用户名: 密码: 验证码:
黄河鲤鱼鳞胶原蛋白的性质及胶原肽活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是淡水鱼养殖大国,黄河鲤鱼是淡水鱼中常见的一种。鱼鳞中胶原蛋白含量较为丰富,然而,鱼鳞多作为废弃物处理,不仅浪费资源,而且对环境造成污染。以鱼鳞为原料提取胶原蛋白和明胶,以及进一步生产具有生理功能的生物活性肽,既能减轻环境污染,又充分利用了鱼鳞资源,达到了淡水鱼的综合利用目的,同时还提高了鱼类产品的附加值。
     本研究以黄河鲤鱼鳞为原料,对鱼鳞的预处理、胶原蛋白的提取技术、胶原蛋白的化学结构和理化性质、明胶的制备工艺和功能性质进行了研究,建立了黄河鲤鱼鳞胶原蛋白和明胶的提取技术。对鱼鳞明胶消化产物的抗氧化活性、酪氨酸酶抑制能力以及对小鼠B16黑素瘤细胞黑色素合成的影响进行了研究。
     首先对黄河鲤鱼鳞的预处理工艺进行了研究。考察了不同工艺参数对鱼鳞矿物质脱除的影响。结果表明稀HCl溶液能够有效脱除鱼鳞中矿物质成分,得出最优工艺条件为:浸泡时间95min> HCl溶液浓度1.0M和料液比11mL/g。考察了碱液处理条件对鱼鳞杂蛋白脱除的影响。得出最优工艺条件为:浸泡时间26h、NaOH溶液浓度0.17M和料液比11mL/g。对鱼鳞预处理流程进行了比较研究。研究的结果表明:先脱除矿物质成分后更有利于鱼鳞中杂蛋白成分的去除。
     研究了黄河鲤鱼鳞胶原蛋白的理化性质和结构。对鱼鳞胶原蛋白进行了电泳分析,研究结果显示鱼鳞胶原蛋白属于Ⅰ型胶原,分子构成可能为(α1)2α2型或α1α2α3型。红外光谱分析表明PSC与ASC的主体构型没有差异,胃蛋白酶不会造成胶原蛋白三螺旋结构的破坏。黄河鲤鱼鳞ASC和PSC的热变性温度分别为31.4℃和31.8℃,其热收缩温度分别为52.9℃和55.3℃。溶解性实验表明黄河鲤鱼鳞ASC和PSC的等电点都在pH7左右。
     研究了黄河鲤鱼鳞明胶的提取工艺。工艺参数包括:提取温度、超声时间、超声功率和料液比,结果表明黄河鲤鱼鳞明胶的超声辅助热水提取最佳工艺参数为:提取温度70℃、超声处理时间100min、超声功率300W.料液比10mL/g。在此条件下制取的鱼鳞明胶粘度为4.8mPa-s,凝冻强度为186Bloom g,等离子点为pH6.2。
     对黄河鲤鱼鳞明胶的模拟消化进行了研究。在37℃温度条件下,先采用胃蛋白酶对鱼鳞明胶进行2h酶解处理,随后采用胰蛋白酶消化2h研究鱼鳞明胶在胃肠道的消化特性。对鱼鳞明胶模拟消化的研究表明:胃蛋白酶对鱼鳞明胶的消化能力较弱,对胶原α-链和β-链不具有水解作用,而胰蛋白酶对鱼鳞明胶肽链有较强的酶解作用,鱼鳞明胶经消化后水解度可到达16.9%。对鱼鳞明胶消化产物的抗氧化活性和酪氨酸酶酶活性进行了研究,结果表明:消化产物的抗氧化性能和酪氨酸酶抑制活力与其消化过程中水解度有较强的相关性。
     应用超滤技术将黄河鲤鱼鳞明胶消化产物按相对分子质量的不同分为3个组分:JCP1(Mw>3000Da)、JCP2(1000Da     研究了黄河鲤鱼鳞明胶消化产物中不同相对分子质量组分的酪氨酸酶抑制活性,研究结果表明,JCP3组分对酪氨酸酶单酚酶稳定态活力的抑制作用最强,其IC50值为75.24μg/mL。不同相对分子质量的鱼鳞明胶肽均能对酪氨酸酶的二酚酶活性产生抑制作用,且具有明显的量效关系,其中JCP3组分具有最强的酪氨酸酶二酚酶活性抑制作用,其IC50值为51.11μg/mL。
     研究了黄河鲤鱼鳞明胶消化产物对小鼠B16黑素瘤细胞的药效学效果,实验结果表明:黄河鲤鱼鳞明胶模拟消化产物能够促进小鼠B16黑素瘤细胞的增殖,对小鼠B16黑素瘤细胞无细胞毒性。研究了鱼鳞明胶消化产物中JCP3组分对小鼠B16黑素瘤细胞黑色素生物合成的影响,研究结果表明:JCP3组分能够减少小鼠B16黑素瘤细胞中黑色素的产生量,能够降低小鼠B16黑素瘤细胞中酪氨酸酶的活力,能够增加小鼠B16黑素瘤细胞中GSH的含量和降低其GSSG的含量,能够降低小鼠B16黑素瘤细胞中cAPM的含量。
China is the largest country in production freshwater fish. And the Cyprinus carpio haematopterus is a common kind of freshwater fish. Fish scale, which are relatively rich in collagens, are directly discarded into the environment, which not only wastes resources but also pollutes the environment. Collagen and gelatin, as well as bioactive peptide can be obtained from Cyprinus carpio haematopterus scale. It can be not only reducing environment pollution but also making full use and comprehensive utilization of fish scales. At the same time, the new product based on fish scale may improve fish value.
     This study investigated the pre-treatment technology, collagen extraction technology, collagen structure, properties and gelatin extraction technology of Cyprinus carpio haematopterus scale. And the antioxidant activities, the tyrosinase inhibition activities and the effects on melanin content in B16melanoma cell of Cyprinus carpio haematopterus scale gelatin digestion.
     First, it investigated the pre-treatment technology of Cyprinus carpio haematopterus scale. It investigated the effects of various processing parameters on demineralization of Cyprinus carpio haematopterus scale. It was observed that the HCl solution can Effectively removing the minerals of fish scale. It was concluded that the optimum conditions were as follows:extraction time of95min, concentration of HCl of1.0M, and ratio of material to solution of11mL/g. It investigated the effects of NaOH on deproteinization of Cyprinus carpio haematopterus scale. And the optimum conditions were as follows:extraction time of26h, concentration of NaOH of1.0M, and ratio of material to solution of11mL/g.
     The properties and structure of Cyprinus carpio haematopterus scale collagen were studied. The results suggested that the collagen of Cyprinus carpio haematopterus scale classified as type I collagen. Combined with the results of SDS-PAGE, the collagen was (al)2α2or ala2a3trimers. FTIR investigations showed that the existence three helical conformation of PSC. There is no difference of major structure of PSC and ASC indicates that the structure of Cyprinus carpio haematopterus scale collagen could not be destroyed by pepsin. The denaturation temperature of ASC and PSC of Cyprinus carpio haematopterus scale were31.4℃and31.8℃respectively, and the shrinkage temperature were52.9℃and55.3℃respectively. Futhermore, the solubility of fish scale collagen were affected by pH value and salt concentration. And the isoelectric point of ASC and PSC were at about pH7.
     The gelatin extraction technology of Cyprinus carpio haematopterus scales were studied. The investigated parameters were extraction temperature, ultrasonic time, ultrasonic power and ratio of solvent to solid. The optimum extraction conditions were found to be:optimized extraction temperature70℃, ultrasonic time100min, ultrasonic power300W and ratio of solvent to solid10mL/g.
     It investigated the simulated gastrointestinal (GI) digestion of Cyprinus carpio haematopterus scale gelatin. A two-stage in vitro digestion model system (a pepsin treatment for2h followed by a pancreatin treatment for2h, both at37℃) was used to simulate the process of human gastrointestinal (GI) digestion to determine the digestibility of fish scale gelatin. The results showed that there is very low digestive power of pepsin on a chain and β chain of scale collagen compared with pancreatin. And the final degree of hydrolysis of GI digests was16.9%. The changes in antioxidant activities and tyrosinase inhibition activities of fish scale gelatin during simulated gastrointestinal (GI) digestion were studied. The results suggested that the antioxidant activities and tyrosinase inhibition activities of fish scale gelatin correlates with the degree of hydrolysis.
     The digests Cyprinus carpio haematopterus scale gelatin were fractionated into three ranges of molecular weight (JCP1>3000Da,1000Da     The tyrosinase inhibition activities of fish scale gelatin digests were studied. The results indicated that JCP3has the strongest inhibitory ability on the steady-state monophenolase activiey of tyrosinase, and the IC50to monophenolase activiey of tyrosinase was75.24μg/mL. The different molecular weight fish scale gelatin digests showed inhibitory ability on the diphenolase activiey of tyrosinase, and the tyrosinase inhibition activities were related to their concentrations use. JCP3showed the strongest inhibitory ability on the diphenolase activiey of tyrosinase, and the IC50to diphenolase activiey of tyrosinase was51.11μg/mL.
     The pharmacodynamics effect of Cyprinus carpio haematopterus scale gelatin digests on the mouse B16melanoma cells was studied. The results showed that the digests could markedly improve the proliferation of the mouse B16melanoma cells and had no cytotoxic activity. The effect of JCP3on melanin biosynthesis of the mouse B16melanoma cells and the molecular mechanism were investigated from the aspects of antioxidant. The results indicated that Cyprinus carpio haematopterus scale gelatin digests exerted marked inhibition on productions of melanin and the activity of tyrosinase. And the Cyprinus carpio haematopterus scale gelatin digests exerted marked inhibition on productions of melanin and the activity of tyrosinase. And the pharmacodynamics effect of Cyprinus carpio haematopterus scale gelatin digests could maintain the GSH levels of cells. Besides, it could decrease intracellular levels of GSSG and cAMP significantly.
引文
[1]庄永亮.海蜇胶原蛋白理化性质及其胶原肽的护肤活性研究[D].博士,中国海洋大学2009.
    [2]Gelse K,Poschl E,Aigner T. Collagens--structure, function, and biosynthesis[J]. Adv Drug Deliv Rev,2003,55(12):1531-1546.
    [3]张丰香.酶法制备草鱼鱼鳞明胶及ACE抑制肽的研究[D].博士,江南大学2009.
    [4]Pati F,Adhikari B,Dhara S. Isolation and characterization of fish scale collagen of higher thermal stability[J]. Bioresource Technology,2010,101 (10):3737-3742.
    [5]Kittiphattanabawon P,Benjakul S,Visessanguan W, et al. Isolation and Characterisation of collagen from the skin of brownbanded bamboo shark(Chiloscyllium punctatum)[J].Food Chemistry,2010,119(4):1519-1526.
    [6]Lin Y-K,Lin T-Y,Su H-P. Extraction and characterisation of telopeptide-poor collagen from porcine lung[J]. Food Chemistry,2011,124 (4):1583-1588.
    [7]Morimura S,Nagata H,Uemura Y, et al. Development of an effective process for utilization of collagen from livestock and fish waste[J]. Process Biochemistry,2002,37 (12):1403-1412.
    [8]Trotter J A,Lyons-Levy G,Thurmond F A, et al. Covalent composition of collagen fibrils from the dermis of the sea cucumber, Cucumaria frondosa, a tissue with mutable mechanical properties[J]. Comparative Biochemistry and Physiology Part A:Physiology,1995,112 (3): 463-478.
    [9]Leach A A. Collagen chemistry in relation to isinglass and isinglass finings-a review[J]. Journal of the Institute of Brewing,1967,73 (1):8-16.
    [10]鸿巢章二,桥本周久.水产利用化学[M].北京:中国农业出版社,1992;270-278.
    [11]Kimura S,Ohno Y,Miyauchi Y, et al. Fish skin type I collagen:wide distribution of an α3 subunit in teleosts[J]. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1987,88 (1):27-34.
    [12]Kimura S,Ohno Y. Fish type I collagen:tissue-specific existence of two molecular forms, (al)2a2 and ala2a3, in Alaska pollack[J]. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry,1987,88 (2):409-413.
    [13]Ramshaw J A,Werkmeister J A,Bremner H A. Characterization of type I collagen from the skin of blue grenadier(Macruronus novaezelandiae)[J]. Arch Biochem Biophys,1988,267 (2):497-502.
    [14]Kimura S. Wide distribution of the skin type Ⅰ collagen α3 chain in bony fish[J]. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1992,102 (2):255-260.
    [15]Wang L,An X,Yang F, et al. Isolation and characterisation of collagens from the skin, scale and bone of deep-sea redfish (Sebastes mentella)[J]. Food Chemistry,2008,108 (2):616-623.
    [16]Duan R,Zhang J,Du X, et al. Properties of collagen from skin, scale and bone of carp (Cyprinus carpio)[J]. Food Chemistry,2009,112 (3):702-706.
    [17]Gilsenan P M,Ross-Murphy S B. Rheological characterisation of gelatins from mammalian and marine sources[J]. Food Hydrocolloids,2000,14 (3):191-195.
    [18]Gudmundsson M,Hafsteinsson H. Gelatin from cod skins as affected by chemical treatments[J]. Journal of Food Science,1997,62 (1):37-39.
    [19]Muyonga J H,Cole C G B,Duodu K G. Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus)[J]. Food Chemistry,2004,85 (1):81-89.
    [20]Takeshi,Suzuki N. Isolation of collagen from fish waste material - skin, bone and fins[J]. Food Chemistry,2000,68 (3):277-281.
    [21]Wangtueai S,Noomhorm A. Processing optimization and characterization of gelatin from lizardfish(Saurida spp.) scales[J]. LWT-Food Science and Technology,2009,42 (4): 825-834.
    [22]潘杨.鲢鱼鱼鳞明胶的制备及其性质研究[D].硕十,江南大学2008.
    [23]Cho S M,Gu Y S,Kim S B. Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins[J]. Food Hydrocolloids, 2005,19 (2):221-229.
    [24]Kasankala L M,Xue Y,Weilong Y, et al. Optimization of gelatine extraction from grass carp (Catenopharyngodon idella) fish skin by response surface methodology[J]. Bioresource Technology,2007,98 (17):3338-3343.
    [25]Suzuki Y,Sazaki G,Miyashita S, et al. Protein crystallization under high pressure[J]. Biochimica et biophysica acta,2002,1595 (1):345-356.
    [26]陆剑锋,邵明栓,林琳等.结冷胶和超高压对鱼糜凝胶性质的影响[J].农业工程学报,2011,27(11):372-377.
    [27]陈海华,李海萍.微波辅助提取鸡皮明胶的工艺改进[J].食品工业科技,2009,(6):282-284.
    [28]Karim A A,Bhat R. Fish gelatin:properties, challenges, and prospects as an alternative to mammalian gelatins[J]. Food Hydrocolloids,2009,23 (3):563-576.
    [29]Gomez-Guillen M C,Turnay J,Fernandez-Diaz M D, et al. Structural and physical properties of gelatin extracted from different marine species:a comparative study[J]. Food Hydrocolloids,2002,16 (1):25-34.
    [30]Yamaguchi K,LavETy J,Love R M. The connective tissues of fish Ⅷ. Comparative studies on hake, cod and catfish collagens[J]. International Journal of Food Science & Technology, 1976,11 (4):389-399.
    [31]Gimenez B,Turnay J,Lizarbe M A, et al. Use of lactic acid for extraction of fish skin gelatin[J]. Food Hydrocolloids,2005,19 (6):941-950.
    [32]全国食品添加剂标准化技术委员会.GB 6783—1994食品添加剂:明胶[S]北京:1994.
    [33]Montero P,Fernandez-Diaz M D,Gomez-Guillen M C. Characterization of gelatin gels induced by high pressure[J]. Food Hydrocolloids,2002,16 (3):197-205.
    [34]Haug I J,Draget K I,Smidsr(?)d O. Physical behaviour of fish gelatin-κ-carrageenan mixtures[J]. Carbohyd Polym,2004,56 (1):11-19.
    [35]Fernandez-Diaz M D,G6mez Guillen M C,Montero Garcia P. Gel properties of collagens from skins of cod (Gadus morhua) and hake (Merluccius merluccius) and their modification by the coenhancers magnesium sulphate, glycerol and transglutaminase[J]. Food Chemistry, 2001,74:161-167.
    [36]Hughes J,Smith T W,Kosterlitz H W, et al. Identification of two related pentapeptides from the brain with potent opiate agonist activity[J]. Nature,1975,258:577-579.
    [37]Hartmann R,Wal J M,Bernard H, et al. Cytotoxic and allergenic potential of bioactive proteins and peptides[J]. Current pharmaceutical design,2007,13 (9):897-920.
    [38]Eiwegger T,Rigby N,Mondoulet L, et al. Gastro-duodenal digestion products of the major peanut allergen Ara h 1 retain an allergenic potential[J]. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology,2006,36(10):1281-1288.
    [39]Ito S,Wakamatsu K,Ozeki H. Chemical analysis of melanins and its application to the study of the regulation of melanogenesis[J]. Pigment cell research,2000,13:103-109.
    [40]Kuzumaki T,Matsuda A,Wakamatsu K, et al. Eumelanin biosynthesis is regulated by coordinate expression of tyrosinase and tyrosinase-related protein-1 genes[J]. Experimental cell research,1993,207(1):33-40.
    [41]Potterf S B,Virador V,Wakamatsu K, et al. Cysteine transport in melanosomes from murine melanocytes[J]. Pigment cell research,1999,12 (1):4-12.
    [42]Espin J C,Varon R,Fenoll L G, et al. Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase[J]. European journal of biochemistry,2000,267 (5): 1270-1279.
    [43]Sanchez-Ferrer A,Neptuno Rodriguez-Lopez J,Garcia-Canovas F, et al. Tyrosinase:a comprehensive review of its mechanism[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1995,1247(1):1-11.
    [44]Claus H,Decker H. Bacterial tyrosinases[J]. Systematic and applied microbiology,2006,29 (1):3-14.
    [45]van Gelder C W G,Flurkey W H,Wichers H J. Sequence and structural features of plant and fungal ryrosinases[J]. Phytochemistry,1997,45 (7):1309-1323.
    [46]Zhou Y,Dahler J M,Underhill S J R, et al. Enzymes associated with blackheart development in pineapple fruit[J]. Food Chemistry,2003,80 (4):565-572.
    [47]Tang W,Newton R J. Increase of polyphenol oxidase and decrease of polyamines correlate with tissue browning in Virginia pine (Pinus virginiana Mill)[J]. Plant Science,2004,167 (3): 621-628.
    [48]Martinez M V,Whitaker J R. The biochemistry and control of enzymatic browning[J]. Trends in Food Science & Technology,1995,6 (6):195-200.
    [49]宋康康,邱凌,黄璜等.熊果甙作为化妆品添加剂对酪氨酸酶抑制作用[J].厦门大学学报(自然科学版),2003,42(6):791-794.
    [50]陆晔,朱佩云,项翠琴.三种美白剂对皮肤黑素细胞内酪氨酸酶活性抑制的探讨[J].上海预防医学杂志,2003,15(4):168-170.
    [51]唐海谊,何冠邦,周喜林.美白中药之水及乙醇提取物对酪氨酸酶抑制功效之比较[J].中国药学杂志,2005,40(5):342-343.
    [52]Guandalini E,Ioppolo A,Mantovani A, et al.4-Hexylresorcinol as inhibitor of shrimp melanosis:efficacy and residues studies; evaluation of possible toxic effect in a human intestinal in vitro model (Caco-2); preliminary safety assessment[J]. Food additives and contaminants,1998,15 (2):171-180.
    [53]Frankos V H,Schmitt D F,Haws L C, et al. Generally recognized as safe (GRAS) evaluation of 4-hexylresorcinol for use as a processing aid for prevention of melanosis in shrimp[J]. Regulatory toxicology and pharmacology,1991,14 (2):202-212.
    [54]Kubo I,Kinst-Hori I. Tyrosinase Inhibitors from Anise Oil[J]. Journal of Agricultural and Food Chemistry,1998,46 (4):1268-1271.
    [55]宋康康.抑制剂对酪氨酸酶的效应及其对黑色素生成调控的研究[D].厦门大学2007.
    [56]Kubo I,Kinst-Hori I.2-Hydroxy-4-methoxybenzaldehyde:a potent tyrosinase inhibitor from African medicinal plants[J]. Planta medica,1999,65 (1):19-22.
    [57]Nihei K,Yamagiwa Y,Kamikawa T, et al.2-hydroxy-4-isopropylbenzaldehyde, a potent partial tyrosinase inhibitor[J]. Bioorg Med Chem Lett,2004,14 (3):681-683.
    [58]Li B,Huang Y,Paskewitz S M. Hen egg white lysozyme as an inhibitor of mushroom tyrosinase[J]. FEBS Letters,2006,580 (7):1877-1882.
    [59]Oszmianski J,Lee C Y. Inhibition of polyphenol oxidase activity and browning by honey[J]. Journal of Agricultural and Food Chemistry,1990,38 (10):1892-1895.
    [60]Sugumaran M,Nellaiappan K. Characterization of a new phenoloxidase inhibitor from the cuticle of Manduca sexta[J]. Biochemical and biophysical research communications,2000, 268 (2):379-383.
    [61]Tsukamoto T,Ichimaru Y,Kanegae N, et al. Identification and isolation of endogenous insect phenoloxidase inhibitors[J]. Biochemical and biophysical research communications,1992, 184(1):86-92.
    [62]刘晓丹,邱凌,吴乔等.文蛤抗癌活性多肽的生理活性研究[J].厦门大学学报(自然科学版),2004,43(4):432-435.
    [63]Boissy R E,Visscher M,DeLong M A. DeoxyArbutin:a novel reversible tyrosinase inhibitor with effective in vivo skin lightening potency[J]. Experimental dermatology,2005,14 (8): 601-608.
    [64]Hamed S H,Sriwiriyanont P,deLong M A, et al. Comparative efficacy and safety of deoxyarbutin, a new tyrosinase-inhibiting agent[J]. Journal of cosmetic science,2006,57 (4): 291-308.
    [65]姜玉兰,朴惠善.甘草与桑叶等对皮肤美白作用的研究进展[J].时珍国医国药,2006,17(8):1572-1574.
    [66]刘德育,雷焕强.杨梅黄素及蛇葡萄素对酪氨酸酶的抑制作用[J].生物化学杂志,1996,(5):618-620.
    [67]Xie L P,Chen Q X,Huang H, et al. Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase[J]. Biochemistry. Biokhimiia,2003,68 (4):487-491.
    [68]Hakozaki T,Minwalla L,Zhuang J, et al. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer[J]. The British journal of dermatology, 2002,147(1):20-31.
    [69]中国水产科学研究院、长江水产研究所.SC1043-2001中华人民共和国水产行业标准——黄河鲤鱼[S]北京:2001.
    [1]崔凤霞.海参胶原蛋白生化性质及胶原肽活性研究[D].博士,中国海洋大学2007.
    [2]王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社,2002.
    [3]张联英.儿种主要淡水鱼胶原蛋白的制备及其特性研究[D].硕士,中国海洋大学2004.
    [4]Zelechowska E,Sadowska M,Turk M. Isolation and some properties of collagen from the backbone of Baltic cod (Gadus morhua)[J]. Food Hydrocolloids,2010,24 (4):325-329.
    [5]Yan M,Li B,Zhao X, et al. Characterization of acid-soluble collagen from the skin of walleye pollock (Theragra chalcogramma)[J]. Food Chemistry,2008,107 (4):1581-1586.
    [6]Su X-R,Sun B,Li Y-Y, et al. Characterization of acid-soluble collagen from the coelomic wall of Sipunculida[]. Food Hydrocolloids,2009,23 (8):2190-2194.
    [7]Montero PJimenez-Colmenero F,Borderias J. Effect of pH and the presence of NaCl on some hydration properties of collagenous material from trout(Salmo irideus) muscle and skin[J]. Journal of the Science of Food and Agriculture,1991,54 (1):137-146.
    [8]Lowry O H,Rosebrough N J,Farr A L, et al. Protein measurement with the Folin phenol reagent[J]. The Journal of biological chemistry,1951,193 (1):265-75.
    [9]Heu M S,Lee J H,Kim H J, et al. Characterization of acid- and pepsin-soluble collagens from flatfish Skin[J]. Food Science and Biotechnology,2010,19 (1):27-33.
    [10]张丰香.酶法制备草鱼鱼鳞明胶及ACE抑制肽的研究[D].博士,江南大学2009.
    [11]Ikoma T,Kobayashi H,Tanaka J, et al. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major[J]. Journal of Structural Biology,2003,142 (3):327-333.
    [12]Ikoma T,Kobayashi H,Tanaka J, et al. Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas[J]. International Journal of Biological Macromolecules,2003,32 (3-5):199-204.
    [13]Sadowska M,Kolodziejska I,Niecikowska C. Isolation of collagen from the skins of Baltic cod (Gadus morhua)[J]. Food Chemistry,2003,81 (2):257-262.
    [14]王迪,罗永康,崔建云.响应面法优化武昌鱼鳞脱钙工艺的研究[J].淡水渔业,2010,(03):61-66.
    [15]黄煜,王茵,阮伟达等.响应面法优化鱼鳞脱钙工艺的研究[J].福建水产,2012,(02):127-133.
    [16]Skierka E,Sadowska M,Karwowska A. Optimization of condition for demineralization Baltic cod (Gadus morhua) backbone[J]. Food Chemistry,2007,105 (1):215-218.
    [17]Skierka E,Sadowska M. The influence of different acids and pepsin on the extractability of collagen from the skin of Baltic cod(Gadus morhua)[J]. Food Chemistry,2007,105 (3): 1302-1306.
    [18]张俊杰,曾庆孝.鱼鳞盐酸脱钙过程中胶原蛋白含量的变化[J].食品与发酵工业,2004,(04):40-43.
    [19]张丰香,许时婴,王璋.鱼鳞明胶生产的浸酸脱钙工艺研究[J].食品工业科技,2008,(03):199-201.
    [20]Xianfeng Z,Guidong H,Yan C, et al. Optimization of extracting stachyose from Stachys floridana Schuttl. ex Benth by response surface methodology[J]. J Food Sci Technol,2013, 50 (5):942-949.
    [21]Duan R,Zhang J,Du X, et al. Properties of collagen from skin, scale and bone of carp (Cyprinus carpio)[J]. Food Chemistry,2009,112 (3):702-706.
    [22]Liu D,Liang L,Regenstein J M, et al. Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis)[J].Food Chemistry,2012,133 (4):1441-1448.
    [23]Duan R,Zhang J,Li J, et al. The effect of the subunit composition on the thermostability of collagens from the scales of freshwater fish[J]. Food Chemistry,2012,135 (1):127-132.
    [24]肖枫,曾名勇,董士远等.海参胶原蛋白的研究进展[J].水产科学,2005,24(6):39-41.
    [25]Wang L,An X,Yang F, et al. Isolation and characterisation of collagens from the skin, scale and bone of deep-sea redfish(Sebastes mentella)[J]. Food Chemistry,2008,108 (2):616-623.
    [26]Zeng S-k,Zhang C-h,Lin H, et al. Isolation and characterisation of acid-solubilised collagen from the skin of Nile tilapia(Oreochromis niloticus)[J]. Food Chemistry,2009,116 (4): 879-883.
    [27]Woo J-W,Yu S-J,Cho S-M, et al. Extraction optimization and properties of collagen from yellowfin tuna (Thunnus albacares) dorsal skin[J]. Food Hydrocolloids,2008,22 (5): 879-887..
    [28]Zhang Y,Liu W,Li G, et al. Isolation and partial characterization of pepsin-soluble collagen from the skin of grass carp (Ctenopharyngodon idella)[J]. Food Chemistry,2007,103 (3): 906-912.
    [29]Rodziewicz-Motowidlo S,Sladewska A,Mulkiewicz E, et al. Isolation and characterization of a thermally stable collagen preparation from the outer skin of the silver carp Hypophthalmichthys molitrix[J]. Aquaculture,2008,285:130-134.
    [30]Zhang J,Duan R,Tian Y, et al. Characterisation of acid-soluble collagen from skin of silver carp(Hypophthalmichthys molitrix)[J].Food Chemistry,2009,116 (1):318-322.
    [31]刘.胶原蛋白三螺旋结构及热稳定性的研究[D].硕士,北京协和医学院2009.
    [32]刘苏锐,王坤余,琚海燕.猪皮Ⅰ型胶原蛋白的提取及其结构表征[J].中国皮革,2007,36(7):43-46.
    [33]Cui F-x,Xue C-h,Li Z-j, et al. Characterization and subunit composition of collagen from the body wall of sea cucumber Stichopus japonicns[J]. Food Chemistry,2007,100 (3): 1120-1125.
    [34]Nalinanon S,Benjakul S,Kishimura H, et al. Type I collagen from the skin of ornate threadfin bream(Nemipterus hexodon):Characteristics and effect of pepsin hydrolysis[J]. Food Chemistry,2011,125 (2):500-507.
    [35]付芳燕.通过傅里叶变换红外光谱研究金属离子与蛋白的相互作用[D].硕士,北京化工大学2011.
    [36]闫鸣艳.狭鳕鱼皮胶原蛋白结构和物理特性的研究[D].博士,中国海洋大学2009.
    [37]Li H,Liu B L,Gao L Z, et al. Studies on bullfrog skin collagen[J]. Food Chemistry,2004,84 (1):65-69.
    [38]Li Z-R,Wang B,Chi C-f, et al. Isolation and characterization of acid soluble collagens and pepsin soluble collagens from the skin and bone of Spanish mackerel (Scomberomorous niphonius)[S]. Food Hydrocolloids,2013,31 (1):103-113.
    [39]Pelton J T,McLean L R. Spectroscopic Methods for Analysis of Protein Secondary Structure[J]. Analytical Biochemistry,2000,277 (2):167-176.
    [40]Rocha-Mendoza I,Yankelevich D R,Wang M, et al. Sum Frequency Vibrational Spectroscopy: The Molecular Origins of the Optical Second-Order Nonlinearity of Collagen[J]. Biophys J, 2007,93 (12):4433-4444.
    [41]谢孟峡,刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究[J].高等学校化学学报,2003,24(2):226-231.
    [42]1Muyonga J H,Cole C G B,Duodu K G. Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus)[J]. Food Chemistry,2004,85 (1):81-89.
    [43]Veeruraj A,Arumugam M,Balasubramanian T. Isolation and characterization of thermostable collagen from the marine eel-fish(Evenchelys macrura)[J]. Process Biochemistry,2013,48 (10):1592-1602.
    [44]Kimura S,Ohno Y. Fish type I collagen:tissue-specific existence of two molecular forms, (al)2α2 and α1α2α3, in Alaska pollack[J]. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry,1987,88 (2):409-413
    [45]庄永亮.海蜇胶原蛋白理化性质及其胶原肽的护肤活性研究[D].博士,中国海洋大学2009.
    [1]户业丽,吴洁,张瑞等.酸法提取人工养殖鲟鱼皮中胶原蛋白工艺的研究[J].食品科技,2008,33(2):209-212.
    [2]Pati F,Adhikari B,Dhara S. Isolation and characterization of fish scale collagen of higher thermal stability[J]. Bioresource Technology,2010,101 (10):3737-3742.
    [3]Wang L,An X,Yang F, et al. Isolation and characterisation of collagens from the skin, scale and bone of deep-sea redfish (Sebastes mentella)[J]. Food Chemistry,2008,108 (2): 616-623.
    [4]Duan R,Zhang J,Li J, et al. The effect of the subunit composition on the thermostability of collagens from the scales of freshwater fish[J]. Food Chemistry,2012,135 (1):127-132.
    [5]全国食品添加剂标准化技术委员会.GB 6783—1994食品添加剂:明胶[S]北京:1994.
    [6]潘杨.鲢鱼鱼鳞明胶的制备及其性质研究[D].硕士,江南大学2008.
    [7]张志健.超声辅助浸提机理与影响因素分析[J].食品工业科技,2010,(4):399-401.
    [8]邓立高,李坚斌,张思原等.超声场中聚合物变化机理研究进展[J].食品科学,2008,(12):744-747.
    [9]Cho S-H,Jahncke M L,Chin K-B, et al. The effect of processing conditions on the properties of gelatin from skate (Raja Kenojei) skins[J]. Food Hydrocolloids,2006,20 (6):810-816.
    [10]袁起新,朱蓓薇,董秀萍等.鲍鱼腹足胶原蛋白的提取及性质研究[J].大连工业大学学报,2012,31(1):35-39.
    [1]Clemente A. Enzymatic protein hydrolysates in human nutrition[J]. Trends in Food Science & Technology,2000,11 (7):254-262.
    [2]Siemensma A D,Weijer W J,Bak H J. The importance of peptide lengths in hypoallergenic infant formulae[J]. Trends in Food Science & Technology,1993,4(1):16-21.
    [3]Halliwell B,Gutteridge J M C. Oxygen free radicals and iron in relation to biology and medicine:Some problems and concepts[J]. Archives of Biochemistry and Biophysics,1986, 246 (2):501-514.
    [4]Martinez-Cayuela M. Oxygen free radicals and human disease[J]. Biochimie,1995,77 (3): 147-161.
    [5]Zhao Y,Son Y O,Kim S S, et al. Antioxidant and anti-hyperglycemic activity of polysaccharide isolated from Dendrobium chrysotoxum Lindl[J]. Journal of biochemistry and molecular biology,2007,40 (5):670-677.
    [6]Elmastas M,Isildak O,Turkekul I, et al. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms[J]. Journal of Food Composition and Analysis,2007,20 (3-4):337-345.
    [7]Je J-Y,Qian Z-J,Byun H-G, et al. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis [J]. Process Biochemistry, 2007,42 (5):840-846.
    [8]You L,Zhao M,Regenstein J M, et al. Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion[J]. Food Chemistry,2010,120 (3):810-816.
    [9]Zhuang H,Tang N,Yuan Y. Purification and identification of antioxidant peptides from corn gluten meal[J]. Journal of Functional Foods,2013,5 (4):1810-1821.
    [10]张丰香.酶法制备草鱼鱼鳞明胶及ACE抑制肽的研究[D].博士,江南大学2009.
    [11]Wang W,De Mejia E G. A New Frontier in Soy Bioactive Peptides that May Prevent Age-related Chronic Diseases[J]. Comprehensive Reviews in Food Science and Food Safety, 2005,4 (4):63-78.
    [12]Sarmadi B H,Ismail A. Antioxidative peptides from food proteins:A review[J]. Peptides, 2010,31 (10):1949-1956.
    [13]Li X-x,Han L-j,Chen L-j. In vitro antioxidant activity of protein hydrolysates prepared from corn gluten meal[J]. Journal of the Science of Food and Agriculture,2008,88 (9): 1660-1666.
    [14]Chen H-M,Muramoto K,Yamauchi F, et al. Antioxidative Properties of Histidine-Containing Peptides Designed from Peptide Fragments Found in the Digests of a Soybean Protein[J]. Journal of Agricultural and Food Chemistry,1998,46 (1):49-53.
    [15]林琳.鱼皮胶原蛋白的制备及胶原蛋白多肽活性的研究[D].博士,中国海洋大学2006.
    [16]庄永亮.海蜇胶原蛋白理化性质及其胶原肽的护肤活性研究[D].博士,中国海洋大学2009.
    [17]任国艳.海蜇口腕部糖蛋白理化性质及生物活性研究[D].博士,中国海洋大学2008.
    [18]Moure A,Dominguez H,Parajo J C. Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates[J]. Process Biochemistry, 2006,41 (2):447-456.
    [19]Udenigwe C C,Lu Y-L,Han C-H, et al. Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages[J]. Food Chemistry,2009,116 (1):277-284.
    [20]Xia Y,Bamdad F,Ganzle M, et al. Fractionation and characterization of antioxidant peptides derived from barley glutelin by enzymatic hydrolysis[J]. Food Chemistry,2012,134 (3): 1509-1518.
    [21]Wang J-s,Zhao M-m,Zhao Q-z, et al. Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems[J]. Food Chemistry,2007,101 (4):1658-1663.
    [22]Zhu K,Zhou H,Qian H. Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase[J]. Process Biochemistry,2006,41 (6): 1296-1302.
    [23]Li Y,Jiang B,Zhang T, et al. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH)[J]. Food Chemistry,2008,106 (2):444-450.
    [24]Klompong V,Benjakul S,Kantachote D, et al. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type[J]. Food Chemistry,2007,102 (4): 1317-1327.
    [25]Rajapakse N,Mendis E,Jung W-K, et al. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties[J]. Food Research International,2005, 38(2):175-182.
    [26]Chen J-r,Suetsuna K,Yamauchi F. Isolation and characterization of immunostimulative peptides from soybean[J]. The Journal of Nutritional Biochemistry,1995,6 (6):310-313.
    [27]Mendis E,Rajapakse N,Byun H-G, et al. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects[J]. Life Sciences,2005,77 (17): 2166-2178.
    [28]Rajapakse N,Mendis E,Byun H-G, et al. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems[J]. The Journal of Nutritional Biochemistry,2005,16 (9):562-569.
    [1]Kubo I,Yokokawa Y,Kinst-Hori I. Tyrosinase inhibitors from Bolivian medicinal plants[J]. Journal of natural products,1995,58 (5):739-743.
    [2]Lee H S. Tyrosinase inhibitors of Pulsatilla cernua root-derived materials[J]. J Agric Food Chem,2002,50 (6):1400-1403.
    [3]宋康康.抑制剂对酪氨酸酶的效应及其对黑色素生成调控的研究[D].厦门大学2007.
    [4]Plenge T,Dillinger R,Santagostini L, et al. Catecholate Adducts of Binuclear Copper Complexes Modelling the Type 3 Copper Active Site - Spectroscopic Characterization and Relevance to the Tyrosinase Reaction[J]. Zeitschrift fur anorganische und allgemeine Chemie, 2003,629 (12-13):2258-2265.
    [5]Chen Q X,Kubo I. Kinetics of mushroom tyrosinase inhibition by quercetin[J]. J Agric Food Chem,2002,50 (14):4108-4012.
    [6]王芳.桑叶中酪氨酸酶抑制成分的研究[D].浙江工商大学2008.
    [7]Li B,Huang Y,Paskewitz S M. Hen egg white lysozyme as an inhibitor of mushroom tyrosinase[J]. FEBS Letters,2006,580 (7):1877-1882.
    [8]Oszmianski J,Lee C Y. Inhibition of polyphenol oxidase activity and browning by honey[J]. Journal of Agricultural and Food Chemistry,1990,38 (10):1892-1895.
    [9]Sugumaran M,Nellaiappan K. Characterization of a new phenoloxidase inhibitor from the cuticle of Manduca sexta[J]. Biochemical and biophysical research communications,2000, 268 (2):379-383.
    [10]Tsukamoto T,Ichimaru Y,Kanegae N, et al. Identification and isolation of endogenous insect phenoloxidase inhibitors[J]. Biochemical and biophysical research communications,1992, 184(1):86-92.
    [11]刘晓丹,邱凌,吴乔等.文蛤抗癌活性多肽的生理活性研究[J].厦门大学学报(自然科学版),2004,43(4):432-435.
    [12]Vijayan E,Husain I,Ramaiah A, et al. Purification of human skin tyrosinase and its protein inhibitor:Properties of the enzyme and the mechanism of inhibition by protein[J], Archives of Biochemistry and Biophysics,1982,217 (2):738-747.
    [13]Girelli A M,Mattei E,Messina A, et al. Inhibition of polyphenol oxidases activity by various dipeptides[J]. J Agric Food Chem,2004,52 (10):2741-2745.
    [14]Seo B,Yun J,Lee S, et al. Barbarin as a new tyrosinase inhibitor from Barbarea orthocerus[i]. Planta medica,1999,65 (8):683-686.
    [15]Sanchez-Ferrer A,Neptuno Rodriguez-Lopez J,Garcia-Canovas F, et al. Tyrosinase:a comprehensive review of its mechanism[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1995,1247(1):1-11.
    [16]张麦茹,樊金玲,朱文学等.胀果甘草提取物对蘑菇酪氨酸酶的抑制作用[J].应用化学,2012,29(8):888-905.
    [1]Anderson R R,Parrish J A. The optics of human skin[J]. J Invest Dermatol,1981,77 (1): 13-19.
    [2]庄永亮.海蜇胶原蛋白理化性质及其胶原肽的护肤活性研究[D].博士,中国海洋大学2009.
    [3]王奕.日本刺参胶原蛋白多肽和鱿鱼皮胶原蛋白多肽护肤活性的研究[D].硕士,中国海洋大学2007.
    [4]崔凤霞.海参胶原蛋白生化性质及胶原肽活性研究[D].博士,中国海洋大学2007.
    [5]Schurink M,van Berkel W J H,Wichers H J, et al. Novel peptides with tyrosinase inhibitory activity[J]. Peptides,2007,28 (3):485-495.
    [6]宋永相,孙谧,王跃军等.海洋活性胶原肽的抗氧化性及对酪氨酸酶的抑制作用与初步分离研究[J].中国食品学报,2009,9(5):7-13.
    [7]Nakamura S,Chen G,Nakashima S, et al. Brazilian natural medicines. IV. New noroleanane-type triterpene and ecdysterone-type sterol glycosides and melanogenesis inhibitors from the roots of Pfaffia glomerata[J]. Chemical & pharmaceutical bulletin,2010, 58 (5):690-695.
    [8]Nakashima S,Matsuda H,Oda Y, et al. Melanogenesis inhibitors from the desert plant Anastatica hierochuntica in B16 melanoma cells[J]. Bioorganic & Medicinal Chemistry, 2010,18 (6):2337-2345.
    [9]Fujimoto K,Nakamura S,Nakashima S, et al. Medicinal flowers. XXXV. Nor-oleanane-type and acylated oleanane-type triterpene saponins from the flower buds of Chinese Camellia japonica and their inhibitory effects on melanogenesis[J]. Chemical & pharmaceutical bulletin,2012,60 (9):1188-1194.
    [10]Nakamura S,Nakashima S,Tanabe G, et al. Alkaloid constituents from flower buds and leaves of sacred lotus(Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells[J]. Bioorganic & Medicinal Chemistry,2013,21 (3):779-787.
    [11]Nakamura S,Nakashima S,Oda Y, et al. Alkaloids from Sri Lankan curry-leaf(Murraya koenigii) display melanogenesis inhibitory activity:Structures of karapinchamines A and B[J]. Bioorganic & Medicinal Chemistry,2013,21 (5):1043-1049.
    [12]Cha J-Y,Yang H-J,Moon H-I, et al. Inhibitory effect and mechanism on melanogenesis from fermented herbal composition for medical or food uses[J]. Food Research International,2012, 45(1):225-231.
    [13]王静凤,王奕,崔凤霞等.鱿鱼皮胶原蛋白多肽对B16黑素瘤细胞黑素合成的影响[J].中国药理学通报,2007,23(9):1181-1184.
    [14]Hearing V J,Jimenez M. Analysis of mammalian pigmentation at the molecular level[J]. Pigment cell research,1989,2 (2):75-85.
    [15]Iwata M,Corn T,Iwata S, et al. The relationship between tyrosinase activity and skin color in human foreskins[J]. J Invest Dermatol,1990,95 (1):9-15.
    [16]Mun Y J,Lee S W,Jeong H W, et al. Inhibitory effect of miconazole on melanogenesis[J]. Biological & pharmaceutical bulletin,2004,27 (6):806-809.
    [17]No J K,Kim Y J,Lee J S, et al. Inhibition of melanogenic activity by 4,4'-dihydroxybiphenyl in melanoma cells[J]. Biological & pharmaceutical bulletin,2006,29 (1):14-16.
    [18]Yamamura T,Onishi J,Nishiyama T. Antimelanogenic activity of hydrocoumarins in cultured normal human melanocytes by stimulating intracellular glutathione synthesis[J]. Arch Dermatol Res,2002,294 (8):349-354.
    [19]Del Marmol V,Solano F,Sels A, et al. Glutathione depletion increases tyrosinase activity in human melanoma cells[J]. J Invest Dermatol,1993,101 (6):871-874.
    [20]Moore K J. Insight into the microphthalmia gene[J]. Trends in genetics:TIG,1995,11 (11): 442-448.
    [21]Hodgkinson C A,Moore K J,Nakayama A, et al. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein[J]. Cell,1993,74 (2):395-404.
    [22]Tachibana M. MITF:a stream flowing for pigment cells[J]. Pigment cell research,2000,13 (4):230-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700