用户名: 密码: 验证码:
纳米氧化钛的制备、改性及光阴极保护性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化钛(TiO_2)是一种非牺牲性的光阴极保护材料,它的保护作用源于其光电化学性能。在能量大于其能隙的光子的照射下,TiO_2价带电子激发至导带,形成电子-空穴对。正电空穴与TiO_2表面的水发生氧化反应,而负电电子则由导带进入金属基体,使金属的电极电位降低至不发生腐蚀的阴极保护区。TiO_2的光阴极保护性能取决于其光电效率,非金属掺杂是近年来发展起来的提高TiO_2光电效率的改性方法,具有稳定性高、可见光响应好和成本低的优点。利用非金属掺杂改性TiO_2,使其在可见光下即能够产生较好的光阴极保护效果,具有十分重要理论研究和实际应用意义。
     本论文针对TiO_2纳米材料的制备、非金属掺杂改性及光阴极保护性能,从实验和理论两个方面进行了较为系统的研究,主要研究内容及成果如下:
     采用溶胶-凝胶工艺制备纳米TiO_2粉体,研究了TiO_2的溶胶-凝胶过程及温度、pH值等因素对TiO_2晶相的影响。水与钛醇盐的体积比、乙醇添加量及水解温度决定了溶胶体系的胶凝过程;前驱体溶胶的pH值和热处理温度决定了TiO_2晶体的晶相结构和晶型转变。在实验的基础上,利用密度泛函理论计算了优选的不同pH值溶液中前驱体的结构模型,模型的键长和Mulliken电荷分析表明,在低pH值的溶胶中,前驱体易发生共顶点连接,形成类金红石结构,从而在随后的热处理过程中形成金红石相或者作为相变诱导剂,减小锐钛矿向金红石的相变温度和临界粒径。溶胶pH值增大,配位多面体之间易发生共边连接,形成锐钛矿相。通过理论和实验结果的对比分析,初步建立了前驱体溶胶工艺参数与TiO_2晶型的联系。
     在TiO_2溶胶中掺杂少量SiO_2溶胶可使TiO_2晶粒减小、晶型转变温度提高,掺杂粉体的红外光谱在960cm-1处出现了不同于TiO_2和SiO_2的吸收峰。利用密度泛函理论优化计算了SiO_2/TiO_2二元氧化物可能的生长基元及两相界面的团簇结构,能量分析及红外光谱的理论与实验对照证实了二元氧化物界面环状Si-O-Ti键的形成。界面结构的形成同时引起TiO_2团簇原子Mulliken电荷减小,最终导致SiO_2掺杂抑制TiO_2的晶体生长和晶型转变。
     利用密度泛函理论优化计算了(TiO_2)n (n =1-9)团簇各种可能的结构和红外光谱,提出了(TiO_2)n (n =1-9)团簇的最稳定构型,为掺杂团簇模型的建立提供了依据。通过对团簇结构及能量的分析发现,在n=1~9的范围内,结构紧凑、原子间达到最大程度交联的团簇稳定性较高,过高的钛配位数(≥5)和终端Ti-O键的存在是TiO_2团簇的能量不稳定因素。团簇结构的平均结合能、能隙大小及二次能量差分的结构表明, n=3、5、7时,团簇的相对稳定性较高。理论红外光谱表明,所有稳定构型均在1070cm-1出现了终端Ti-O键的伸缩振动引起的红外吸收,800 cm-1~900 cm-1范围内的吸收峰对应着团簇六元环的振动,600~700 cm-1附近的峰对应着团簇Ti-O2-Ti四元环的振动吸收,团簇结构的理论振动吸收与体相氧化钛的红外光谱取得了较好的一致。
     探索了不锈钢表面制备纳米TiO_2薄膜的工艺参数,在粘度为3.0的TiO_2溶胶中浸渍提拉可在不锈钢表面获得均匀致密的TiO_2薄膜,一次膜厚约为40nm。在溶胶中添加N,N-二甲基甲酰胺能够有效地减少TiO_2薄膜表面的裂纹分布。紫外光照的条件下,500℃热处理获得的TiO_2薄膜使不锈钢的电位负移、失重减小,对不锈钢起到了光阴极保护作用,在模拟海水中浸泡15天的平均保护度可达85.7%。薄膜的热处理温度大于500℃时,不锈钢中的铁元素向薄膜中大量渗透,在TiO_2晶体的价带和导带之间形成杂质能级,杂质能级可成为电子-空穴的复合中心,降低TiO_2的光阴极保护效率。
     分别以三乙胺、氨水和氯化铵为N前驱体,硫脲为S前驱体,制备了非金属N、S掺杂的纳米TiO_2,三乙胺由于较小的N-C键能,能够在TiO_2晶体中引入更大的N掺杂量,而硫脲则由于较高的C=S键能,导致同样条件下S在TiO_2中的最大掺杂量低于N的掺杂量。XRD结果表明,非金属N、S掺杂能够抑制TiO_2晶体生长和晶相转变,并引起TiO_2晶体的晶型畸变。
     在兼顾掺杂位和计算量的条件下选择TiO_2团簇的一个最稳定构型,在不同掺杂位分别引入N原子和S原子。能量分析证明N原子在TiO_2团簇中容易以替代O原子的形式掺杂,而S原子则容易在替代Ti原子位形成掺杂。非金属掺杂降低了TiO_2团簇原子间的作用势,提高了团簇稳定性,表现在宏观上就是抑制了TiO_2的晶体生长和晶相转变。
     非金属N、S掺杂使TiO_2晶体的光吸收限红移,从而产生可见光响应。在TiO_2周期性体系中分别引入不同浓度的N原子和S原子,利用密度泛函理论计算非金属N、S掺杂TiO_2晶体的能带结构及态密度,发现N掺杂能够使TiO_2晶体的电子平均自由程变大,有利于电子在光电反应过程中的输运。掺杂N原子的2p态与O 2p态发生耦合,使TiO_2晶体价带变宽、能隙减小,提高其在可见光区的响应;而掺杂S原子的3p态在TiO_2晶体的价带和导带之间形成杂质能级,是S掺杂TiO_2晶体能隙减小,产生可见光响应的原因。
     非金属掺杂引起TiO_2晶体的可见光响应,从而使掺杂TiO_2在白光条件下的光阴极保护效果显著增强。与N掺杂相比,虽然S掺杂TiO_2晶体的能隙较小,但由于S掺杂引入的杂质能级的电子态密度较高,使杂质能级成为电子-空穴对的复合中心,部分减少了迁移到TiO_2表面的光生载流子的量,从而使S掺杂TiO_2薄膜的光阴极保护效果低于N掺杂的TiO_2薄膜。
TiO_2 is an n-type semiconductor with chemical and physical stability. In addition, if illuminated TiO_2 is in contact with a metal, electrons are injected from the semiconductor to the metal via the conduction band. As a result, the potential of the metal will be shifted in the negative direction to the flatland potential of TiO_2. If the potential is more negative than the potential at which the metal beings to oxidize, the metal can be protected from corrosion. The counterreaction by photogenerated holes (h+) is not the decomposition of TiO_2 but the oxidation of water. This behavior means that TiO_2 can act as a nonsacrificial anode.
     The photocathodic protection effect of TiO_2 is dependent on the photoelectrochemical efficiency, which has been improved in two ways: the first is to extend visible light response of TiO_2; the second is to decrease the undesirable hole-electron recombination. Nonmetal dopants, such as N, S, may be more appropriate for the improvement of photoelectrochemical activity of TiO_2 because of it extending the visible light response effectively with thermal stability and cost efficiency.
     In this work, TiO_2 and nonmetal (N, S mainly) doped TiO_2 materials were prepared by a simple sol-gel method, and their photocathodic protection effects were analyzed from experimental and theoretical approaches:
     The sol-gel process is an important step in the preparation of TiO_2 material. In our experiment, Tetrabutyl titanate was used as TiO_2 source. When the ratio of tetrabutyl titanate to water by volume is in the range of 2~3, with less absolute ethanol and higher temperature, the system get gel point acceleratedly. The resulting crystal phases were determined by the structures of the precursor cation, which are affected by the exact pH of the precursor solutions. Through the analysis of the geometric parameters and Mulliken charge populations of the titanium complexes, theoretical correlation was set up between the precursor solution conditions and the resulting crystal structures.
     The interfacial structure of Ti/Si binary oxide, which will retard the crystal growth, is proved to be energetically feasible. When the binary clusters are small enough, the formation of edge-shared structures has the largest trend while corner-shared cluster can not form through the analysis of Gibbs energy. As the growth of the binary oxide clusters, the edge-shared structures are disrupted and ring-like clusters form.
     The structures and the stability of (TiO_2)n clusters with n = 1~9 have been investigated using the density functional B3LYP/6-31G(d) method. The lowest-lying singlet clusters were put forward and some structure-stability correlation factors, such as coordination number and bond distance, were generalized. Infrared absorption spectra for the cluster structures are comparable with the spectra of rutile and anatase.
     In the solution with N, N-dimethylformamide, uniform and compact nanosized TiO_2 thin films were prepared on 303 stainless steels. The film shows good photocathodic protection effect as the electrode potential shifted in the negative direction and the weight loss of the steel decreased markedly. With excessively high thermal treating temperature, Fe atoms penetrated into the films and acted as the hole-electron recombination center, deceasing the photoelectrochemical activity and photocathodic protection effect of TiO_2 films.
     Triethylamine can introduce more nitrogen content into titania crystal than ammonia and ammonium chloride with small bonding energy of N-C bond. Our calculations gave smaller formation energies for substitutional N to O model which indicates the relatively easier synthesis. The doping of nitrogen atoms suppressed the growth of the titania crystal and the phase transformation. The substitutional-type doping was effective for the band gap narrowing of TiO_2 due to the mixing of N 2p with O 2p states, as a result, the photocathodic efficiency increased under the irradiation of white light.
     Less sulfur content can be introduced into TiO_2 as S=C in thiourea has a more bonding energy. Our calculations verified that S atoms to replace Ti atoms has the largest trend. The substitution results in the suppression of the growth of the titania crystal and the phase transformation. The doped TiO_2 materials have visible response due to the mixing of S 3p with O 2p states. Compared with N doped TiO_2, S doped TiO_2 has a narrower energy gap while a lower photocathodic protection efficiency. The impurity energy level introduced by S dopant act as the electron-hole recombination center, offset some charge carrier induced by the visible light response in a certain extent.
引文
[1]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001. 3~5
    [2] Birringer R., Gleiter H., Klein H.P., et al. Nanocrystalline materials: An approach to a novel solid structure with gas-like disorder. Phy. Lett. A, 1984, 102: 365~369
    [3] Vainshtein B.K., Fridkin W.M., Indenbom V.L. Structure of Crystals. Berlin: Macmillan India Ltd, 1994. 286~288
    [4]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社, 2002, 21~28
    [5] Sobczynski A., Dobosz A. Water purification by photocatalysis on semiconductors. Pol. J. Environ. Studies, 2001,10: 195~212
    [6] Miwa Y., Imura T., Akamatsu M., et al. Formation of uniform photocatalytic or hydrophilic coating films. Jpn. Kokai Tokkyo Koho JP 2002, 316,090
    [7] Morikawa M., Takahashi M. Titanium oxide photocatalyst for paper coating and its photocatalytic ability. Konnsyrkku, 2002, 30: 2~4
    [8]唐振宁.《化工百科全书》.北京:化学工业出版社, 1997: 493~502
    [9] Buchanan R.C., Park T. Materials Crytal Chemistry, New York: Marcel Dekker, Inc., 1997. 1623-1633
    [10] Gratzel M. Heterogeneous Photochemical Electron Transfer. CRC Press, Baton Rouge, FL, 1998
    [11] Fujihira M., Satoh Y., osa T. Heterogeneous Photocatalytic oxidation of aromatic compounds on TiO2. Nature, 1981, 293: 206~208
    [12] Hong A.P., Bahnem ann D.W., Hoffillann M. Depletion of hydrogen peroxide in aqueous suspensions. J. Phys. Chem., 1987, 91: 2109~2117
    [13] Choi W., Andreas T., Michael R., Hoffmann. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem., 1994, 98: 13669~13679
    [14] Qian X., Qin D., Bai Y., et al. Photosensitization of TiO2 nanoparticulate thin film electrodes by CdS nanoparticles. J. Solid. State. Electrochem., 2001, 5: 562~567
    [15] Sasaki T., Koshizaki N., Beck K.M.. Comparison of Pt/TiO2 nanocomposite films prepared by sputtering and pulsed laser deposition. Appl. Phys. A, 1999, 69: 771~774
    [16] O’Regan B., Graetzel M., Fitzmaurice D. J.. Optical electrochemistry steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode. Nature, 1998, 353: 583~555
    [17]张淑泉.关于“自然环境腐蚀”的国际动向.腐蚀与防护, 1997, 18: 210~225
    [18]张承忠.金属的腐蚀与保护.北京:冶金工业出版社, 1985. 3~5
    [19]陆柱.可持续发展战略与腐蚀防护技术.腐蚀与防护, 1997, 18: 51~54
    [20]朱相荣,王相润.金属材料的海洋腐蚀与防护.北京:国防工业出版社, 1999. 3~7
    [21] Jakse C. E.著,吴荫顺,杨德钧译.海洋工程中的金属腐蚀疲劳.北京:冶金工为出版社,1989. 44~49
    [22]曹楚南.腐蚀电化学原理.北京:化学工业出版社, 2003. 3-6
    [23] Jones D.A.. Principles and Prevention of Corrosion. New Jersey: Prentiee Hall, 1996.125-126
    [24] Tatsuma T., Saitoh S., Yoshihisa O., Fujishima A.. TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability. Chem. Mater. 2001, 13, 2838~2842
    [25] Moussa S. O., Hocking M. G. The photo-inhibition of localized corrosion of 304 stainless steel in sodium chloride environment. Corros. Sci., 2001, 43: 2037~2047
    [26] Hoffmann M.R., Martin S.T., Choi W. Bahnemann D.W. Environmental applications of semiconductor photocatalysis. Chem.Rev., 1995, 95: 69~96
    [27]武朋飞,李谋成,肖美群,刘冬,沈嘉. TiO2薄膜的光电效应在金属防腐蚀中的应用.腐蚀科学与防护技术, 2005, 17: 104~106
    [28] Yuan J,Tsujikawa S. Photo-effect of So1-Gel derived TiO2 coating on carbon steel in alkaline solution. Zairyo-to-Kankyo, 1995, 44: 534~538
    [29] Ohko Y., Saitoh S., Tatsuma T, et a1. Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type304 stainless steel. J. Electrochem. Soc, 2001, 148: B24~29
    [30] Yuan J., Tsujikawa S., Characterization of So1-Gel derived TiO2 coating and their photo effects on copper substrates. J. Electrochem. Soc, 1995, 142: 3444~3449
    [31] Yuan J., Fujisawa R., Tsujikawa S. Photopotentials of copper coated with TiO2 by So1-Gel method. Zairyo-to-Kankyo, 1994, 43: 433~436
    [32] Huang J., Shinohara T., Tsujikawa S. Protection of carbon steel from atmospheric corrosion by TiO2 coating. Zairyo-to-Kan kyo, 1999. 48: 575~581
    [33]丁子上,翁文剑.溶胶-凝胶技术制备材料的进展.硅酸盐学报, 1993, 21: 443~449
    [34]杨南如,余桂郁.溶胶-凝胶法简介.硅酸盐通报, 1992, 11: 56~63
    [35]王德宪.谈谈溶胶-凝胶浸镀法的其本原理.玻璃, 2000, 26: 18~20
    [36] Thomas L.H. The calculation of atomic fields. Proc. Cambridge Phitos. Soc., 1927, 23: 542-548
    [37] Fermi E. An satiatical method for determining some properties of the atom. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti, 1927, 6: 602~607
    [38] Lee C., Yang W., Parr R.G., Development of the Colle–Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys.Rev.B,1988,37: 785~792
    [39] Lerch M. Nitridation of zirconia. J. Am. Ceram. Soc., 1996, 79: 2641~2644
    [40] Sharma R., Dirk N., Schweda E. In situ studies of nitridation of zirconia. Chem. Mater., 2001, 13: 4014~4018
    [41] Garvie R. The occurrence of metastable tetragonal zirconia as a crystallite size effect. J. Phys.Chem., 1965, 69: 1238~1243
    [42] Juan Y.M., Kaxiras E., Gordon R.G. Use of the generalized gradient approximation in pseudopotential calculations of solids. Phys. Rev., 1995, B51: 9521~9525
    [43] Perdew J.P., Wang Y., Accurate and simple density functional for the electronic exchange energy: Generalize dgradient approximation. Phys. Rev. B, 1986, 33: 8800-8802
    [44] Imai Y., Mukaida M., Tsunoda, T., Caleulation of eleetronic energy and density of state of iron-disilicides using a total-energy pseudo potential method,CASTEP. Thin Solid Film, 2001, 381: 176~182
    [45] Harrison N.M. First principles simulation of surfaces and interfaces Comp. Phys. Commun. 2001, 137: 59~73
    [46] Segall, M.D., Lindan I. L.D., Probert M.J., Piekard C. J., Hasnip P. J., Clark S.J., Payne M.C., First- principles simulation: ideas, illustlations and the CASTEP code. J. Phys. Condens. Matter 2002, 14: 2717~2744
    [47] Anpo M., Shima, T., Size quantization effects in the photocatalytic activity for small titanium dioxide particles prepared by precipitation method. Chem. Express, 1987, 2: 193~196
    [48]曹茂盛,关长斌,徐甲强等.纳米材料导论.哈尔滨:哈尔滨工业大学出版社, 2001. 5~6
    [49] Tanaka K, et al . Effect of crystallinity of TiO2 on its photocatalytic action. Chem , Phys Lett., 1991, 187: 73~76
    [50] Penn R. L., Banfield J. L. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals, Science, 1998, 281 (5379): 969~971
    [51] Zhang H, Banfield J. F., Am. Mineral. New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles. Am. Mineral., 1999, 84 (4): 528~535
    [52] Zhang H, Banfield J. F., J. A model for exploring particle size and temperature dependence of excess heat capacities of nanocrystalline substances. Nanostr. Mater., 1998, 10 (2): 2073~2076
    [53] Gribb A. A, Banfield J. F. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am. Minera., 1997, 82 (7-8): 717~728
    [54] Spurr R. A., Myers H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal. Chem, 1957, 29: 760~767
    [55]张伟伟,陈玉清. TiCl4乙醇溶液溶胶-凝胶转变过程的研究.陶瓷学报, 25, 2004, 235~238
    [56] Wen M., Qi G., Sun J. Preparation of TiO2 sol and Analysis on Gelation Process. Surf. Tech., 2004, 01: 56-59
    [57] Kumar K. N. P., Keizer K., Burggraaf A. J.Stabilization of the porous texture of nanostructured titania by avoiding a phase transformation. J. Mater. Sci. Lett., 1994, 13 (1): 59~61
    [58]李汶军,施尔畏,夏长泰,王步国,华素坤,仲维卓.水热盐溶液水解法制备ZrO2纳米晶的取向连生与配向附生.人工晶体学报, 1998,27(1): 65~69
    [59]元如林,施尔畏,夏长泰等.水热条件下钛酸钡晶粒生长基元模型研究,物理学报,1996, 45(12): 2082~2089
    [60]施尔畏,仲维卓,华素坤,元如林,王步国,夏长泰,李汶军.关于负离子配位多面体生长基元模型,中国科学,E辑,1998, 28(1): 37~45
    [61]李汶军,施尔畏,殷之文.配位多面体生长机理模型与晶体的生长习性.中国科学,E辑,2001, 31(6): 487~495
    [62] Moldovan D., Yamakov V., Wolf D., Phillpot S. R.. Scaling Behavior of grain– rotation-induced grain growth. Phys. Rev. Lett., 2002, 89(20): 206101-~206103
    [63] Leite E. R., Giraldi T. R., Pontes F. M., Longo E., Beltrán A. Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature. Appl. Phys. Lett., 2003, 83(8): 1566~1568
    [64] Yanagisawa K., Ovenstone J. Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique: Effects of Starting Material and Temperature. J. Phys. Chem. B, 1999, 103 (37): 7781-7787
    [65] M.á. D. Díez, A. M. García, G. Silvero, R. Gordillo, R. Caruso, Ceram. Int. 29 (2003) 471
    [66] Richard C., Catlow A., Coombes D. S., Lewis D. W., J. Pereira C. G., Computer Modeling of Nucleation, Growth, and Templating in Hydrothermal Synthesis. Chem. Mater., 1998, 10: 3249~3265
    [67] Becke A. D. A new mixing of Hartree-Fock and local- density-functional theories. J. Chem. Phys., 1993, 98 (2): 1372~1377
    [68] M. J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al- Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M. W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian Inc., Pittsburgh PA, 1998
    [69] Becke A. D. Density-functional thermochemistry.Ⅲ. The role of exact exchange. J. Chem. Phys., 1993, 98 (7) 5648~5652
    [70] Hamad S., Catlow C.R.A., Woodley S.M. Structure and sability of small TiO2 nanoparticles. J. Phys. Chem. B, 2005, 109(33): 15741~15748
    [71] Johnson J.R. Tobias, Panas Itai. Water adsorption and hydrolysis on molecular transition metal oxides and oxyhydroxides. Inorg. Chem., 2000, 39 (15): 3181~3191
    [72] Yoshinaka M., Hirota K., Yamaguchi O. Formation and sintering of TiO2 (anatase) solidsolution in the system TiO2-SiO2. J. Am. Ceram. Soc., 1997, 80(10): 2749~2753
    [73] Kominami H., Kohno M., Matsunaga Y., et al. Thermal decomposition of titanium alkoxide and silicate ester in organic solvent: a new method for synthesizing large-surface-area, silica-modified titanium(IV) oxide of high thermal stability. J. Am. Ceram. Soc., 2001, 84(5): 1178~1180
    [74] Zhang H., Luo X., Xu J., et al. Synthesis of TiO2/SiO2 Core/Shell Nanocable Arrays. J. Phys. Chem. B, 2004, 108(39): 14866~14869
    [75] Marugan J., Lopez-Munoz M., Aguado J., et al. On the comparison of photocatalysts activity: A novel procedure for the measurement of titania surface in TiO2/SiO2 materials. Catal. Today, 2007, 124(3-4): 103~109
    [76] Panayotov D, Yates J. T. Electron exchange on TiO2-SiO2 photocatalysts during O2 and organic molecule adsorption - the role of adsorbate electrophilicity. Chem. Phys. Lett., 2003, 381(1,2): 154~162
    [77] Best M. F, Condrate R. A. A Raman study of titanium dioxide-silicon dioxide glasses prepared by sol-gel processes. J. Mater. Sci. Lett., 1985, 4(8): 994~998
    [78] Zhai J., Zhang L., Yao X., Hodgson S.N.B. Characteristics of laser-densified and conventionally heat treated sol-gel derived silica-titania films. Surf. Coat. Tech., 2001, 138 (2~3): 135~140
    [79] Scarano D., Zeccdhine A., Bordiga S., et al. Fourier-transformed infrared and Raman spectra of pure and aluminum-, boron-, titanium- iron-substituted silicalites: stretching-mode region. J. Chem. Soc., Faraday Trans., 1993, 89(22): 4123~4130
    [80] Bordiga S., Ugliengo P., Damin A., et al. Hydroxyls nests in defective silicalites and strained structures derived upon dehydroxylation: vibrational properties and theoretical modelling. Top. Catal., 2001, 15(1): 43~52
    [81] Taramasso M., Perego G., Notari B., U. S. Patent No. 4410501, 1983
    [82] Tozzola G., Mantegazza M. A., Ranghino G., On the structure of the active site of Ti-Silicalite in reactions with hydrogen peroxide: a vibrational and computational study. J. Catal., 1998, 179(1): 64~71
    [83] Trong On D., Bittar A., Sayari A., et al. Novel titanium sites in silicalites. Catal. Lett., 1992, 16(1-2): 85~95
    [84] Jentys A., Catlow C., Richard A. Structural properties of titanium sites in Ti-ZSM5. Catal. Lett., 1993, 22(3): 251~257
    [85] De Man, Andries J. M, Sauer J.. Coordination, Structure, and Vibrational Spectra of Titanium in Silicates and Zeolites in Comparison with Related Molecules. An ab Initio Study. J. of Phys. Chem., 1996, 100(12): 5025~5034
    [86] Liu Z., Davis R. J. Investigation of the Structure of Microporous Ti-Si Mixed Oxides by X-ray, UV Reflectance, FT-Raman, and FT-IR Spectroscopies. J. Phys. Chem., 1994, 98(4): 1253~1261
    [87] Johnson J. R, Tobias P. I. Hydrolysis on Transition Metal Oxide Clusters and the Stabilities of M-O-M Bridges. Inorg. Chem., 2000, 39(15): 3192~3204
    [88] Montgomery J. A., Frisch M. J., Ochterski J. W., et al. A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys., 2000, 112(15): 6532~6542
    [89] Cho W. H., Kang D. J., Kim S. G. Intraparticle structures of composite TiO2/SiO2 nanoparticles prepared by varying precursor mixing modes in vapor phase. J. Mater. Sci., 2003, 38(12): 2619~2625
    [90] Thomas J. M. Sankar G. The Role of Synchrotron-Based Studies in the Elucidation and Design of Active Sites in Titanium-Silica Epoxidation Catalysts. Acc. Chem. Res., 2001, 34(7): 571~581
    [91] Ricchiardi G., Damin A., Bordiga S., et al. Vibrational structure of titanium silicate catalysts. A spectroscopic and theoretical study. J. Am. Chem. Soc., 2001, 123(46): 11409~11419
    [92] Yamashita H., Kawasaki S., Ichihashi Y., et al. Characterization of Titanium-Silicon Binary Oxide Catalysts Prepared by the Sol-Gel Method and Their Photocatalytic Reactivity for the Liquid-Phase Oxidation of 1-Octanol. J. Phys. Chem. B, 1998, 102(30): 5870~5875
    [93] Del M. F., Larsen W., Mackenzie J. D. Chemical interactions promoting the ZrO2 tetragonal stabilization in ZrO2-SiO2 binary oxides. J. Am. Ceram. Soc., 2000, 83(6): 1506~1512
    [94]阎守胜.固体物理基础.北京:北京大学出版社, 2000
    [95] Hartke B. Structural transitions in clusters. Angew. Chem. Int. Ed., 2002, 41: 1468~1487
    [96]王广厚.团簇物理的新进展.物理学进展, 1994,14(2): 121-172
    [97] Farges J., De Feraudy M.F., Raoult B., Torchet G., Relaxation of mackay icosahedral, Acta Cryst. A, 1982, 38(5): 656~663
    [98] Muscat J., Swamy V., Harrison N. M. First-principles calculations of the phase stability of TiO2. Phys. Rev. B, 2002, 65: 224112~224129
    [99] Chen L. X., Rajh T., Wang Z., et al. XAFS Studies of Surface Structures of TiO2 Nanoparticles and Photocatalytic Reduction of Metal Ions. J. Phys. Chem. B, 1997, 101(50): 10688~10697
    [100] Yeung K. L., Maria A. J., Stolz J. H., et al. Ensemble Effects in Nanostructured TiO2 Used in the Gas-Phase Photooxidation of Trichloroethylene. J. Phys. Chem. B, 2002, 106(18): 4608~4616
    [101] Yu W., Freas R. B. Formation and fragmentation of gas-phase titanium/oxygen cluster positive ions. J. Am. Chem. Soc, 1990, 112(20): 7126~7133
    [102] Albaret T., Finocchi F., Noguera C. Density functional study of stoichiometric and O-rich titanium oxygen cluster. J. Chem. Phys., 2000, 113(6): 2238~2249
    [103] Walsh M. B., King R. A., Schaefer H. F. III. The structures, electron affinities, and energetic stabilities of TiOn and TiOn- (n=1-3). J. Chem. Phys., 1999, 110(11): 5224~5230
    [104] Jeong K. S., Chang Ch., Sedimayr E., Sulzle, D. Electronic structure investigation of neutraltitanium oxide molecules TixOy. J. Phys. B, 2000, 33(17): 3417~3430
    [105] Hamad S., Catlow C. R. A., Woodley S. M., Lago S., Mejias J.A. Structure and stability of small TiO2 nanopsrticles. J. Phys. Chem. B, 2005, 109(33): 15741~15748
    [106] Qu Z., Kroes G. J. Theoretical study of the electronic structure and stability of titanium dioxide clusters (TiO2)n with n=1-9. J. Phys. Chem. B, 2006, 110(18): 8898~9007
    [107] Hariharan P. C., Pople J. A. Influence of polarization functions on MO hydrogenation energies. Theor. Chim. Acta, 1973, 28: 213~220
    [108] Johnson, J. R. Tobias, Panas Itai. Water adsorption and hydrolysis on molecular transition metal oxides and oxyhydrosides. Inorg. Chem., 2000, 39 (15): 3181~3191
    [109] Petersson G. A., Tensfeldt Thomas G., Montgomery J. A. Jr. A complete basis set model chemistry.Ⅲ. The complete basis set-quadratic configureation interaction samily of methods. J. Chem. Phys., 1991, 94(9): 6091~6101
    [110] Petersson G. A., Al-Laham Mohammad A. A complete basis aet model chemistry.Ⅱ. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys., 1991, 94(9): 6081~6090
    [111] Hildenbrand D. L. Mass spectrometric studies of the trermochemistry of gaseous titanium monoxide and titanium dioxide. Chem. Phys. Lett., 1976, 44(2): 281~284
    [112] Wu H., Wang L-S. Electronic structure of titanium oxide clusters: TiOy (y=1-3) and (TiO2)n (n=1-4). J. Chem. Phys. 1997, 107(200): 8221~8228
    [113] Hamad S., Catlow C. R. A., Woodley S. M., Lago, S., Mejias, J. A. Structure and stability of small TiO2 nanoparticles. J. Phys. Chem. B, 2005, 109(33): 15741~15748
    [114] Bonacic-Koutecky V., Fantucci P., Koutecky J . Quantum chemistry of small clusters of elements of groupsⅠa,Ⅰb, andⅡa: fundamental concepts, predictions, and interpretation of experiments. Chem. Rev. 1991, 91(5): 1035~1108
    [115] The NIST Webbook of chemistry, http://webbook.nist.gov/chemistry
    [116] Uhlig H. H. Corrosion and Corrosion Control. New York, J. Wiley & Sons, 1963
    [117] Parkins R. N. Corrosion Processes. New York, Elsevier Science, 1982
    [118]尤里克,瑞维亚. (翁永基译).腐蚀与腐蚀控制.石油工业出版社,北京: 1994
    [119] Li J., Hong Y., Lin C. Aphotoelectrochemical study of n-doped TiO2 nanotube arrays as the photoanodes for cathodic protection of SS. J. Elecrochem. Soc. 2007, 154(11): 631~636
    [120]符连社,张洪杰,孟庆国,杨魁跃,倪嘉缵. N, N-二甲基甲酰胺存在下块状TiO2凝胶的制备.功能材料, 2001, 32(3): 3 19~320
    [121] Chan J. B., Jonas J. Effect of various amide additives on the tetramethoxysilane sol-gel process. J. Non-cryst. Solids, 1990, 126(1-2): 79~86
    [122]何丹鸿,袁羲,林功舟,陈玮.多糖铁复合物微丸中铁离子的含量测定.中国医院药学杂志, 2006, 26 (1): 107~108
    [123] NACE RP 0169-96,埋地或水下管道系统的外腐蚀控制
    [124]常守文,张莉华.地下金属构筑物阴极保护效果评价准则的研究进展.材料保护, 2007,40(1): 43~45
    [125] Zhang W., Chen S., Yu S., Yin Y. Preparation and antibacterial behavior of Fe3+-doped nanostructured TiO2 thin films. Thin Solid Film, 2007, doi: 10.1016/j.tsf.2007.08.053
    [126] Zhang Z., Wang C., Zakria R. ying Jackie Y. Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B, 1998, 102(52): 10871~10878
    [127] Zhang P., Yu G., Jiang Z.. Review of semiconductor photocatalyst and its modification. Adv. Environ. Sci., 1997, 5(3): 1~10
    [128] Sato Shinri. Photocatalytic activity of nitrogen oxide (NOx)-doped titanium dioxide in the visible light region. Chem. Phys. Lett., 1986, 123 (1-2): 126~128
    [129] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science. 2001, 293: 269~271
    [130] Diwald O, Thompson T L, Goralski E G, et al.The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile Single Crystals. J. Phys. Chem. B, 2004, 108(1): 52~57
    [131] Irie H, Washizuka S, Yoshino N et al. Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films. Chem. Commun., 2003 (11): 1298~1299
    [132] Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on pjotocatalytic activity of TiO2-xNx powders[J]. J. Phys. Chem. B, 2003, 107: 5483~5486
    [133] Diwald O, Thompson T L,Zubkov T, et al. Photochemical Activity of Nitrogen-Doped Rutile TiO2(110) in Visible Light. J. Phys. Chem. B, 2004, 108(19): 6004~6008
    [134] Ihara T, Miyoshi M, Iriyama Y, Matsumoto,et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal, B, 2003, 42(4) : 403~409
    [135] Sato S., Nakamura R., Abe S. Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Appl. Catal., A, 2005, 284(1-2): 131~137
    [136] Wang Z., Cai W., Hong X., et al., Appl. Catal. B,2004, 57, 223~228
    [137] Sakatani, Y., Koike, H. Japan Patent, P2001-72419A, 2001
    [138] Gole J. L., Stout J. D., Burda C., et al. Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale. J. Phys. Chem. B, 2004, 108(4): 1230~1240
    [139] Yin S., Yamaki H., Komatsu M., et al. Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine. J. Mater. Chem., 2003, 13(12): 2996~3001
    [140] Sano T., Negishi N., Koike K., et al. Preparation of a visible light-responsive photocatalyst from a complex of Ti4+ with a nitrogen-containing ligand. J. Mater. Chem., 2004, 14(3): 380~384
    [141] Nukumizu K., Nunoshige J., Takata T., et al. TiNxOyFz as a stable photocatalyst for water oxidation in visible light (<570 nm). Chem. Lett., 2003, 32(2): 196~197
    [142] Li D., Haneda H. Synthesis of nitrogen-containing ZnO powders by spray pyrolysis andtheir visible-light photocatalysis in gas-phase acetaldehyde decomposition. J. Photochem. Photobiol., A, 2003, 155(1-3): 171~178
    [143] Morikawa T., Asahi R., Ohwaki T., et al. Band-gap narrowing of titanium dioxide by nitrogen doping. J. Appl. Phys. (Jpn), Part 2, 2001, 40(6A): L561-L563
    [144] Yang K., Dai Y., Huang B.. Understanding Photocatalytic Activity of S- and P-Doped TiO2 under Visible Light from First-Principles. J. Phys. Chem. C, 2007, 111(51): 18985~18994
    [145] Sakatani Y., Nunoshige J., Ando H., et al. Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+ and N co-doped TiO2. Chem. Lett., 2003, 32(12): 1156~1157
    [146] Livraghi S., Votta A., Paganini M. C., et al. The nature of paramagnetic species in nitrogen doped TiO2 active in visible light photocatalysis. Chem. Commun. (Cam bridge, United Kingdom), 2005, 4: 498~500
    [147] Khan M. S., Islam M. S., Bates D. R.. Cation Doping and Oxygen Diffusion in Zirconia: a Combined Atomistic Simulation and Molecular Dynamics Study, J. Mater. Chem., 1998, 8 (10): 2299~2307
    [148] Nakamura I, Negishi N, Kutsuna S, et al.I Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J. Mol. Catal. A: Chemical, 2000, 161(1-2): 205~212
    [149] Di V. C., Pacchioni G., Selloni A., et al. Characterization of Paramagnetic Species in N-Doped TiO2 Powders by EPR Spectroscopy and DFT Calculations. J. Phys. Chem. B, 2005, 109(23): 11414~11419
    [150] Noda, H.; Oikawa, K.; Ogata, T.; Matsuki, K.; Kamata, H. Preparation of titanium oxies and its characterization. Nippon Kagaku Kaishi, 1986, 8: 1084~1090
    [151] Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal., B, 2003, 42(4): 403~409
    [152] Sakatani, Y., Koike, H. Japan Patent, P2001-72419A, 2001
    [153] Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, nolecules, solid, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Phys. ReV. B, 1992, 46: 6671~6683
    [154] Yang K., Dai Y. Huang B. Understanding Photocatalytic Activity of S- and P-Doped TiO2 under Visible Light from First-Principles. J. Phys. Chem. C, 2007, 111(51): 18985~18994
    [155] Tian F., Liu C.. DFT Description on Electronic Structure and Optical Absorption Properties of Anionic S-Doped Anatase TiO2. J. Phys. Chem. B, 2006, 110(36): 17866~17871
    [156] Burdett J. K, Hughbanks T., Miller G. J, et al. Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc., 1987, 109(12): 3639~3646
    [157] Asahi R., Taga Y., Mannstadt W., et al. Electronic and optical properties of anatase TiO2.Phys. Rev. B: Condensed Matter and Materials Physics, 2000, 61(11): 7459~7465
    [158] Lin Z., Orlov A., Lambert R. M, et al. New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. J. Phys. Chem. B, 2005, 109(44): 20948~20952
    [159] Mo S., Ching W. Y. Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Phys. Rev. B: Condensed Matter, 1995, 51(19): 13023~13032
    [160] Umebayashi T, Yamaki T, Itoh H,et al. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett., 2002, 81(3): 454~456
    [161] Ohno T., Mitsui T., Matsumura M.. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem. Lett., 2003, 32(4): 364~365
    [162] Ohno T., Akiyoshi M., Umebayashi T., et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal., A: General, 2004, 265(1): 115~121
    [163] Gomez R, Lopez T, Ortiz-Islas E, et al. Effect of sulfation on the photoactivity of TiO2 sol-gel derived catalysts. J. Mol. Catal. A: Chemical, 2003, 193(1-2): 217~226
    [164] Sathish M, Viswanathan B, Viswanath R, et al. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst. Chem.Mater., 2005, 17(25): 6349~6353
    [165]陈孝云,刘守新. S掺杂宽光域响应Ti1-xSyO2光催化剂的制备及表征,物理化学学报,2007, 23(5): 701~708
    [166] Yu J. C, Ho W., Yu J., et al. Efficient Visible-Light-Induced Photocatalytic Disinfection on Sulfur-Doped Nanocrystalline Titania. Environ. Sci. Tech., 2005, 39(4): 1175~1179
    [167] Yamamoto T., Yamashita F., Tanaka I., et al. Electronic states of sulfur doped TiO2 by first principles calculations. Mater. Trans., 2004, 45(7): 1987~1990
    [168] Nakamura R, Tanaka T, Nakato Y. Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes. J. Phys. Chem. B, 2004, 108(30): 10617~10620

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700