovascular system of77patients were vivid anatomically in the3D reconstructed models. When transparentized, the models presented the size, number, location, scope and degree of bile duct stenosis, distribution of hepatolith and even relationship between the lesions in bile duct system and the adjacent tissues and organs. The bile duct stenosis rate was31.2%(24/77,95%CI为18.1%-49.2%).2. PTCSL aided by virtual rigid choledochoscope and built-in protective sheath In the3D models, the distributions of intrahepatic calculi, the connection of biliary system to the adjacent organs and the change of the intrahepatic vascular tree were sharply demonstrated. In this way, an optimal surgical scheme was decided upon the data from the manipulation of3D models. Among the77patients in this study, as a result,8underwent lithotripsy guided with3D virtual rigid choledochoscope by open operation;13lithotripsy using laparoscope and rigid choledochoscope guided by the3D reconstructed models.39PTCSL lithotripsy under the guidance of3D reconstructed model,17The stone with biliary fistula lithotripsy aided by protective sheath under the3D reconstructed model.
     3.Effect of3D visualization technology on lithotomy or lithotripsy aided by rigid choledochoscope and built-in protective sheath
     Before actual operation, repeated rehearsals of simulation operation were enforced according to the3D videos and screenshots so as to optimize the individual operative schemes. Among the77patients, as a result,3of them were excluded from lithotripsy aided by protective sheath and rigid choledochoscope because of hepatic duct variations and all others were included. The results showed the simulation operative schemes coincided with the actual operative plans by95%(73/77), with95%CI between90.4%-100.0%. The intraoperative blood loss was (18.47±1.27)ml, with95%CI between15.94-21.00ml. The residual stone rate was31.8%(21/66), with95%CI between20.6%-43.1%. Postoperative complication rate was10.6%(7/66), with95%CI betwen3.2%-18.0%.1patients contracted chest bile leak, another pleural effusion, the two cured by thoracic intubation for drainage.1patients contracted chronic cholangitis and two patients wound infections.2patient had hemorrhage, with an incidence of postoperative bleeding3%(2/66), with95%CI between0.0%-7.2%(The bleeding volumes were400ml and1500ml, respectively) and they were cured by perfusion with noradrenalin saline. The average stay was14.7±4.3D.1patient contracted bile duct carcinoma combined with intestinal anastomotic stone and died of tumor metastasis complicated with MODS13months after operation.
     Conclusion:
     3D visualization technology provides reliable references for optimizing operation schemes for typing of hepatolithiasis, open surgery, laparoscopic bile duct exploration, percutaneous colostomy lithotomy, and The stone with biliary fistula so as to achieve individualized therapies for hepatolithiasis and reduce the residual stone rate, stones recurrence rate and postoperative complications to the largest extent.
引文
[1]张宝善.肝内残石的内镜治疗[J].实用外科杂1991,11:566-567.
    [2]陈希刚.纤维胆道镜在肝胆管结石手术中的应用[J].中华肝胆外科杂志,2001,5:304.
    [3]黄志强.手术后胆管残石的过去、现状与对策[J].中国实用外科杂志,2000,20(9):515-516
    [4]Uchiyama K, Onishi H,Tam M, et al. Indication and procedure for treatment of hepatolithiasis[J].Arch Surg,2002,137(2):149.
    [5]马利林,陆丽萍,徐青等.纤维胆道镜在肝内胆管结系统性治疗中的作用[J].外科理论与实践,2002,(7)193-195.
    [6]Lee SK, SeoDW, Myung SJ, et al. Percutaneous transhepatic cholangio-scopic treatment for heap-tolithiasis:an evaluation of long-term.
    [7]金斗,刘京山,孙立中,张宝善.经皮经肝胆道镜在治疗术后肝外胆管狭窄中的应用.中华肝胆外科杂志,2002,8:245-247.
    [8]张宝善,山川达郎,三芳端.经皮经肝胆道镜的临床应用.中华外科杂志,1985,23:353-355.
    [9]Nimura Y.percutaneous transhepatic cholangioscopy (PTCS).stomach and intestine 1981; 16:681-689.
    [10]Fasel JH, Gingins P, Kalra P, et al. Liver of the "visible man". Clin Anat, 1997,10:389-393.
    [11]邵长征,张亮,逢淑申,等.螺旋CT胆系造影三维成像临床应用研究,[J]中国医学影像学杂志2001.09.15;9(5):328-330
    [12]方驰华,陈智翔,范应方等.腹部医学图像三维可视化系统辅助肝胆管结石诊治决策的价值.中国实用外科杂志,2010,30(1):41-42.
    [13]方驰华,黄燕鹏,鲁朝敏,李晓锋,陈智翔,苏仲和,丘文峰.数字医学技术在肝胆管结石诊治中的应用价值研究.中华外科杂志,2009,47(12):909-911.
    [14]方驰华,唐云强,鲁朝敏,彭丰平,潘家辉,鲍苏苏.左肝内胆管结石患者的64排CT数据集的三维重建和左肝切除可视化仿真手术的研究.中华实验外科杂志,2008,25(8):1003-1005.
    [15]方驰华,唐云强,鲁朝敏,刘宇斌,彭丰平,鲍苏苏.胆囊切开取石和胆囊切除术的可视化研究.南方医科大学学报,2008,28(3):356-359.
    [16]方驰华,常旭,鲁朝敏,杨剑,项楠,鲍苏苏,彭丰平,潘家辉.肝内外胆管结石64排CT数据三维重建及其临床意义.南方医科大学学报,2008,28(3):370-372.
    [17]方驰华,唐云强,黄燕鹏,等.胆总管结石可视化仿真手术研究.中华消化外科杂志,2009,8(3):1-3.
    [18]刘衍民,曾可伟,王纯忠等,改良的经皮经肝胆道镜术治疗肝内胆管结石,外科理论与实践。2004,9:485-486
    [19]Shinohara Y, Kikuchi T, Yamamoto H, et al. The three-dimensional demonstration of the intrahepatic bile ducts reconstructed from cholangio CT. Nippon Rinsho.1991,49(8):1893-1897.
    [20]John NW, McCloy RF, Herrman S. Interrogation of patient data delivered to the operating theatre during hepato-pancreatic surgery using high-performance computing. Comput Aided Surg.2004;9(6):235-42.
    [21]范维鹏,杨庆,赵明芳,等.多层螺旋CT(MSCT)三维重建技术在短篇论著,临床和实验医学杂志,2006;5(5):5.
    [22]黄志强,马宵.肝部分切除术治疗肝内胆管结石.中华外科杂志,1958,6:1221-1224.
    [23]梁力建,李绍强,彭宝岗,赖佳明,黎东明,吕明德.肝切除治疗肝内胆管结石.中华肝胆外科杂志,2006,12(12):796-800.
    [24]Sun WB, Han BL, Cai JX. The surgical treatment of isolated left-sided hepatolithiasis:A 22-year experience. Surgery,2000,127(5):493-497.
    [25]黄志强.在微创外科时代对肝内胆管结石外科治疗的再认识.中国普外基础与临床杂志.2006,13(4):371-373.
    [26]C.-H. Chen, M.-H. Huang, J.-C. Yang,,Reappraisal of percutaneous transhepatic cholangioscopic lithotomy for primary hepatolithiasis Surg Endosc(2005) 19:505-509
    [27]Jan YY, Chen MR (1995) Percutaneous transhepatic cholangioscopic lithotomy for hepatolithiasis:long-term results. Gastrointest Endosc 42:1-5.
    [28]黄洁夫,陈孝平,董家鸿.肝胆胰外科[M].人民卫生出版社,2010:590-592.
    [29]董家鸿.要点与盲点:胆道外科[M].人民卫生出版社,2011:73-75.
    [30]Robert B, Nadler, Jonathan N, el at. Percutaneous Hepatolithotomy:The North western University Experience. Journal of Endourology,2002,16(5):293-297.
    [31]A.W.C. Kowa, B. Wanga et al, Using percutaneous transhepatic cholangioscopic lithotripsy for intrahepatic calculus in hostile abdomen, the surgeon (2011)88-94.
    [32]Bonnel D, Liguory C, Lefebvre JF, et al. Percutaneous treatment of intrahepatic lithiasis[J]. Gastroenterol Clin Biol.2001,25 (6-7):581-588.
    [33]John NW, McCloy RF, Herman S. Interrogation of patient data delivered to the operating theatre during hepato-pancreatic surgery using high-performance computing. Comput Aided Surg.2004;9(6):235-42.
    [I]Uchiyama K, Onishi H,Tam M, et al. Indication and procedure for treatment of hepatolithiasis[J].Arch Surg,2002,137(2):149.
    [2]马利林,陆丽萍,徐青等.纤维胆道镜在肝内胆管结系统性治疗中的作用[J].外科理论与实践,2002,(7)193-195.
    [3]范应方,方驰华,游锦华等.医学图像三维可视化系统在肝胆管结石病诊断与治疗中的应用[J].中华消化外科杂志,2011,10(4):271-3.
    [4]张宝善.肝内胆管”彗星征”的临床评价[J].中国实用外科杂志,1997,17:182-183.
    [5]Nimura Y.percutaneous transhepatic cholangioscopy (PTCS).stomach and intestine 1981;16:681-689.
    [6]陆光生,文辉清,刘衍民.经皮肝穿刺胆道引流管周瘘道形成的实验研究,中国内镜杂志,2004,10(11):44-46.
    [7]Hjonsj CH.ne topography of the intrahepatic duct system[J].Acta Anat(Basel). 1951,n:599-615.
    [8]Healey JE Jr,Schroy PC. Anatomy of the biliary ducts, analysis of the prevailing pattern of branchings and the major variations of the biliary ducts EJ].Arch Surg,1953,66:599-616.
    [9]Couinaud C,Le Fie. Anatomiques et chirugicales.Paris.Masson & Cie, 1957.284-289.
    [10]Couinand C.Surgical anatomy of the liver revisited Ch4.Anatomy of the dorsal sector of the liver.New considerations on liver anatomy.Paris:Pers ED. 1989,26-39.
    [11]Oh HC, Lee SK, Lee TY, et al. Analysis of percutaneous transhepatic cholangioscopy-related complications and the risk factors for those complications. Endoscopy,2007,39(8):731-736.
    [12]PENG Feng-ping,BAO Su-su,ZENG Bi-qing. Research on Virtual Surgery System of Liver and Gallbladder Based on 64-Row CT Data. Journal of System Simulation,2009,21(17):5458-5461
    [13]彭丰平,鲍苏苏,曾碧卿.基于64排CT数据的肝胆虚拟手术系统的研究.系统仿真学报,2009,21(17):5458-5461
    [14]陆仁枝,宋志坚,唐厚军.CT序列图像分割的现实及分割结果的重建J.计算机工程,2003,13(29)152-4.
    [15]彭丰平,鲍苏苏.CT序列图像中肝脏及其管道的分割.计算机工程与应用,2009,45(20):205-207.
    [16]PENG Feng-ping, BAO Su-su. Segmentation of liver and its vessel based on CT sequence image.Computer Engineering and Applications,2009,45(20): 205-207.
    [17]彭丰平,鲍苏苏.基于分割的肝癌三维可视化研究与实现.计算机与数字工程,2008,225(7):131-132
    [18]Peng Fengping,Bao Susu,Research and Implementation of 3D Visualization for Liver Cancer Based on Segmentation.Computer & Digital Engineering, 2008,225(7):131-132
    [19]Adams R, Bischof L. Seeded region growing J.IEEE Trans Pattern Anal Machine Intelligence,1994,16(6):641-7.
    [20]Wan Bai-kun,Wang Rui-ping.Principles of SVM and its application in micro-calcifications detection in mammogram. Acta Electronica Sinica, 2004,32(4):587-590.
    [21]Heriot AG Karanjia ND.A review of techniques for liver resection.Ann R Coil Surg Engl 2002 Nov,84(6):371-380
    [22]赖佳明,梁力建,彭宝岗等.胆道再次手术235例分析[J].中国实用外科杂志,2006,26(3):181-183.
    [1]窦科峰,刘正才.肝胆管结石术后残留结石的原因及其对策[J].腹部外科,2007,20(6):338-339.
    [2]黄志强.在微创外科时代对肝内胆管结石外科治疗的再认识.中国普外基础与临床杂志.2006,13(4):371-373.
    [3]张宝善.肝内残石的内镜治疗[J].实用外科杂1991,11:566-567.
    [4]陈希刚.纤维胆道镜在肝胆管结石手术中的应用[J].中华肝胆外科杂志,2001,5:304.
    [5]Uchiyama K, Onishi H,Tam M, et al. Indication and procedure for treatment of hepatolithiasis[J].Arch Surg,2002,137(2):149.
    [6]张宝善.肝内胆管”彗星征”的临床评价[J].中国实用外科杂志,1997,17:182-183
    [7]黄志强,肝内胆管结石:治疗观念上的变迁[J],中国普外基础与临床杂志2000,7(2):65.
    [8]窦科峰,刘正才.肝胆管结石术后残留结石的原因及其对策[J].腹部外科,2007,20(6):338-339.
    [9]黄志强.手术后胆管残石的过去、现状与对策[J].中国实用外科杂志,2000,20(9):515-516.
    [10]Tokumura H, Rikiyama T, Harada N, et al. Laparoscopicbiliary surgery[J]. Nippon Geka Gakkai Zasshi,2002,103 (10):737-741.
    [11]钟宝元,沈振斌,孙益红等.11 8例高龄高危急性梗阻性化脓性胆管炎病人的治疗体会[J].中华肝胆外科杂志,2007,13(11):733-735.
    [12]方驰华,黄燕鹏,鲁朝敏,李晓锋,陈智翔,苏仲和,丘文峰.数字医学技术在肝胆管结石诊治中的应用价值研究.中华外科杂志,2009,47(12):909-911.
    [13]黄洁夫,陈孝平,董家鸿等.肝胆胰外科[M].人民卫生出版社,2010:590-592.
    [14]陆光生,文辉清,刘衍民.经皮肝穿刺胆道引流管周瘘道形成的实验研究,中国内镜杂志,2004,10(11):44-46.
    [15]方驰华,常旭,鲁朝敏,杨剑,项楠,鲍苏苏,彭丰平,潘家辉.肝内外胆管结石64排CT数据三维重建及其临床意义.南方医科大学学报,2008,28(3):370-372.
    [16]方驰华,唐云强,黄燕鹏,等.胆总管结石可视化仿真手术研究.中华消化外科杂志,2009,8(3):1-3.
    [17]董家鸿.要点与盲点:胆道外科[M].人民卫生出版社,2011:2-3.
    [18]刘允怡.肝切除与肝移植应用解剖[M].人民卫生出版社,2010:44-45.
    [19]C.-H. Chen, M.-H. Huang, J.-C. Yang, et al. Reappraisal of percutaneous transhepatic cholangioscopic lithotomy for primary hepatolithiasis. Surg Endosc,2005,19(4):505-509.
    [20]Oh HC, Lee SK, Lee TY, et al. Analysis of percutaneous transhepatic cholangioscopy-related complications and the risk factors for those complications. Endoscopy,2007,39(8):731-736.
    [21]Galloway SW, Chan AC, Chung SC. Transhepatic balloon sphincteroplasty for bile duct stones after total gastrectomy. Surg Endosc,2000,14(10):966.
    [22]Lee SK, Seo DW, Myung SJ, et al. Percutaneous transhepatic cholangioscopic treatment for hepatolithiasis:an evaluation of longterm results and risk factors for recurrence. Gastrointest Endosc,2001,53(3):318-323.
    [24]方驰华,祝文,范应方,等.医学图像三维可视化系统在胰腺及壶腹周围肿瘤可切除性评估中的应用.中华消化外科杂志,2012,11(4):366-367.
    [25]张学文,杨永生,张丹.肝内胆管结石分型及治疗方法选择[J].中国实用外科杂志,2012,29(9):790-792.
    [26]方驰华,唐云强,黄燕鹏,等.胆总管结石可视化仿真手术研究.中华消化外科杂志,2009,8(3):1-3.
    [1]黄志强.胆道外科[M].京:人民军医出版社,1994,(1)84.
    [2]蔡学全,徐卓镖,王哲生.胆管结石并狭窄161例手术治疗.肝胆胰脾外科杂志,1994,3,29.
    [3]施维锦.胆道外科学[M].上海:上海科技出版社,1993,(1)164.
    [4]方干,周京智.皮下盲袢型总肝管空肠吻合术治疗双测肝管结石症.中华医学杂志,1977,57,15-18.
    [5]Bader EM, Winkle M. Permant-access hepalicojejunostomy. Br J surg, 1984.71.188.
    [6]方驰华,陈建新.数字医学技术在肝胆管结石病诊断和治疗中的应用,中华消化外科杂志,2012;11(2):104-105.
    [7]Fang CH, Li XF, Li Z, et al. Application of a medical image processing system in liver transplantation[J]. Hepatobiliary Pancreat Dis Int,2010,9(4):370-375.
    [8]范应方,方驰华,游锦华.医学图像三维可视化系统在肝胆管结石病诊断与治疗中的应用[J].中华消化外科杂志.2011,10(4):271-3.
    [9]董家鸿.要点与盲点:胆道外科[M].人民卫生出版社,2011:2-3.
    [10]刘允怡.肝切除与肝移植应用解剖[M].人民卫生出版社,2010: 44-45.
    [11]窦科峰,刘正才.肝胆管结石术后残留结石的原因及其对策[J].腹部外科,2007,20(6):338-339.
    [12]黄志强.手术后胆管残石的过去、现状与对策[J].中国实用外科杂志,2000,20(9):515-516.
    [13]钟先荣,谭志军,孔勇等.腹腔镜联合输尿管镜弹道碎石治疗肝胆管结石36例分析[J].中国普外基础与临床杂志,2010(04):379-382.
    [14]Joshi M R. Use of ureterorenoscope as choledochoscope[J]. J Nepal Health Res Counc,2010,8(2):69-74.
    [15]董家鸿,郑树国,陈平等.2011中国肝胆管结石病诊断治疗指南[M].人民卫生出版社,2011:11-12.
    [16]梁力建,李绍强.复杂肝胆管结石诊断和治疗原则[J].中国实用外科杂志,2009,29(7):542-544
    [17]赖佳明,梁力建,彭宝岗等.胆道再次手术235例分析[J].中国实用外科杂志,2006,26(3):181-183
    [18]Xie A, Fang C, Huang Y, et al. Application of three-dimensional reconstruction and visible simulation technique in reoperation of hepatolithiasis[J]. J Gastroenterol Hepatol,2013,28(2):248-254.
    [19]Fang C H, Liu J, Fan Y F, et al. Outcomes of hepatectomy for hepatolithiasis based on 3-dimensional reconstruction technique[J]. J Am Coll Surg, 2013,217(2):280-288.
    [1]Catena M, Aldrighetti L, Finazzi R, Arzu G, Arru M, Pulitano C et al. Treatment of non-endemic hepatolithiasis in a Western country. The role of hepatic resection[J]. Ann R Coll Surg Engl (2006),88:383-389.
    [2]Kayhan B, Akdogan M, Parlak E, Ozarslan E, Sahin B. Hepatolithiasis:a Turkey experience. Turk J Gastroenterol(2007),18:28-32.
    [3]黄志强,肝内胆管结石:治疗观念上的变迁[J],中国普外基础与临床杂志2000,7(2):65.
    [4]Uchiyama K, Onishi H,Tam M, et al. Indication and procedure for treatment of hepatolithiasis[J].Arch Surg,2002,137(2):149.
    [5]朱志贤,唐俊等.钬激光联合硬质镜治疗肝内胆管结石27例[J].南通医学院 学报2009:29(5):360-361.
    [6]石磊,李文.胆道镜在胆道手术中应用的体会[J].河北医学2006,12(9):854-856
    [7]黄志强,马霄.肝部分切除治疗肝内胆管结石[J].中华外科杂志,1958,6:1221-1223.
    [8]董家鸿,郑树国,陈平等.2011中国肝胆管结石病诊断治疗指南[M].人民卫生出版社,2011:11-12.
    [9]黄志强,当今胆道外科的发展与方向[J].中国现代普通外科进展2007,4(10)93-95.
    [10]王悦华,周宁新,黄志强.腹腔镜肝癌切除手术的研究进展及应用[J].中围普通外科杂志,2004,13(12):930-931.
    [11]方驰华,唐云强,鲁朝敏,刘宇斌,彭丰平,鲍苏苏.胆囊切开取石和胆囊切除术的可视化研究.南方医科大学学报,2008,28(03):356-359.
    [12]方驰华,李晓锋,鲁朝敏,等.数字医学在活体肝移植中的应用价值.中国组织工程与临床康复杂志,2008,12(39):7751-7754;
    [13]Numminen K,Sipila O,Mukisalo H.Preoperatie hepatic 3D Models:virtual liver resection using three-dimensional imaging technique.Eur J Radiol, 2005,56:179-184.
    [14]Reitinger B.Bomik A.Beichel R.et al.Liver surgery planning using virtual reality.IEEE Computing Craph Appl,2006,26:36-47.
    [15]Yamanaka J,Saito S,Fujimoto J.Impact of preoperative planning using virtual segmental volumetry on liver resection for hepatocellular carcinoma.World J Surg,2007,31:1251-1257.
    [16]Lamade W,Glombitza QFischer L,et al.The impact of 3-dimensional reconstructions on operation planning in liversurgery.Arch Surg,2000, 135:1256-1257.
    [17]Lang H,Radike A,Hindennach M,et al.Impact of virtual tumor resection and computer-assisted risk analysis on operation planning and intraoperative atrategy in major hepatic resection.Arch Surg,2005,140:629-638.
    [18]胡天策,徐榕,机器人辅助微创心脏外科手术导航及视觉定位的研究,上海交通大学,2008,2.
    [19]方驰华,黄燕鹏,鲁朝敏,李晓锋,陈智翔,苏仲和,丘文峰.数字医学技术在肝胆管结石诊治中的应用价值研究.中华外科杂志,2009,47(12):909-911.
    [20]方驰华,唐云强,鲁朝敏,彭丰平,潘家辉,鲍苏苏.左肝内胆管结石患者的64排CT数据集的三维重建和左肝切除可视化仿真手术的研究.中华实验外科杂志,2008,25(8):1003-1005.
    [21]方驰华,唐云强,鲁朝敏,刘宇斌,彭丰平,鲍苏苏.胆囊切开取石和胆囊切除术的可视化研究.南方医科大学学报,2008,28(3):356-359.
    [22]方驰华,常旭,鲁朝敏,杨剑,项楠,鲍苏苏,彭丰平,潘家辉.肝内外胆管结石64排CT数据三维重建及其临床意义.南方医科大学学报,2008,28(3):370-372.
    [23]方驰华,唐云强,黄燕鹏,等.胆总管结石可视化仿真手术研究.中华消化外科杂志,2009,8(3):1-3.
    [24]金斗,刘京山,孙立中,张宝善.经皮经肝胆道镜在治疗术后肝外胆管狭窄中的应用.中华肝胆外科杂志,2002,8:245-247.
    [25]Nimura Y.percutaneous transhepatic cholangioscopy (PTCS). stomach and intestine 1981;16:681-689
    [26]张宝善,山川达郎,三芳端.经皮经肝胆道镜的临床应用.中华外科杂志,1985,23:353-355.
    [27]陆光生,文辉清,刘衍民.经皮肝穿刺胆道引流管周瘘道形成的实验研究,中国内镜杂志.2004,10:44-46.
    [28]刘衍民,曾可伟,王纯忠等.改良的经皮经肝胆道镜术治疗肝内胆管结石,外科理论与实践.2004,9:485-486.
    [29]MaTkert M.Wcbcr s,Lueth TC.Manusl registration of ultrasound with CT/Planning data for hepatic surgery. Stud Health Technology Inform, 2007,125:319-321.
    [30]K.J.Oldafer, D.Hogemann, G.Stamm, R.Raab et al, Dreidimensionale(3-D) Visualisierung der Leber zur Planung erweiterter Lerresektionen, Deutsche Medizin, April 2000, Band 17, Heft 2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700