用户名: 密码: 验证码:
三嗪类除草剂分子印迹聚合物的制备及其在痕量分析检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将分子印迹技术与常规萃取技术,色谱分离、分析技术及传感器等相结合,用于复杂样品体系中痕量目标物的富集分离分析,可克服生物及环境样品体系复杂、预处理繁琐等不利因素,为试样采集、分离纯化和分析提供极大方便。本论文是在前人学者研究基础上,对分子印迹固相(微)萃取材料,磁性复合微球、印迹敏感膜电化学传感器、色谱柱印迹填料和分子印迹搅拌吸附棒等的制备方式和应用等进行了系统的改进和评价研究,并将其用于实际环境样品中三嗪类除草剂的痕量/微量样品前处理富集与分离以及农残快速检测领域。具体研究内容如下:
     (1)采用远红外热引发和紫外光引发方式制备分子印迹聚合物。通过对制备聚合物的吸附性能、选择性,印迹效率、孔隙率等指标进行比较分析,探讨引发方式对聚合物性能的影响。利用平衡吸附理论分析聚合物内部形貌对其结合能、结合位点类型及选择性的影响。将聚合物研磨、过筛、洗脱模板后装填固相萃取小柱与商品化C18固相萃取柱比较分离实际环境样品。结果表明2种引发方式制备的分子印迹固相萃取柱均可用于富集水样中莠去津待测物,其回收率可达到90.1%~101.9%。与市售C18柱相比,净化更彻底,且减少了杂质峰对分析的影响,提高灵敏度。
     (2)以1.2μm聚苯乙烯微球为种球、莠去津为模板分子、甲基丙烯酸为功能单体、二甲基丙烯酸乙二醇酯为交联剂,采用二步种子溶胀法制备球形规整且具多孔结构的大比表面单分散分子印迹聚合物微球。通过对比制备的聚合物微球形貌考察了制备过程中溶胀比,搅拌速度、水油比、交联剂用量、乳化分散剂用量等对分子印迹聚合物微球粒径、表观形貌及孔径分布的影响。将聚合物微球作为色谱填料装填于不锈钢管柱(6.4mm I.D.×10cm)制备成液相色谱柱应用于土样中三嗪类除草剂的含量分析测定。结果表明,三嗪类除草剂在0.1~10mg/L范围内呈线性关系良好。加样回收率为92.1%~102.0%, RSD<5%(n=6)。本方法的定量限为4.13μg/L,能够满足实际样品中三嗪类除草剂限量测定的要求。
     (3)采用化学共沉淀法制备Fe304亚微米磁性粒子,应用溶胶-凝胶技术和表面键合修饰得到核壳结构的Fe3O4@SiO2@γ-MAPs复合微球,再以悬浮聚合法合成粒径为1.2μm的单分散莠去津分子印迹磁性微球。采用扫描电子显微镜、红外吸收光谱、磁学性质测量和能量弥散X射线分析了印迹磁性微球的表观形貌和结构特征。利用吸附等温线及Scatchard图分析表明莠去津分子印迹磁性微球存在两类不同的结合位点。建立了莠去津分子印迹磁性微球富集-高效液相色谱分析测定三嗪类除草剂莠去津、特丁津、莠灭净的分离分析方法,并将其应用于土壤样品的分离检测,检出限为在2.6μg/L~5.2μg/L,回收率为80.7%~116.6%、相对标准偏差为2.11%~6.92%。实现了简便快速富集分离三嗪类除草剂。
     (4)报道一种对三嗪类除草剂有识别特性分子印迹膜的制备方法,即通过循环伏安技术在金电极表面以3-硫噻吩丙二酸为功能单体,制备特丁津的分子印迹聚3-硫噻吩丙二酸敏感膜电化学传感器。考察了支持电解质、聚合圈数、扫描电位范围、酸度等对传感器的响应情况及对三嗪类结构类似化合物的选择性。建立实际样品的测定方法以及样品的重现性。实验表明,该分子印迹膜对三嗪类除草剂具有良好的选择性和较高的灵敏度。浓度在0.02mmol/L~0.12mmol/L范围内具有良好的线性关系(线性相关系数R=0.99167),检出限可达0.0025mmol/L。将此传感器用于实际西红柿和土样中三嗪类除草剂的测定,回收率在88.50%~92.0%之间。同时传感器的制备过程简便,重现性和稳定性令人满意,也满足传感器的快速响应要求和灵敏度。
     (5)在石英毛细管内采用微波聚合的方式制备得到了莠去津分子印迹毛细管整体柱,将其作为固相微萃取头,结合液--液萃取和中空纤维膜萃取技术,与高效液相色谱联用,优化了影响萃取效率的参数:萃取和解析溶剂、盐浓度、pH值、萃取和解析时间及搅拌速度等。建立了2种萃取结合模式直接在环境水样中萃取三嗪类除草剂并偶联高效液相色谱法的分析方法,对四种三嗪类除草剂(莠去津、特丁津、莠灭净、均三嗪)被测物的加标回收率在68.3%~113.2%之间。具备简单、快速、灵敏度高等优点,适合于实际环境水样的痕量分析。
     (6)以新型超顺材料钕铁硼(Nd2Fe14B)为基质,采用溶胶-凝胶技术在磁性粒子表面进行SiO2包覆,再在其表面进行分子印迹,一步热聚合物法制备了一种整体式分子印迹搅拌吸附萃取棒。将其应用于环境样品黄瓜和土壤中三嗪类除草剂的吸附萃取,通过优化萃取条件,建立了分子印迹搅拌吸附棒--液液萃取和直接萃取实际样品中三嗪类除草剂的分析方法。该方法在对水样和黄瓜样品的相对回收率达到73.6%-95.5%,成功实现了搅拌棒用于极性溶剂和非极性溶剂中的萃取分析。
Molecularly imprinted Polymers (MIPs) are a new kind of macromolecular materials with molecular recognition capability. Because MIPs have the advantages of predetermination, specificity and practicability, they have been extensively used in chromatographic separation, antibody mimic, solid-phase extraction, biosensors, catalyzing reaction and other relevant fields. The combination of conventional extraction technology, chromatographic separation and sensor technology with molecular imprinting technique, have been applied for the enrichment and separation of trace analytes in the complex environmental samples. This could solve some problems such as the complexity of environment samples and cumbersome process of the pretreatment and provide great convenience for the collection, enrichment and analysis. In this work we made a systematic study and carried out some improvement and innovation focusing on the solid phase (micro) extraction material, magnetic composite microspheres and electrochemical sensor by molecular imprinting technique, chromatographic column packing and stir bar sorptive extraction combined with the molecular imprinting technique. Furthermore, these developed materials were applied for the enrichment and separation of trace and trace sample processing using triazine herbicides as representative pesticide residues. The following studies are done in this paper.
     1. Atrazine imprinted polymers were comparatively synthesized using identical polymer formulation by far-infrared (FIR) thermal and ultraviolet (UV) light-induced polymerization, respectively. By ultraviolet spectrophotometry, equilibrium binding experiments were carried out at room temperature with the prepared MIPs. The results showed that MIPuv resulted in three-fold reduction in polymerization time and higher specific binding to atrazine compared with their MIPFIR counterparts. Scatchard plot's of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high-and low-affinity binding sites, respectively. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, and similar imprinting factor and different selectivity index were obtained for both resulted MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to the slight differences in both polymer structures and performance by scanning electron microscope (SEM), Fourier transform infrared absorption (FTIR), and mercury analyzer (MA). Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE) of atrazine from lake water, followed by the determination using high performance liquid chromatography (HPLC). Compared with the commercial C18SPE sorbent (86.4%-91.5%), higher recoveries of atrazine in spiked lake water were obtained in the range of93.1%-93.8%and94.3%-94.5%, for both MIPs, respectively.
     2. Atrazine molecularly imprinted polymer microspheres (MIPMs) were fabricated by two step seed swelling polymerization method, using atrazine as a template molecule, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EDMA) as a crosslinking agent and toluene/dodecanol as a porogenic agent, and the factors influencing on the shape, the particle size and particle size distribution of the MIPMs were detailedly studied such as swelling ratio, stirring rate, water-oil ratio, and dispersant dosage, etc. The results showed that when the swelling ratio was40, the stirring rate was200rpm, the water-oil ratio was3:1(v/v), the functional monomer MAA was6mmol, the EDMA dosage was30mmol and the PVA dosage was0.6g, a series of MIPMs with even particle size of3-5μm and good dispersivity could be obtained. We adopted an equilibrium binding experiment to study the binding capacity of the polymer with template molecule, and found through Scatchard model analysis that, for the imprinted polymers, the dissociation constant and apparent maximum binding capacity of low affinity binding site were Kd1=8.21x10-3mol/L and Qmax1=334.23μmol/g, respectively, and those of high affinity binding site were Kd2=4.36x10-4mol/L and Qmax2=38.07μmol/g, respectively. We packed the polymers into empty chromatographic steel tube columns (2.1mm I.D.x10cm) to prepare liquid chromatographic columns used for the evaluation of specificity with similar structure compounds and the determination of atrazine content in water samples. The proposed method has been successfully applied to the determination of limited atrazine in water samples. The results showed that a good linear relationship of atrazine was maintained within0.01-10mg/L (r=0.9992), the sample recovery was in a range of92.1%-102.0%, with a RSD lower than5%(n=6) and a detection limit of4.13μg/L.
     3. Magnetic iron oxide submicron particles were prepared by chemical co-precipitation, and then magnetic Fe3O4@SiO2@γ-MAPs composite microspheres were achieved by sol-gel technology. The magnetic molecularly imprinted beads were prepared utilizing atrazine as the template molecule by suspension polymerization. The structural characteristics and extraction performance of the atrazine magnetic molecularly imprinted beads were investigated. The imprinted beads were characterized by scanning electron microscopy, fourier transform infrared spectroscopy, vibrating sample magnetometer(VSM) and energy-dispersive X-ray spectroscopy (EDX). The results showed that the imprinted beads were in spherical shape with diameter1.2μm and the surface Was porous and rough. We adopted an equilibrium binding experiment to study the binding capacity of the MMIPs with template molecule, and found through Scatchard model analysis that, for the MMIPs, the dissociation constant and apparent maximum binding capacity of low affinity binding site were Kd1=6.306×10-4mol/L and Qmax1=22.12μmol/g, respectively, and those of high affinity binding site were Kd2=2.887×10-3mol/L and Qmax2=65.94μmol/g, respectively. The atrazine magnetic molecularly imprinted beads were coupled with HPLC for the analysis of three triazines (atrazine、ametryn、 terbuthylazine). The proposed method presented good linearity and the detection limits was2.6μg/L~5.2μg/L. This method was used to the simultaneous quantification of three triazines in soil samples. The recoveries were from80.7%to116.6%for the spiked soil respectively, with the RSD of2.11%~6.92%.
     4. A novel sensor for the determination of terbuthylazine (TBA) based on3-thiophenemalonic acid (3-TMA) as functional monomer was fabricated by molecularly imprinted technology. The polymeric film was obtained on the gold electrode surface by electrocopolymerization of3-TMA in the presence of the template molecule of TBA, through the use of cyclic voltammetry (CV). Several important parameters controlling the performance of the molecularly imprinted polymer modified sensor were investigated in detail such as the monomer concentration, the electropolymerization cycles and pH. The obtained MIP sensor is highly specific towards newly added TBA and the recognition can be quantitatively analyzed by the differential pulse voltammetry (DPV) to verify the changes in oxidation currents of ferricyanide. In the optimal condition, the response of the imprinted sensor to TBA was linearly proportional to its concentration over the range2.5×10-7mol/L to1.2×10-4mol/L, with high selectivity, good stability and reproducibility (RSD,2.05%). The method has been successfully applied to the determination of TBA in real samples, with a recovery ranging from71.2%to84.9%and a detection limit of2.0×10-8mol/L (S/N=3).
     5. A novel method to fast prepare molecularly imprinted polymer monolithic fibers is developed with the help of microwave irradiation and used to overcome the well known water-compatibility problem of MIP by liquid-liquid-solid microextraction (LLSME) and the developed hollow fiber-liquid-solid microextraction (HFLSME) system. The resulted atrazine MIP fiber was obtained after silica being etched away with a controlled length of1cm, and subsequently characterized by scanning electron microscope. Main factors affecting the selective extraction including extraction time, desorption time, extraction and desorption solvents were investigated for LLSME and HFLSME procedures in detail. The selectivity was also evaluated using the atrazine template molecule and its structurally-related compounds including2-amino-4-methoxy-6-methyl-1,3,5-triazine, terbuthylazine, ametryn and metribuzin pesticides. The extraction ratio for target pesticides was increased to more than10times in atrazine-imprinted polymeric monolithic fiber compared to non-imprinted polymeric monolithic fiber. The resulted fibers were successfully applied to detect atrazine and its analogues pesticides in lake water coupled to HPLC and resulted in recoveries in the range of68.3%to113.2%, respectively. It demonstrated that the proposed technique could overcome the problem of disturbance from water when the MIP monolithic fiber was exposed directly to non-polar solvent above the aqueous solution.
     6. To overcome the shortcomings of commercial Stir-bar sorptive extraction, a novel stir bar for sorption extaction based on monolithic material was prepared. The new matrix high magnetic and super paramagnetic material Nd2Fe14B magnetic powder as a muddler magnetic supply, then magnetic powder by TEOS cladding y-MAPs by surface grafting were achieved by sol-gel technology. The molecularly imprinted stir bar sorptive extraction were prepared utilizing atrazine as the template molecule, MAA as the functional monomer, EDMA as the crosslinker, chloroform as the porogen, by in-situ stepwise polymerization. It was then used to extract compound triazine herbicides in the environmental soil and cucumber sample. A method was established by optimizing the experimental conditions such as adsorption curve, stir rate, extraction time, desorption mode and desorption solvent. The method had a good linear relationship in the concentration range of0.01-0.3μg/mL with a correlation coefficient of0.9993. The recovery was from73.6%to95.5%. The SBSE was successfully used to extract triazine herbicides.
引文
[1]谭天伟.分子印迹技术及应用[M].北京:化学工业出版社,2010.6.
    [2]小宫山真,著.吴世康,汪鹏飞,译.分子印迹学---从基础到应用[M].北京:科学出版社,2006.4.
    [3]黄健祥,胡玉斐,潘加亮,等.分子印迹样品前处理技术的研究进展[J].中国科学,B辑.化学,2009,39(8):733-746.
    [4]姜忠义.分子印迹聚合物制备与应用[J].化学世界,2003,44(2):105-108.
    [5]Mingdi Y. O.R., Molecularly Imprinted Materials Science and Technology [M]. Sweden, Stockholm, Royal Institute of Technology.2005.7.
    [6]Ramstrom O., Skudar K., Haines J., et al. Food Analyses Using Molecularly Imprinted Polymers[J]. J. Agric. Food Chem.,49(5):2015-2024.
    [7]Pauling L., A theory of the structure and process of formation of antibodies [J]. J. Am. Chem. Soc., 1940,62(3):2643-2657.
    [8]Dickey F. H., The preparation of specific adsorbents [J]. Proc. Natl. Acad. Sci., USA,1949,35(5): 227-229.
    [9]Wulff G., Sarhan A., Zabrocki K., Enzyme-analogue built polymers and their use for the resolution of racemates[J]. Tetrahedron Lett.,1973,14(44):4329-4332.
    [10]Vlatakis G., Andersson L. I., Muller R., Mosbach K., Drug assay using antibody mimics made by molecular imprinting[J]. Nature,1993,361:645-649.
    [11]赖家平,何锡文,郭洪声,等.分子印迹技术的回顾、现状与展望[J].分析化学研究报告,2001,29(7):836-844.
    [12]胡小刚,汤又文.分子印迹聚合物制备技术研究进展[J].华南师范大学学报(自然科学版):2003,101:154-161.
    [13]胡小刚,李功科.分子印迹技术在样品前处理中的应用[J].分析化学,2006,34(7):1035-1041.
    [14]Haupt K., Dzgoev A., Mosbach K., Assay system for the herbicide 2,4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element[J]. Anal. Chem., 1998,70:628-631.
    [15]Haupt K., Mayes A.G, Mosbach K., Assay using an imprinted polymerbased system analogous to competitive fluoroimmono assays[J]. Anal. Chem.,1998,70:3936-3939.
    [16]陈颖,沈更新,邵生文,等.分子印迹固相萃取技术在食品安全分析中的应用[J].2008,18(8):1696-1697.
    [17]Caro E., Masque N., Marce R. M., et al. Non-covalent and semi-covalent molecularly imprinted polymers for selective On-line solid-phase extraction of 4-nitrophenol from water samples [J]. J. Chromatogr. A.,2002,963(10):169-178.
    [18]Hayden O., Bindeus R., Haderspock C., et al. Mass-sensitive, detection of cell, viruses and enzymes with artificial receptors[J]. Sensor & Actual. B,2003,91:316-319.
    [19]Immer F., Francesa L., Antalet T., et al. Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers[J]. Anal. Chem.,2000,72:3934-3941.
    [20]Villoslada F. N., Vicente B. S., Bondi M. C. M., et al. Application of multivariate analysis to the screening of molecularly imprinted polymer for bisphenol A[J]. Anal. Chim. Acta,2004, 504:149-162.
    [21]Gonz' alez G. P., Hernando P. F., Alegra J. S. D., A morphological study of molecularly imprinted polymers using the scanning electron microscope[J]. Anal. Chim. Acta,2006,557:179-183.
    [22]Matsui J., Kato T., Takeudi T., et al. Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique [J]. Anal. Chem.,1993,65:2223-2224.
    [23]Huang X. D., Qin F., Chen X. M., et al. Short columns with molecularly imprinted monolithic stationary phases for rapid separation of diastereomers and enantiomers[J]. J. Chromatogr. B., 2004,804:13-1.
    [24]Nisson K., Lindell J., Norrlow O., et al. Imprinted polymers as an antibody mimeties and new gels for selection in capillary electrophoresis[J]. J. Chromatogr A,1994,680(1):57-61.
    [25]Hu M. L., Jiang M., Wang P., et al. Select ive solid-pha se extraction of tebuconazo le in biological and environmen tal samples using molecularly imprinted polymers[J]. Anal. & Bioanal. Chem., 2007,387:1007-1016.
    [26]Jing T., Gao X. D., Wang P., et al. Determination of trace tetracycline antibiotics in food stuffs by liquid chromatography-tandem mass spectrometry coupled with selective molecular-imprinted solid-phase extraction[J]. Anal. & Bioanal.Chem.,2009,393:2009-2018.
    [27]Jenkins A. L., Yin R., Jensen J. L., Molecularly imprinted polymer sensors for pesticide and insecticide detection in water[J]. Analyst,2001,126:798-802.
    [28]Hosoya K., Yoshizako K., Shirasu Y., et al. Uniform-size macroporous a polymer-based stionary phase for HPLX prepared molecular imprinting technique[J]. Chem. Lett.,1994,23(8): 1437-1438.
    [29]成国祥,张立永,付聪.种子溶胀悬浮聚合法制备分子印迹聚合物微球[J].色谱,2002,20(2):102-107.
    [30]Liu X. J., Chen Z. Y., Zhao R., et al. Uniform-sized molecularly imprinted polymer for metsulfuron-methyl by one-step swelling and polymerization method[J]. Talanta,2007,71(3): 1205-1210.
    [31]Turiel E., Martin Esteban A., Fernandoz P., et al. Molecular recognition in a propazine-imprinted polymer and its application to the determination of triazines in environmental samples[J]. Anal. Chem.,2001,73 (21):5133-5141.
    [32]Dlaz-Bao M., Barreiro R., Regal P., et al. Evaluation of molecularly imprinted polymers for the simultaneous SPE of six corticosteroids in milk [J]. Chromatographia,2012,75:223-231.
    [33]Zhu Q.Z., Haupt K., Knopp D., et al. Molecularly imprinted polymer for metsulfuron-methyl and its binding charaterictics for sulfonylurea herbicides [J].Anal. Chim. Acta.,2002,468:217-227.
    [34]Wang D.X., Hong S.P., Yang GL., et al. Caffeine molecular imprinted microgel spheres by precipitation polymerization[J]. Korean J. Chem. Eng.,2003,20(6):1073-1076.
    [35]Ellwanger A., Berggren C., Bayoudh S., et al. Evaluation of methods aimed at complete removal of template from molecularly imprinted polymers[J]. Analyst,2002,126:784-790.
    [36]Cacho C., Turiel E., Martin2Esteban A, et al. Characterization and quality assessment of binding sites on a propazine2imprinted polymer prepared by precipitation polymerization [J]. J. Chromatogr. B.,2004,802:347-353.
    [37]Jiang M., Shi Y, Zhang R. L., et al. Selective molecularly imprinted stationary phases for bisphenol A analysis prepared by modified precipitation polymerization[J]. J. Sep. Sci.,2009,32: 3265-3273.
    [38]Zhang Z. B., Wu R. A., Wu M. G, et al. Recent progress of chiral monolithic stationary phases in CEC and capillary LC [J]. Electrophoresis,2010,31:1457-1466.
    [39]Yang S. H., Zaidi S. A., Cheng W. J., et al. Open tubular molecular imprinted polymer fabricated in silica capillary for the chiral recognition of neutral enantiomers in capill-ary electrochromatography[J]. Bull Korean Chem. Soc.,2012,33(5):1664-1668.
    [40]Tamayo F. G., Turiel E., Martin-Esteban A., Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction:Recent developments and future trends[J]. J. Chromatogr. A.,2007,1152:32-40.
    [41]Claude B., Morin P., Lafosse M., et al. Selective solid-phase extraction of a triterpene acid from a plant extract by molecularly imprinted polymer [J]. Talanta,2008,75:344-350.
    [42]Ma C., Chen H., Sun N., et al. Preparation of molecularly imprinted polymer monolith with an analogue of thiamphenicol and application to selective solid-phase microextraction[J]. Food Anal. Methods,2012,5(6):1267-1275.
    [43]Sergeyeva T. A., Slinchenko O. A., Gorbach L. A., et al. Catalytic molecularly imprinted polymer membranes:Development of the biomimetic sensor for phenols detection[J]. Anal. Chim. Acta, 2010,659(1-2):274-279.
    [44]Fang C., Yi C. L., Wang Y., et al. Electrochemical sensor based on molecular imprinting by photo-sensitive polymers[J]. Biosensors & Bioelectronics,2009,24:3164-3169.
    [45]Whitcombe M. J., Chianella I., Larcombe L., et al. The rational development of molecularly imprinted polymer-based sensors for protein detection[J]. Chem. Soc. Rev.,2011,40:1547-1571.
    [46]Chen R. R., Qin L., Jia M., et al. Novel surface-modified molecularly imprinted membrane prepared with iniferter for permselective separation of lysozyme[J]. J. Membrance Sci.,2010,363: 212-220.
    [47]Zhang Y. Q., Shan X., Gao X. Q., Development of a molecularly imprinted membrane for selective separation of flavonoids[J]. Sep. Purif. Technol.,2011,76:337-344.
    [48]Silvetri D., Barbani N., Cristallini C., et al. Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium[J]. J. Membrance Sci.,2006,282:284-295.
    [49]Liu J. Q., Wulff G., Functional mimicry of carboxypeptidase A by a combination of transition state stabilization and a defined orientation of catalytic moieties in molecularly imprinted polymers[J]. J. Am. Chem. Soc.,2008,130:8044-8054.
    [50]Abbate V., Bassindale A. R., Brandstadt K. F., et al. Biomimetic catalysis at silicon centre using molecularly imprinted polymers[J]. J. Catal.,2011,284:68-76.
    [51]王晓春,王广,焦杏春.三嗪类除草剂分析方法研究进展[J].农药,2011,50(5):320-324.
    [52]申继忠.农药残留分析样品前处理新技术简介[J].农药科学与管理,1998,4(68):8-10.
    [53]Chen L. X., Xu S.F., Li J. H., Recent advances in molecular imprinting technology:current status, challenges and highlighted applications[J]. Chem. Soc. Rev.,2011,40:2922-2942.
    [54]Matrui Jun, Miyoshi Yoko, Doblhoff-Dier Otto, et al. A Molecularly Imprinted Synthetic Polymer Receptor Selective for Atrazine[J].Anal. Chem.,1995,67(23):4404-4408.
    [55]Matrui Jun, Miyoshi Yoko, Takeuchi Toshifumi. Analysis of Ateazine Herbicide Using Molecularly Imprinted Synthetic Polymer Receptors[J]. Kuromatogurafi,1996,17(4):332-333.
    [56]Florent B., Rouillon R., Elena V., et al. Virtual imprinting as a tool to desigfic efficient MIPs for photosynthesis- in -hibiting herbicides [J].Biosensors & Bioelectronics,2007,22:1948-1954.
    [57]Bjalrnason B., Chimuka L., Ramstrom on line solid-phase extraction of triazine herbicides using a molecularly imprinted polymer for selective sample enrichment[J]. Anal. Chem.,1999,71: 2152-2156.
    [58]Timea P., Horvath V., Tolokan A., et al. Effects of solvents on the selectivity of terbutylazine imprinted polymer sorbents used ill solid Phase extraction[J]. J. Chromatogr. A.,2002,973:1-12.
    [59]Chapuis F., Pichon V., Lanza F., et al. Optimization of the class selective extraction of triazines from aqueous samples using a molecularly imprinted polymer by a comprehensive approach of the retention mechanism[J]. J. Chromatogr. A.,2003,999:23-33.
    [60]Koeber R., Fleischer C., Lanza F., et al. Evaluation of a Multidimensional Solid-Phase Extraction Platform for Highly Selective On-Line Clean up and High-Throughput LC-MS Analysis of Triazines in River Water samples Using Molecularly Imprinted Polymers[J]. Anal. Chem., 2001,73(11):2437-2444.
    [61]Piletsky S. A., Piletskaya E. V., Elgersma A. V., et al. Atrazine sensing by molecularly imprinted membranes[J]. Biosensors & Bio-electrinics,1995,10:959-964.
    [62]Sergeyeva T.A., Piletsky S.A., Piletska E. V., et al. In situ formation of porous molecularly imprinted Polymer membranes[J]. Macromol.,2003,36 (19):7352-7357.
    [63]Sengeyeva T. A., Piletsky S. A., Brovko A. A., et al. Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes [J]. Analyst,1999,124 (6):331-334.
    [64]Sergeyeva T.A., Piletsky S.A., Brovko A. A., et al. Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection[J]. Anal. Chim. Acta,1999,392:105-111.
    [65]Luo C. H., Liu M., Mouto Y., et al. Thickness shear mode acoustic sensor for atrazine using molecularly imprinted polymer as recognition element[J]. Anal. Chem. Acta,2001,428 (1):143-148.
    [66]Tanya P. D., Vladimir M.M., Mathias V., et al. Impedometric herbicide sensors based on molecularly imprinted polymers [J]. Anal. Chim. Acta,2001,435:157-162.
    [67]Pogorelova S. P., Bourenko T., Kharitonov A. B., et al. Selective sensing of triazine herbicides in imorinted membranes using ion sensitive field2effect transistors and micro gravimetric quartz crystal microbalance measurements[J]. Analyst,2002,127:1484-1491.
    [68]Shoji R., Takeuchi T., Kubo I., Atrazine sensor based on molecularly imprinted polymer modified gold electrode [J]. Anal. Chem.,2003,75:4882-4886.
    [69]马永飞,曲祥金,艾仕云,等.分子印迹膜电化学传感器检测土壤中莠去津[J].化学研究与应用,2009,21(5):624-629.
    [70]Belardi R. P., Pawliszyn J., The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns[J]. Water Poll.,1989,24:179-191.
    [71]Arthur C. L., Pawliszyn J., Solid phase microextraction with thermal desorption using fused silica optical fibers[J]. Anal. Chem.,1990,62(19):2145-2148.
    [72]Hu X. G., Hu Y. L., Li G. K., Preparation and characterization of prometryn molecularly imprinted solid-phase microextraction fibers[J].Anal. Lett.,2007,40(4):645-660.
    [73]Hu X. G., Hu Y. L., Li G. K., Development of novel molecularly imprinted solid-phase microextraction fi ber and its application for the determination of triazines in complicated samples coupled with high-performance liquid chromatography [J].J. Chromatogr. A.,2007,1147(1):1-9.
    [74]Turiel E., Tadeo J. L., Esteban M. A., Molecularly imprinted polymeric fibers for solid-phase microextraction[J]. Anal. Chem.,2007,79(8):3099-3104.
    [75]Djozan D., Baheri B., Preparation and evaluation of solid-phase microextraction fi bers based on monolithic molecularly imprinted polymers for selective extraction of diacetylmorphine and analogous compounds[J].J. Chromatogr. A.,2007,1166(1-2):16-23.
    [76]Djozan D., Ebrahimi B., Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer:Application for GC and GC/MS screening of triazine herbicides in water, rice and onion[J]. Anal. Chim. Acta,2008,616(2):152-159.
    [77]Djozan D., Mahkam M., Ebrahimi B., Preparation and binding study of solid-phase microextraction fiber on the basis of ametryn-imprinted polymer:Application to the selective extraction of persistent triazine herbicides in tap water, rice, maize and onion[J].. J.Chromatogr. A, 2009,1216(12):2211-2219.
    [78]李攻科,张毅,胡玉玲.微波辅助分子印迹磁性微球的制备方法和应用[P].CN101101282A,2008-01-09
    [79]Zhang Y., Liu R. J., Hu Y. L., Li G.K., Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples[J]. Anal. Chem.,2009, 81(3):967-976.
    [80]Hu Y. L., Liu R. J., Zhang Y, Li G. K. Improvement of extraction capability of magnetic molecularly imprinted polymer beads in aqueous media via dual-phase solvent system[J]. Talanta, 2009,4:29-37.
    [1]陈小华,汪群杰.固相萃取技术与应用[M].北京:科学出版社,2009.
    [2]陈小霞,岳振峰,郑卫平,等.氯霉素分子烙印固相萃取柱的制备及萃取条件优化[J].华南理工大 学学报:自然科学版,2004,32(7):51-54.
    [3]胡小刚,汤又文.分子印迹固相萃取-紫外分光光度法测定阿司匹林的研究[J].华南师范大学学报:自然科学版,2006,4:88-92.
    [4]Lasakova M., Jandera P., Molecularly imprinted polymers and their application in solid phase extraction[J]. J. Sep. Sci.,2009,32(5-6):799-812.
    [5]Kloskowski A., Pilarczyk M., Przyjazny A., et al., Progress in development of molecularly imprinted polymers as sorbents for sample preparation[J]. Crit Rev. Anal. Chem.,2009,39(1): 43-58.
    [6]蔡亚岐,牟世芬.分子印迹固相萃取及其应用[J].分析测试学报,2005,24(5):116-121.
    [7]Zhou J., He X.W., Study of the nature of recognition in molecularly imprinted polymer selective for 2-aminopyridine[J]. Anal. Chim. Acta,1999,381(1):85-90.
    [8]李攻科,胡玉玲,阮贵华,等著.样品前处理仪器与与装置[M].北京:化学工业出版社,2007.
    [9]Brengre C., Morin P., Lafosse M., Selective solid-phase extraction of a triterpene acid from a plant extract by molecularly imprinted polymer[J].Talanta,2008,75(2):344-350.
    [10]胡小刚,汤又文.分了印迹聚合物制备技术研究进展[J].华南师范大学学报(自然科学版),2003,8:150-157.
    [11]时作龙,章竹君,孙永华.在线分子印迹----化学发光法对食品中苏丹红Ⅰ的测定[J].分析测试学报,2008,27(10):1071-1074.
    [12]Nigel J.K. Simpson. Solid-Phase Extraction [M]. Boca Raton, Taylor & Francis Group:CRC Press LLC.2000.
    [13]胡小刚,李攻科.分子印迹技术在样品前处理中的应用[J].分析化学,2006,7:1035-1041.
    [14]小宫山真,著.吴世康,汪鹏飞,译.分子印迹学---从基础到应用[M].北京:科学出版社,2006.
    [15]Puoci F., Curcio M., Cirillo G., et al. Molecularly imprinted solid-phase extraction for cholesterol determination in cheese products[J].Food Chemistry,2008 106:836-842.
    [16]孟子晖,王进防,周良模,等.化学烙印技术进展[J].化学进展,1999,11(4):358-366.
    [17]Imma F., Lanza F., Tolokan A., et al., Selective Trace Enrichment of Chlorotriazine Pesticides from Natural Waters and Sediment Samples Using Terbuthylazine Molecularly Imprinted Polymers[J].Anal. Chem.2000,72 (16):3934-3941.
    [18]Koeber R., Fleischer C., Lanza F., et al., Evaluation of a Multidimensional Solid-Phase Extraction Platform for Highly Selective On-Line Cleanup and High-Throughput LC-MS Analysis of Triazines in River Water Samples Using Molecularly Imprinted Polymers[J]. Anal. Chem. 2001,73 (11):2437-2444.
    [19]Chen W., Liu F., Zhang X. M., et al.,4-hydroxy-benzoic acid, salicylic acid molecularly imprinted polymer molecular recognition properties research[J].Chemical J.2001,55(1):29-34.
    [20]Anfossi L., Baggiani C., Baravalle P.,etal. Moleeular Recoition of the Fungicide Cathendazim by a Molecular Imprinted Polylner Obtained through a Mimic Template Approaeh[J]. Anal. Lett., 2009,42(5):807-820.
    [21]郭洪声,何锡文,周杰,等.药物氟哌酸分子模板聚合物的分子识别特性[J].分析化学,2001,29(2):128-132.
    [22]Ba Ggiani C., Anfossi L., Giovannol I. C., Solid phase extraction of food contaminants using molecular imprinted polymers[J].Anal. Chim. Acta,2007,591(6):29-23.
    [23]Javanbakht M., Attaran A. M., Namjumanesh M. H., et al. Solid-phase extraction of tramadol from plasma and urine samples using a novel water-compatible molecularly imprinted polymer[J]. J. Chromatogr. B,2010,878:1700-1706.
    [24]Puoci F., lemma F., Cirillo G., etal., New restricted access materials combined to molecularly imprinted polymers for selective recognition/release in water media[J]. Eur. Polym. J.,2009, 45(6):1634-1640.
    [25]He C.Y., Long Y. Y., Pan J. L.,et al. Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples[J]. J. Biochem. Bioph. Methods,2007,70(2):133-150.
    [26]姜忠义,吴洪.分子印迹技术[M].北京:化学工业出版社,2003:3-8.
    [27]Ryan S., Melissa E. C., David A. S., Shape selectivity versus functional group preorganization in molecularly imprinted polymers[J].Anal. Chim. Acta,2007,591(1):7-16.
    [28]董襄朝.分子印迹聚合物在复杂体系分离中的应用研究进展[J].分析测试学报,2004,23(6):119-123.
    [29]Yan H.Y., Tian M.L., Row K. H., Determination of enrofloxacin and ciprofloxacin in milk using molecularly imprinted solid-phase extraction[J]. J. Sep. Sci.,2008,31 (16-17):3015-3020.
    [30]孙宝维,杨敏莉,李元宗,等.模板结构与分子印迹效果间关系的研究[J].化学学报,2003,61(6):878-884.
    [31]马玉哲,张俊杰,李红霞.分子印迹聚合物的合成进展[J].河北理工大学学报(自然科学版),2006,30(4):95-99.
    [32]Chimuka L., Pinxteren M. V., Billing J.,et al. Selective extraction of triazine herbicides based on a combination of membrane assisted solvent extraction and molecularly imprinted solid phase extraction [J]. J. Chromatrogr. A.,2011,1218 (5):647-653.
    [33]Sun H., Qiao F., Recognition mechanism of water-compatible molecularly imprinted solid-phase extraction and determination of nine quinolones in urine by high performance liquid chromatography [J]. J. Chromatogr. A.,2008,1212(1-2):1-9.
    [34]Wei Y., Qiu L., Yu J. C. C., Lai E. P. C., Molecularly imprinted solid phase extraction in a syringe needle packed with polypyr-role-encapsulated carbon nanotubes for determination of ochratoxin a in red wine[J]. Food Sci. Technol. Int.,2007,13(5):375-380.
    [35]霍佳平,司士辉,王颜红,等.莠去津分子印迹聚合物的合成及其吸附性能[J].合成化学,2010,18(2):159-163.
    [36]彭畅,刘维娟,张春涛,等.识别三唑类农药的片段印迹聚合物的合成及在固相萃取中的应用[J].高等学校化学学报,2009,30(11):2159-2164.
    [1]郭洪声.分子印迹聚合物的合成,识别机理及分析应用研究[D].南开大学,2001.6.
    [2]杨立成,蔡建国,李爱民.单分散微球的制备及其在环境保护领域中的应用[J].材料科学与工 程学报,2006,24(6):940-943.
    [3]Khasawneh M., Vallano P., Remcho V., Affinity screening by packed capillary high performance liquid chromatography using molecular imprinted sorbents:II. Covalent imprinted polymers[J]. J. Chromatogr. A.,2001,922(1-2):87-97.
    [4]任杰,余若黔.分子印迹技术研究进展[J].生命的化学,2003,23(1):70-72.
    [5]雷金化,王红华,李栋梁.两步种子溶胀聚合研究进展[J].化学进展.2009,21(6):1287-1291.
    [6]张立永,曾令刚,裴广玲,等.分子印迹聚合物微球制备研究进展[J].材料导报,2001,15(1):60-61.
    [7]Mosbach K., Ramstrom O., Emerging technique of molecular imprinting and its future impact on biotechnology[J]. Bio/Technology,1996,14(2):163-172.
    [8]Anderson Lars I., Daniel J. O'Shannessy, Mosbach K., Molecular recognition in synthetic polymers: preparation of chiral stationary phases by molecular imprinting of amino acid amides[J]. J. Chromatogr. A.,1990,513(6):167-179.
    [9]Yamazak T., Yilmaz E., Mosbach K., et al. Towards the use of molecularly imprinted polymers containing imidazoles and bio-valent metal complexes for the detection and degradation of organ ophosphotriester pesticides[J]. Anal. Chim. Acta,2001,435(1):209-217.
    [10]Ye L., Mosbaeh K., Moleeualrly imprinted mierospheresas antibodybinding mimics [J]. Reaet Funct Polym,2001,48(1-3):149-157.
    [11]Ye L., Weiss R., Mosbach K., Synthesis and characterization of molecularly imprinted microspheres[J]. Macromolecules,2000,33 (22):8239-8245.
    [12]Hosoya K., Kageyama Y. K., Kimata K., et al. Preparations and properties of uniform size macroporous polymer beads prepared by two-step swelling and polymerization method utilizing divinyl succinate or divinyl adipate as a crosslinking agent[J]. J. Polym. Sci.:Part A:Polym. Chem.,1996,34(9):2767-2744.
    [13]Hosoya K., Shirasu Y., Kimata K., et al, Molecularly imprinted chiral stationary phase prepared with racemic template[J]. Anal. Chem.,1998,70(5):943-945.
    [14]陈国祥,张立永,付聪.种子溶胀悬浮聚合法制备分子印迹聚合物微球[J].色谱,2002,20(2):102-107.
    [15]Masahiro Y., Kazuya U., Fumiyuki N., et al. Spacer effect of novel bifunctional organophosphorus monomers in metal-imprinted polymers prepared by surface template polymerization [J]. J. Polym. Sci.:Part A:Polym. Chem.,1998,36:2727-2734.
    [16]曹同玉.单分散大粒径聚苯乙烯微球的制备[J].高分子学报,1997,2:158-165.
    [17]彭洪修,朱以华,古宏晨,等.无皂乳液聚合法合成均性聚苯乙烯微球[J].华东理工大学学报(自然科学版),2002,28(3):260-262.
    [18]Huang X. D., Zou H. F., Chen X. M., et al. Molecularly imprinted monolithic stationary phases for liquid chromatographic separation of enantiomers and diastereomers [J]. J. Chromatogr. A.,2003, 984(2):273-282.
    [19]姜勇,童爱军.反乌头酸分子印迹聚合物微球的制备及其分子识别功能[J].分析化学,2004,32(11):1421-1425.
    [20]Haginaka J., Kagawa C., Uniformly sized moleeularly imprinted polymer for d-chlorpheniramine [J]. J.Chromatogr. A.,2002,948:77-84.
    [21]左华敏,李雁,李璐,等.单步种子溶胀法与二步种子溶胀法制备氯霉素分子印迹聚合物微球的比较[J].化工进展,2011,30(2):381-385.
    [22]赖家平,曹现峰,何锡文,等.水溶液中制备分子印迹聚合物微球及其分子识别特性研究[J].化学学报,2002,60(2):322-327.
    [23]孙宝维,武利庆,李元宗.由不同功能单体合成的对轻基苯甲酸分子印迹聚合物识别特性的实验和理论研究[J].化学学报,2004,62(6):595-602.
    [24]Zhang T. L., Liu F., Chen W., et al. Influence of intramolecular hydrogen bond of templates on molecular recognition of molecularly imprinted polymers[J].Anal. Chem.Acta,2001,450:53-61.
    [25]Fu Q., Sanbe H., Kaqawa C., et al., Uniformly sized molecularly imprinted polymer for (S)-nilvadipine. Comparison of chiral recognition ability with HPLC chiral stationary phases based on a protein[J]. Anal. Chem.,2003,75(2):191-198.
    [26]Dai S., Shin Y. S., Barnes C. E., et al. Enhancement of uranyl adsorption capacity and selectivity on silica sol-gel glasses via molecular imprinting[J]. Chem. Mater.,1997,9(11):2521-2525.
    [27]刘丽梅,李志伟,于奕峰,等.三唑醇分子印迹整体柱用于结构类似物的分离与分析[J].农药,2007,46(10):677-681.
    [28]Baggiani C., Giraudi G., Giovannoli C., et al., Chromatographic characterization of molecularly imprinted polymers binding the herbicide 2,4,5-trichlorophenoxyacetic acid[J], J. Chromatogr. A., 2000,883(1):119-126.
    [29]王进防,周良模,刘学良,等.分子烙印手性固定相分离过程热力学研究[J].高等学校化学学报,2000,21(6):930-933.
    [30]Whitcombe M. J., Flores A., Cunliffe D., et al., Imprinted polymers prepared by aqueous suspension polymerization[J]. J. Appl. Polym. Sci.,2000,778:1841-1845.
    [31]黄海松,徐环昕,刘坐镇,等.种球溶胀法制备有机聚合物色谱填料及其在纯化红景天苷中的应用[J].华东理工大学学报(自然科学版),2007,33(8):485-488.
    [1]徐雅雯,徐宏,丁玮洁,等.高Fe304含量微米尺寸磁性复合微球的合成及其在化学发光免疫检测中应用初探[J].高分子学报.2010,(11):1340-1345.
    [2]Pouponneau P., Leroux J.C., Soulez G., et al. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization[J].Biomaterials.2009,30(31):6327-6332.
    [3]容建华,段泰炜,温鸿戈,等.热磁双重响应性载药微囊的制备及其性能研究[J].高分子学报.2010,(4):484-489.
    [4]李秀涛,黄军生,张勇,等.含氨丛和环氧丛双功能基的聚合物刷磁性微球的制备及对青霉素G 酰化酶的固定化[J].高分子学报.2008,(7):697-702.
    [5]黄镭,熊舟翼,和平生,等.磁性分子印迹聚合物微球的制备及吸附特性研究[J].高分子学报.2011,(1):120-124.
    [6]Li L., Shi E., Choo G., Liu Z., et al. Double-layer silica core-shell nanospheres with superparamagnetic and fluorescent functionalities[J].J. Chem. Phys. Lett.,2008,461:114-117.
    [7]Momet S., Grasset F.,Portier J., et al. Magnetic@silica nanopartieles for biologieal applieations[J]. Eur. Cells. Mater.,2002,3:110-113.
    [8]邓芳,李越湘,罗旭彪,等.磁性分子印迹聚合物的制备与研究进展[J].高分子材料科学与工程.2011,27(4):171-174.
    [9]蒋旭红,涂伟萍.分子印迹聚合物微球制备方法研究进展[J].材料导报,2007,21(12):52-57.
    [10]黄镭,熊舟翼,熊汉国.磺胺磁性分子印迹聚合物微球的制备及特性研究[J].肉类研究.2010,134(41):35-38.
    [11]Wang, X. B., Ding X. B., Zheng Z. H., et al. Magnetic Molecularly Imprinted Polymer Particles Synthesized by Suspension Polymerization in Silicone Oil[J].Macromol. Rapid. Commun., 2006,27(14):1180-1184.
    [12]Tan C.J., Tong Y.W., Preparation of superparamagnetic ribonuclease A surface-imprinted submicrometer particles for protein recognition in aqueous media[J].Anal. Chem., 2007,79(1):299-306.
    [13]Li Y., Yin X. F., Chen F. R., et al. Synthesis of Magnetic Molecularly Imprinted Polymer Nanowires Using a Nanoporous Alumina Template [J]. Macromolecules.2006,39 (13): 4497-4499.
    [14]Ji Y. S., Yin J. J., Xu Z. G, et al. Preparation of magnetic molecularly imprinted polymer for rapid determination of bisphenol A in environmental water and milk samples[J].Anal. Bioanal. Chem., 2009,395:1125-1133.
    [15]Ansell R. J., Mosbach K., Magnetic molecularly imprinted polymer beads for drug radioligand binding assay[J]. Analyst,1998,123(7):1611-1616.
    [16]Chen L. X., Liu J., Zeng Q. L., et al. Preparation of magnetic molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and tissue samples[J]. J. Chromatogr. A.,2009, 1216(18):3710-3719.
    [17]Li L., He X. W., Chen L. X., et al. Preparation of novel bovine hemoglobin surface-imprinted polystyrene nanoparticles with magnetic susceptibility[J].Sci. China. Ser. B.,2009, 52(9):1402-1411.
    [18]张洪刚,陆书来,成国样等.悬浮聚合法制备磁性分子印迹聚合物微球[J].功能高分子学报.2007,9(2);19-20.
    [19]Lu S. L., Cheng G X., Zhang H. G.,e.t. Study on preparation of protein-imprinted soft-wet gel composite microspheres with magnetic susceptibility and their characteristics.I. Preparation and particle morphology[J].J Appl. Polym. Sci.,2006,100(1):684-694.
    [20]Lu S. L., Cheng G. X., Zhang H.G., et al. Preparation and characteristics of Tryptophan-imprinted Fe3O4/P(TRIM) composite microspheres with magnetic susceptibility by inverse emulsion suspension polymerization [J].J Appl. Polym. Sci,2006,99 (6):3421-3450.
    [21]Zhang Y, Liu R. J., Hu Y. L., Li G. K., Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace tri-azines analysis in complicated samples[J]. Anal. Chem., 2009,81(3):967-976.
    [22]Hu Y. L., Liu R. J., Zhang Y., Li G. K., Improvement of extraction capability of magnetic molecularly imprinted polymer beads in aque-ous media via dual-phase solvent system[J]. Talanta, 2009,79(3):576-582.
    [23]Li L., He X., Chen L., et al. Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin[J].Chem. Asian. J.,2009,4(2):286-293.
    [24]蒋秉植,杨健美.磁性流体的制备应用及其稳定性的解析[J].化学进展.1997,9(1):69-78.
    [25]Tan C. J., Chua M. G., Ker K. H., et al. Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization[J]. Anal. Chem.,2008,80(3):683-692.
    [26]赵紫来,卞征云,陈朗星,等.氧化铁磁性纳米粒子的制备、表面修饰及在分离和分析中的应用[J].化学进展,2006,15:1255-129.
    [27]Luo X. B., Zhan Y. C., Huang Y. N., et al. Removal of water-soluble acid dyes from water environment using a novel magnetic molecularly imprinted polymer[J].J. Hazard. Mater.,2011,187 (1-3):274-282.
    [28]杨卫海,吴瑶,张轶,等.磁性分子印迹聚合物核壳微球的制备及应用[J].化学进展.2010,22(9.):1819-1825.
    [29]Li Y., Li X., Chu J., et al. Synthesis of core-shell magnetic molecular imprinted polymer by the surface RAFT polymerization for the fast and selective removal of endocrine disrupting chemicals from aqueous solutions[J].Environ. Pollut.,2010,158(6):2317-2323.
    [30]Kan X. W., Geng Z. R., Zhao Y., et al. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release[J].Nanotech,2009,20(16):165-170.
    [31]Hu Y. L., Li Y. W., Liu R.J., et al. Magnetic molecularly imprinted polymer beads prepared by microwave heating for selective enrichment of β-agonists in pork and pig liver samples[J].Talanta, 2011,84(2):462-470.
    [32]陆书来.分子印迹聚合物磁性复合微球的制备及其特性研究[D].天津大学,2002.6.
    [33]Wang X.,Wang L. Y.,He X. W., et al. A molecularly imprinted polymer coated nanocomposite of magnetic nanoparticles for estrone recognition [J]. Talanta.2009,78 (2):327-332.
    [1]李春涯,王长发,王成行.分子印迹电化学传感器的研究进展[J].分析科学学报,2006,22(5):605-610.
    [2]Malitesta, Cosimino, Mazzotta, et al., MIP sensors the electrochemical approach[J]. Anal. Bioanal. Chem.,2012,402(5):1827-1846.
    [3]Fang C., Yi, C. L. Wang Y., Electrochemical sensor based on molecular imprinting by photo-sensitive polymers[J]. Biosensors & Bioelectronics,2009,24(10):164-3169.
    [4]Schmitt P., Poiger T., Simon R., et al., Simultaneous determination of ionization constants and isoelectric points of P-hydroxy-s-triazines by capillary zone electrophoresis and capillary isoelectric focusing[J]; Anal. Chem.,1997,69(13):2559-2566.
    [5]Ganjali H., Ganjali M.R., Alizadeh T., Bio-mimetic cadmium ion imprinted polymer based potentiometric nano-composite sensor[J]. Int. J. Electrochem. Sci.,2011,6:6085-6093.
    [6]Saber T. M., Taghi V. M., Abroomand A. P., Molecularly Imprinted Polymer Based PVC-Membrane-Coated Graphite Electrode for the Determination of Metoprolol[J]. Int. J. Electrochem. Sci.,2010,5:88-104.
    [7]Pardieu E., Helene C., Vedrine, C., Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine[J].Anal. Chem. Acta,2009,649(2):236-245.
    [8]马永飞,曲祥金,艾仕云.分子印迹膜电化学传感器检测土壤中莠去津[J].化学研究与应用,2009,21(5):624-629.
    [9]Fuchiwaki Y., Shoji R., Kubo, I.,6-Chloro-N, N-diethyl-1,3,5-triazine-2,4-diamine (simazine) electrochemical sensing chip based on biomimetic recognition utilizing a molecularly imprinted polymer layer on a gold chip[J].Anal. Lett.,2008,41(8):1398-1407.
    [10]Sharma P. S., Pietrzyk L., Agnieszka D. S., et al., Electrochemically synthesized polymers in molecular imprinting for chemical sensing[J]. Anal. Bioanal. Chem.,2012,402(10):3177-3204.
    [11]Malitesta C., Guascito M. R., Mazzotta E., X-Ray Photoelectron Spectroscopy characterization of electrosynthesized poly (3-thiophene acetic acid) and its application in Molecularly Imprinted Polymers for atrazine[J]. Thin Solid Films,2010,518(14):3705-3709.
    [12]SyuMei J., Chiu T. C., Lai C.Y., Amperometric detection of bilirubin from a micro-sensing electrode with a synthetic bilirubin imprinted poly (MAA-co-EGDMA) film[J]. Biosensors & bioelectronics,2006,22(4):550-559.
    [13]Marx S., Zaltsman, A., Turyan, I., Parathion sensor based on molecularly imprinted sol-gel films[J]; Anal. Chem.,2004,76(1):120-126.
    [14]Lattach Y, Gamier F., Remita S., Influence of Chemical and Structural Properties of Functionalized Polythiophene-Based Layers on Electrochemical Sensing of Atrazine[J]; ChemPhysChem,2012,13(1):281-290.
    [15]Ganjali M.R., Alizade T., Larijani B., Nano-Composite Clozapine Potentiometric Carbon Paste Sensor Based on Biomimetic Molecular Imprinted Polymer[J]. Int. J. Electrochem. Sci., 2012,7:4756-4765.
    [16]Shoji R., Takeuchi, T., Kubo, I., Atrazine sensor based on molecularly imprinted polymer-modified gold electrode[J]; Anal. Chem.,2003,75(18):4882-4886.
    [17]Gam D., Sarra N. N., Minh M. A., Aryl diazonium salt surface chemistry and ATRP for the preparation of molecularly imprinted polymer grafts on gold substrates[J]; Surface & Interface Anal.,2010,42(6-7):1050-1056.
    [18]Lattach Y., Archirel P., Remita, S., Influence of the Chemical Functionalities of a Molecularly Imprinted Conducting Polymer on Its Sensing Properties:Electrochemical Measurements and Semiempirical DFT Calculations [J]. J. Physical. Chem. B.,2012,116(5):1467-1481.
    [1]Anller C., Pawliszyn J., Solid phase microextraction with thermal desorption using fused silica optical fibers[J]. Anal. Chem.,1990,62(19):2145-2148.
    [2]Zhang Z., Yang M.J., Pawliszyn J., A Solvent-free alternative for sample preparation [J]. Anal. Chem.,1994,66(17):844A-853A.
    [3]陈楚良.固相微量萃取技术[J].上海环境科学,1997,6(4):39-42.
    [4]胡小刚,李攻科.分子印迹技术在样品前处理中的应用[J].分析化学,2006,34(7):1035-1041.
    [5]Mullett W. M., Martin P., Pawliszyn J., In-tube molecularly imprinted polymer solid-phse microextraction for the selective determination of propranolol[J]. Anal. Chem.,2001,73(11): 2383-2389.
    [6]Schweitz L., Andersson L.I., Nilsson S.,Capillary electrochromatogrphy with predetermined selectivity obtained through molecular imprinting[J]. Anal. Chem.,1997,69 (6):1179-1183.
    [7]Koster E. H. M., Crescenzi C., Hoedt W., Ensing K., Jong G. J. Fibers coated with molecularly imprinted polymers for Solid-phase micro-extraction[J]. Anal, chem.,2001,73(12):3140-3145.
    [8]谭天伟.分子印迹技术及应用[M ].北京:化学工业出版社,2010:102.
    [9]Kataoka H., Ehara K., Yasuhara R., et al. Simultaneous determination of testosterone, cortisol, and dehydroepiandrosterone in saliva by stable isotope dilution on-line in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry[J]. Anal. Bioanal. Chem.,2013,405:331-340.
    [10]Mahnaz G., Yadollah Y., Ali E. Developments in hollow fiber based liquid-phase microextraction: principles and applications[J]. Microchem. Acta,2012,177(2):271-294.
    [11]黄健祥,胡玉斐,潘加亮,李攻科.分了印迹样品前处理技术的研究进展[J].中国科学,B辑:化学,2009,37(3):733-746.
    [12]Turiel E., Tadeo J. L., Martin-Estebsn A., Molecularly imprinted polymeric fiber for solid-phse microextraction[J]. Anal. Chem.,2007,79(8):3099-3104.
    [13]刘威.聚(甲基丙烯酸丁醋)整体柱的制备及其在多环芳烃分析中的应用[D],吉林大学,2011,4:13-14.
    [14]Fan Y., Zhang M., Da S. L., Feng Y.Q. Determinstion of endocrine disruptors in environmental waters using Poly(acrylamide-vinylpyridine) monolithic capillary for in-tube solid-phase microextraetion coupled to high-performance liquid chromatography with fluorescence detection [J]. Analyst,2005,130:1065-1069.
    [15]胡小刚,分子印迹固相微萃取涂层的研制及其应用研究[D],中山大学,2008,6:29-30.
    [16]Djozan D., Ebrahimi B., Preparation of new solid phase micro-extraction fiber on the basis of atrazine-molecular imprinted polymer:Application for GC and GC/MS screening of triazine herbicides in water, rice and onion[J]. Anal. Chim. Acta,2008,616(2):152-159.
    [17]胡玉玲,朱飞,李家威,等.特丁津分子印迹整体萃取棒的研制及其萃取性能.分析化学.2009,37(3):466-470.
    [18]吴采樱.固相微萃取[M].北京:化学工业出版社,2011:85-92.
    [19]陈娜,张裕平,张毅军,等,光聚合法快速制备甲基丙烯酸酯类毛细管整体柱[J].高等学校化学学报,2008,29(10):1969-1972.
    [20]Djozan D., Mahkam M., Ebrahimi B., Preparation and binding study of solid-phase microextraction fiber on the basis of ametryn-imprinted polymer:Application to the selective extraction of persistent triazine herbicides in tap water, rice, maize and onion [J]. J. Chromatogr. A.,2009,1216(12):2211-2219.
    [21]Cai Y. Q., Cai Y., Shi Y.L., et al. A liquid-liquid extraction technique for phthalate esters with water-soluble organic solvents by adding inorganic salts[J]. Microchem. Acta,2007,157:73-79.
    [22]Hu X. G, Pan J. L., Hu Y. L., Huo Y, Li G. K. Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples[J]. J. Chromatogr. A.,2008,1188:97-107.
    [23]Barahona F., Turiel E., Martin-Esteban A., Supported liquid membrane-protected molecularly imprinted fibre for solid-phase microextraction of thiabendazole[J]. Anal. Chim. Acta.,2011, 694(1-2):83-89.
    [24]Hu X. G, Hu Y. L., Li G. K., Development of novel molecularly imprinted solid-phse microextraction fiber and its application for the determination of triazines in complicated samples coupled with high-performance liquid chromatography [J]. J. Chromatogr. A.,2007,1147:1-9.
    [25]Hu X. G, Hu Y. L., Li G. K. Preparation and characterization of prometryn molecularly imprinted Solid-phase microextraction fibers[J]. Anal. Lett.,2007,40(4):645-660.
    [1]Baltussen E., Sandra P., David F., et al. Stir bar sorptive extraction(SBSE),a novel extraction technique for aqueous samples:Theory and principles[J]. J. Microcolumn sep.,1999,11(10): 737-747.
    [2]Vercauteren J., Peres C., Devos C., et al. Stir Bar Sorptive Extraction for the Determination of ppq-Level Traces of Organotin Compounds in Environmental Samples with Thermal Desorption-Capillary Gas Chromatography-ICP Mass Spectrometry[J].Anal. Chem.,2001,73 (7):1509-1514.
    [3]David F., Sandra P., Stir bar sorptive extraction for trace analysis[J]. J. Chromatogr. A.,2007,1152 (1-2):54-69.
    [4]Liu W. M., Wang H. W., Guan Y.F., Preparation of stir bars for sorptive extraction using sol-gel technology[J].J. Chromatogr. A.,2004,1045:15-22.
    [5]Liu W. M., Hu Y., Zhao J. H., Xu Y., Guan Y. F., Determination of organophosphorus pesticides in cucumber and potato by stir bar sorptive extraction[J]. J. Chromatogr. A.,2005,1095:1-7.
    [6]Guan W. N., Wang Y. J., Xu F., Guan Y. F., Poly(phthalazine ether sulfone ketone) as novel stationary phase for stir bar sorptive extraction of organochlorine compounds and organophosphorus pesticides[J]. J. Chromatogr. A.,2008,1177(1):28-35.
    [7]王彦娟,观文娜,王华,关亚风.固态萃取搅拌棒技术与气相色谱联用测定植物中的有机氯 农药[J].分析化学,2008,36(7):1004-1008.
    [8]Lambert J. P., Mullett W. M., Kwong E.,et al. Stir bar sorptive extraction based on restricted access material for the direct extraction of caffeine and metabolites in biological fluids.[J]. J. Chromatogr. A.,2005,1075(1-2):43-49.
    [9]Hu Y., Zheng Y., Zhua F., et al. Sol-gel coatedpolydimethylsiloxane/p-cyclodextrin as novel stationary phase for stir barsorptive extraction and its application to analysis of estrogens and bisphenol A[J]. J. Chromatogr. A.,2007,1148(1):16-22.
    [10]Wang L., Hosaka A., Watanabe C., et al. Development of a novel solid-phase extraction element for thermal desorption gas chromatography analysis[J]. J. Chromatogr. A.,2004,1035(2):277-279.
    [11]Yang C., Jia X., Lan X., Preparation of PDMS-coated microspheres by sol-gel method for sorptive extraction of PAHs[J].Chinese Chem. Lett.,2008,19(8):996-999.
    [12]Huang X. J., Yuan D. X., Preparation of stir bars for sorptive extraction based on monolithic material[J]. J. Chromatogr. A.,2007,1154(1-2):152-157.
    [13]Huang X. J., Qiu N. N., Yuan D. X., Direct enrichment of phenols in lake and sea water by stir bar sorptive extraction based on poly(vinylpyridine-ethylene dimethacrylate) monolithic material and liquid chromatographic analysis[J]. J. Chromatogr. A.,2008,1194 (1):134-138.
    [14]Huang X. J., Yuan D. X., Huang B., Determination of steroid sex hormones in urine matrix by stir bar sorptive extraction based on monolithic material and liquid chromatography with diode array detection[J].Talanta,2008,75:172-177.
    [15]Huang X. J., Qiu N. N., Yuan D. X., Simple and sensitive monitoring of sulfonamide veterinary residues in milk by stir bar sorptive extraction based on monolithic material and high performance liquid chromatography analysis[J].J. Chromatogr. A.,2009,1216 (46):8240-8245.
    [16]Huang X. J., Qiu N. N., Yuan D. X., et al. Sensitive determination of strongly polar aromatic amines in water samples by stir bar sorptive extraction based on poly (vinylimidazole-divinylbenzene)monolithic material and liquid chromatographic analysis[J]. J. Chromatogr. A.,2009,1216(20):4354-4360.
    [17]Huang X. J., Qiu N. N., Yuan D. X., et al. A novel stir bar sorptive extraction coating based on monolithic material for apolar, polar organic compounds and heavy metal ions [J]. Talanta, 2009,78(1):101-106.
    [18]林福华,黄晓佳,袁东星,等.分子印迹聚合物为涂层的吸附萃取搅拌棒在环境水样双酚A含量测定中的应用[J].色谱,2010,28(5):507-512.
    [19]林福华,邱宁宁,黄晓佳,等.搅拌棒固相萃取与液相色谱联用测定水样品中烷基酚类污染物[J].分析化学,2010,38(1):67-71.
    [20]Liu W., Preparation of stir bars for sorptive extraction using sol-gel technology [J]. J. Chromatogr. A.,2004,1045(1-2):15-22.
    [21]司汴京.非水溶胶-凝胶法烟嘧磺隆分子印迹搅拌棒的制备及性能研究[D].泰安:山东农业大学,2011.6.
    [22]Bicchi C., Cordero C., Liberto E., et al. Dual-phase twisters:A new approach to headspace sorptive extraction and stir bar sorptive extraction[J]. J. Chromatogr. A.,2005,1094(1-2):9-16.
    [23]Zuin V. G., Schellin M., Montero L., et al. Comparison of stir bar sorptive extraction and membrane-assisted solvent extraction as enrichment techniques for the determination of pesticide and benzo[a]pyrene residues in Brazilian sugarcane juice[J]. J. Chromatogr. A.,2006,1114 (2): 180-187.
    [24]纪祥娟,杨常光,兰孝征.溶胶-凝胶-硫化法制备硅橡胶吸附萃取搅拌棒[J],分析化学,2008,36(12):1641-1645.
    [25]Tienpont B., David F., Benijts T., et al. Stir bar sorptive extraction-thermal desorption-capillary GC-MS for profiling and target component analysis of pharmaceutical drugs in urine[J].J. Pharm. Biomed. Anal.2003,32(4-5):569-579.
    [26]陶艳玲.整体式固相微萃取搅拌棒的制备及其在分离分析中的应用研究[D].宁波:宁波大学,2011.6.
    [27]Turiel E., Molecularly imprinted stir bars for selective extraction of thiabendazole in citrus samples[J]. J. Sep. Sci.2012,35:2962-2969.
    [28]Yang L. Q., Zhao X.M., Zhou J., Selective enrichment and determination of nicosulfuron in water and soil by a stir bar based on molecularly imprinted polymer coatings [J]. Anal. Chim. Acta, 2010,670:72-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700