用户名: 密码: 验证码:
新型α-BaTeMo_2O_9晶体拉曼激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受激拉曼散射属于光学三阶非线性范畴,是实现激光频率变换的有效途径之一。拉曼散射光的光谱范围可以覆盖紫外到近红外波段,因而在信息科学、激光测量、激光医疗及国防等领域都有重要的应用价值。而基于晶体拉曼增益介质的全固体拉曼激光器,因晶体材料粒子浓度大、体积小、拉曼增益系数高、热学和机械加工性能优良而备受关注,已成为拉曼激光器的研究热点。目前来讲,比较常用的拉曼晶体材料主要有BaWO4、KGW、Nd:YVO4、Nd:GdVO4等晶体,但因每一种晶体都有其使用的局限性,且输出波长依赖于晶体的晶格振动模式。因而,人们去追逐和探索一些新型实用拉曼晶体材料的脚步从未停歇,这些晶体材料具有丰富的拉曼振动模式、大的拉曼增益系数、良好的热学及机械加工性能、高的激光损伤阂值、以及优良的晶体生长习性。α-BaTeMo2O9(α-BTM)晶体就是新型拉曼晶体材料的优秀代表。
     本论文对新型α-BTM晶体拉曼激光器进行了全面的分析和实验研究。α-BTM晶体是由山东大学晶体材料国家重点实验室生长,具有大的晶体尺寸、宽的通光波段、丰富的拉曼振动模式,适中的稳态拉曼增益系数和热导率,较高的激光损伤阈值。首先,基于晶体的结构,论文从理论上对其所有的振动模式进行分类,并计算了不同拉曼几何配置下的拉曼散射效率,找到了拉曼振动峰与原子振动基团的对应关系;通过自发拉曼光谱比较法,计算了α-BTM晶体Z(XX)Z拉曼配置下的稳态拉曼增益系数;在理论分析的基础上,实验上全面的研究了在不同泵浦条件下,α-BTM晶体的受激拉曼散射输出特性,分别实现了一阶、二阶和三阶斯托克斯拉曼激光的高效输出及其二阶和三阶拉曼激光的同时输出,研究结果表面,α-BTM晶体是一种优良的拉曼增益材料,具有实用化的潜力,具体论文研究内容如下:
     1、对α-BTM晶体的晶体结构、基本的热学和光学性质进行简单介绍,根据其晶体结构特点,理论上对其312个晶格振动模式进行分类:Г=78A1+78A2+78B1+78B2,且这些振动模式都具有拉曼活性,计算了α-BTM晶体的拉曼散射效率,分别给出了四种晶格振动模式所对应的偏振拉曼光谱几何配置;实验上分别测试了X、Y及Z方向通光的自发偏振拉曼光谱,实验结果与理论计算数据吻合;给出了原子振动基团与拉曼频移峰之间的关系,最强拉曼散射频移峰-900cm1是Mo-O-Mo的反对称振动产生。(第二章)
     2、详细地介绍了几种常用的自发拉曼增益系数计算方法,用自发拉曼光谱比较法计算了α-BTM晶体Z(XX)Z拉曼配置下的稳态拉曼增益系数,其大小约为2.4cm/GW@1.06μm;建立了内腔、外腔拉曼激光器速率方程,从理论上可以对实验进行指导;首次实现了a-BTM晶体的一阶斯托克斯拉曼激光器输出:采用闪光灯泵浦Nd:YAG激光器外腔泵浦方式,实现了15.1mJ,1.178μm—阶斯托克斯拉曼激光输出,光光转换效率为31.5%;采用脉冲LD泵浦Nd:YAG/Cr4+:YAG内腔泵浦方式,实现了1.07mJ,1.178μm拉曼激光输出,重复频率670Hz,从LD到一阶斯托克斯激光的光光转换效率和斜效率分别是10%和13.8%,对激光的脉冲形状进行了定性分析,这种百赫兹重频的短脉冲激光器在激光测距方面有其潜在的应用价值;将α-BTM晶体置于Nd:YLF模块声光调Q激光谐振腔中,实现了2.7W,1.1641μm拉曼激光输出,获得的最高单脉冲能量和峰值功率分别是1.08mJ和67.5kW。(第三章)
     3、在一阶斯托克斯拉曼激光的实验研究基础上,对谐振腔进行优化设计,采用Nd:YLF模块内腔泵浦方式,实现了α-BTM晶体二阶斯托克斯拉曼激光输出,最大输出功率、单脉冲能量和峰值功率分别为1.37W、0.55mJ和137kW;采用大能量灯泵Nd:YAG激光器泵浦,实现了二阶和三阶双波长拉曼激光同时输出,最大总输出能量为27.3mJ,包含20.1mJ的1.32μm二阶斯托克斯激光和7.2mJ的1.5μmm三阶斯托克斯激光,光光转换效率为35.9%,斜效率为54.5%,并对不同输出耦合条件下,二阶、三阶斯托克斯激光的能量输出关系进行了分析。(第四章)
     4、理论分析了激光晶体和拉曼增益介质的热效应问题,分别给出了两者的热焦距表达式;为获得更高能量的1.5μm人眼安全波段激光输出,对谐振腔进行了优化设计,采用灯泵的Nd:YAG激光器作为泵浦,实现了16.5mJ的拉曼激光输出,其中1.5μm的输出能量为14.5mJ,1731nm四阶斯托克斯波长输出能量为2mJ,整体光光转换效率和斜效率为21.7%和32.6%。最高泵浦能量下,三阶和四阶拉曼激光的脉冲宽度分别是8.6ns和5.2ns。(第五章)
     论文的主要创新工作包括:
     1、理论上系统的研究了α-BTM晶体拉曼光谱特性,包括:拉曼振动形式的分类、拉曼散射效率的计算以及拉曼振动峰与原子振动基团的关系。
     2、测试了不同拉曼几何配置下的自发偏振拉曼光谱,计算了α-BTM晶体Z(XX)Z配置下的拉曼增益大小约为2.4cm/GW@1.06μm。
     3、首次实现了α-BTM晶体一阶斯托克斯拉曼激光输出,在不同的激光泵蒲条件下,实现了最高输出能量为15.1mJ,最大输出功率2.7W,输出波长在1.17μm。
     4、研究了α-BTM晶体二阶和三阶斯托克斯同时输出特性。实现了20.1mJ的1.32μm和7.2mJ的1.5μm拉曼激光同时输出。
     5、通过谐振腔的优化设计,获得了14.5mJ,1.5μm人眼安全波段激光输出和2mJ,1.73μm四阶斯托克斯激光输出,光光效率和斜效率达到21.7%和32.6%。
Stimulated Raman scattering is one of the important frequency conversion methods, belonging to the third-order nonlinear optics. The scattering spectra range from UV to Near-infrared, which have the potential applications in information science, laser measurement, laser medicine and national defense. Due to the small size, high Raman gain coefficient and good thermal and mechanical properties of the crystal materials, all solid-state Raman laser has become one of the most avtive fields in the Raman laser research. Among the Raman crystal materials, BaWO4, KGW, Nd:YVO4, and Nd:GdVO4et al are most used to generate Raman laser. However, each kind of Raman crystals are with certain limitation in Raman application and the scattering wavelength is dependent on the lattice vibration mode. The steps for exploring novel and practical Raman crystal material are never stop. These Raman crystals have the advantage porperties in terms of abundant Raman vibration mode, high Raman gain coefficient, good thermal an mechanical properties, high laser damage threshold, and good crystal grow habit.
     This paper have theoretically and experimentally studied the performace of the stimulated Raman scattering lasers based on a novel Raman material, α-BaTeMo2O9crystal. The α-BaTeMoaO9crystal was grown by the State key lab. Of crystal materials, Shandong University, which possesses lager size, wide transmission bands, abundant Raman vibration mode, moderate Raman gain coefficient and thermal conductivity, and high laser damage threshold. Firstly, we have classified the all lattice vibrational mode and calculate the Raman scattering coefficiency with the different Raman configurations. The relationships between Raman vibration peak and atom vibration group were given. In addition, by using the method of spontaneous Raman spectra comparision, the steady-state Raman gain coefficient of a-BaTeMo2O9crystal with Z(XX)Z Raman configuration was calculated. Based on the analysis of the Raman spectra, the generations of the α-BaTeMo2O9Raman laser have been systematic investigated. The high efficiency first-order, second-order, and third-order Stokes Raman laser have been obtained based on the α-BaTeMo2O9crystal, respectively. What is more, a second-order and third-order simulataneous dual-wavelength Raman laser generation was also achieved. The main content of this dissertation includes:
     1. The structure of lattice and optical and thermal properties for α-BaTeMo2O9crystal have been simply introduced. Based on the crystal structure, all of the vibration mode was calculated and classified as follows:Г=78A1+78A2+78B1+78B2, and group theory predicts that all of the vibration mode belong to Raman activel mode. The Raman scattering coefficient was calculated and the relationships between Raman vibration peak and atom vibration group were given, in which the~900cm-1Raman shifing was generated by antisymmetric stretching modes of the Mo-O-Mo bridge. The X-, Y-and Z-cut polarized spontaneous Raman spectra were measuremented, and the experimental results were consistent with the theoretical analysis.(Chapter2)
     2. The methods for the calculation of Raman gain coefficient were systemically introducted. The Raman gain coefficient of the α-BaTeMo2O9crystal with Z(XX)Z configuration was calculated to be2.4cm/GW@1.06μm by the method of spontaneous Raman spectra comparision. The rate equations have been established to guide the experiments for intracavity and extracavity Raman lasers. The first-order Stokes Raman laser based on the bulk α-BaTeMo2O9crystal was firstly studied:By using a lamp-pumped Q-switched Nd:YAG laser as a Raman pump source, a maximum1.178μm first-order Stokes pulse energy of15.1mJ was achieved with a optical-to-optical conversion efficiency of31.5%; A maximum pulse energy of1.07mJ Raman laser was obtained driven by a pulsed laser diode pumped Nd:YAG/Cr4+:YAG laser with repetition rate of670Hz. This kind of lasers have a potential application in laser ranging. With a diode-side-pumped Nd:YLF Q-switched laser intracavity pumping, a maximum1.164μm Raman output power was2.7W, corresponding to the maximum single pulse energy and peak power of1.08mJ and67.5kW, respectively.(Chapter3)
     3. Based on experimental research on the first-order Stokes Raman laser, a second-order Raman laser was achieved with optimum resonator design, driven by a diode-side-pumped Nd:YLF laser. The maximum output power, single pulse energy and peak power were1.37W,0.55mJ and137kW, respectively. We firstly demonstrated a dual-wavelength α-BaTeMo2O9Raman laser with the second and third-order Stokes wavelength simultaneous output. A total maximum output pulse energy of13.6mJ was achieved, giving a optical-to-optical conversion efficiency and a slope efficiency of35.9%and54.5%, respectively, which contains20.1mJ second-order Stokes pulse energy and7.2mJ third-order Stokes pulse energy. What is more, the relationship between second-order and third-order Stokes output energy and output coupler was analysed in details.(Chapter4)
     4. The thermal effect for laser crystal and Raman gain medium have been systematic studied, and the thermal focusing length were given through theoretical derivation. With optimum optical resonator design, a high pulse energy eye-safe Raman laser was achieved, with1.5μm output pulse energy of14.5mJ and1731nm four-order Stokes pulse energy of2mJ, corresponding to a optical-to-optical conversion efficiency of21.7%and a slope efficiency of32.6%, respectively. At the maximum pump pulse energy, the pulse widths for the third-and four-order Stokes pluse were8.6ns and5.2ns, respectively.(Chapter5)
     The main innovations:
     1. The characteristics of the α-BaTeMo2O9Raman spectra were systemically studied: the classfication of the lattice vibration mode; the calculation of the Raman scattering coefficiency; relationships between Raman vibration peak and atom vibration group.
     2. The polarized Raman spectra have been measuremented with different Raman configuration and the steady-state Raman gain coefficient was calculated to be2.4cm/GW@1.06μm.
     3. We firstly demonstrated a first-order Stokes Raman laser based on a novel α-BaTeMo2O9crystal. The maximum first-order Stokes laser single pulse energy of15.1mJ and output power of2.7W were ontained, respectively, with different pump conditions.
     4. The performance of second-and third-order Stokes dual-wavelength Raman laser was investigated, with the second-order Stokes output pulse energy of20.1mJ and the third-order Stokes pulse energy of7.2mJ.
     5. With optimum resonator design, a maximum pulse energy of14.5mJ at1.5μm and2mJ at four-order Stokes wavelength1731nm laser was achieved, with a optical-to-optical conversion efficiency and a slope efficiency of21.7%and32.6%, respectively.
引文
1. C.V. Raman, "Anew radiation," Indian Journal of Physics,2,387-398 (1928).
    2. C.V. Raman, and K.S. Krishnan, "A new type of secondary radiation," Nature, 121,501-502 (1928).
    3. E. J. Woodbury, and W.K. Ng, "Rudy laser operation in the near IR," Proceedings of the IRE,50,2367 (1962).
    4. E. Garmire, F. Pandarese, and C.H. Townes, "Coherently driven molecular vibrations and light modulation," Physics Rev. Lett.,11,160-163 (1963).
    5. "Handbook of lasers and optics," Springer, chapter 4,172 (2007).
    6. T.T. Basiev, A.A. Sobol, P.G. Zverev, L.I. Ivleva, V.V. Osiko, and R.C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater.,11(4),307-314 (1999).
    7. N. Takei, S. Suzuki, and F. Kannari, "20 Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal," Appl. Phys. B,74(6),521-527 (2002).
    8. T.T. Basiev, A.A. Sobol, P.G. Zverev, V.V. Oskiko, and R.C. Powell, "Comparative spontaneous Raman spectroscopy of crystals for Raman lasers," Appl.Opt.,38(3),594-598 (1994).
    9. H.M. Park, "The design and operation of solid-state Raman lasers," Prog. in Quant. Electron.,27(2),3-56 (2003).
    10. M.S Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W.V. Stryland, "," IEEE J. Quant. Electro.,26(4),760-769 (1990).
    11. D.A. Haner, I.S. Mcdermid, "Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2," IEEE J. Quant. Electron.,26(7), 1292-1298(1990).
    12. Z.P. Chu, N.S. Upendra, and D.W. Thomas, "Multiple stokes wavelength generation in H2, D2, and CH4 for lidar aerosol measurements," Appl. Opt.,30(3), 4350-4357 (1991).
    13. J.H. Newton, "Numerical model of multiple Raman shifting excimer lasers to the blue-green in H2," Opt. Lett.,6(3),125-127 (1981).
    14. G. Eckhardt, "Selection of Raman laser materials", IEEE J. Quant. Electron.,2(1), 2-8 (1966).
    15. N. Bloembergen, "The stimulated Raman effect," American J. Physics,35(11), 989-1023 (1967).
    16. P. Cerny, H. Jelinkova, P.G. Zverev, T.T. Basiev, "Solid state lasers with Raman frequency conversion," Prog. in Quant. Electron.,28(2),113-143 (2004).
    17. N. Zong, Q.J. Cui, Q.L. Ma, X.F. Zhang, Y.F. Lu, C.M. Li, D.F. Cui, Z.Y. Xu, H.J. Zhang, and J.Y. Wang, "High average power 1.5 μm eye-safe Raman shifting in BaWO4 crystals,"Appl. Opt.,48(1),7-10 (2009).
    18. P. Cerny, and H. Jelinkova, "Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal," Opt. Lett.,27(5),360-362 (2002).
    19. Y.F. Chen, K.W. Su, H.J. Zhang, and M.H. Jiang, "Efficient diode-pumped actively Q-switched Nd.YAG/BaWO4 intracavity Raman laser," Opt. Lett, 30(24),3335-3337(2005).
    20. Z.P. Wang, D.W. Hu, X. Fang, H.J. Zhang, X.G. Xu, J.Y. Wang, and Z.S. Shao, "Eye-safe Raman laser at 1.5μm based on BaWO4 crystal," Chin. Phys. Lett., 25(2),532-535 (2008).
    21. T.T. Basiev, ME. Doroshenko, V.V. Osiko, S.E. Sverchkov, and B.I. Galagan, "New mid IR (1.5-2.2μm) Raman lasers based on barium tungstate and barium nitrate crystals," Laser Phys. Lett.,2(5),237-239 (2005).
    22. H.B. Shen, Q.P. Wang, X.Y Zhang, X.H. Chen, Z.H.Cong, Z.G. Wu, F. Bai, W.X. Lan, and L. Gao, "1st-Stokes and 2nd-Stokes dual-wavelength operation and mode-locking modulation in diode-side-pumped Nd:YAG/BaWO4 Raman laser," Opt. Exp.,20(16),17823-17832 (2012).
    23. J.Q. Zhao, X.L. Zhang, X. Guo, X.J. Bao, and J.H. Cui, "Diode-pumped actively Q-switched Tm,Ho:GdVO4/BaWO4 intracavity Raman laser at 2533 nm," Opt. Lett.,38(8),1206-1208 (2013).
    24. YX. Fan, Y. Liu, YH. Duan, Q. Wang, L. Fan, H.T. Wang, G.H. Jia, and C.T. Tu, "High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal,",Appl. Phys. B,93(2-3),327-330 (2008).
    25. A. Hamano, S. Pleasants, M. Okida, M. Itoh, T. Yatagai, T. Watanabe, M. Fujii, Y. Iketaki, K. Yamamoto, and T. Omatsu, "High efficient 1181 nm output from a transversely diode-pumped Nd3+:KGd(WO4)2 self-stimulated Raman laser," Opt. Commun.,260(2),675-679 (2006).
    26. W.B. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, Y. Usuki, "Diode-pumped, self-stimulated, passively Q-switched Nd3+:PbWO4 Raman laser," Opt. Commun.,194(4-6),401-407 (2001).
    27. H.M. Park, "Continuous-wave, all-solid-state, intracavity Raman laser," Opt. Lett.,30(18),2454-2456(2005).
    28. J.A. Piper, and H.M. Park, "Crystalline Raman lasers," IEEE J. Sel. Top. Quant. Electron.,13(3),692-704 (2007).
    29. J. lc, H. Jelinkova, T.T. Basiev, M.E. Doroschenko, L.I. Ivleva, V.V. Osiko, and P.G. Zverev, "Nd:SrWO4 and Nd:BaWO4 Raman lasers," Opt. Mater,30(1), 195-197(2007).
    30. P.G. Zverev, T.T. Basiev, A.A. Sobol, V.V. Skodrnyakov, L.I. Ivleva, N.M. Polozkov, and V.V. Osiko, "Stimulated Raman scattering in alkaline-earth tungstate crystals," Quant. Electron.,30(1),55-59 (2000).
    31. N. Faure, C. Borel, M. Couchaud, G. Basset, R. Templier, and C. Wyon, "Optical properties and laser performance of neodymium doped scheelites CaWO4 and NaGd(WO4)2,"Appl. Phys. B,63(6),593-598 (1996).
    32. R.L. Aggarwal, D.J. Ripin, J.R. Ochoa, and T.Y. Fan, "Measurement of the thermo-optic porperties of Y3Al5O12, Lu3Al5O12, YA103, LiYF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300K temperature range," Journal of Appl. Phys.,98(10),103514 (2005).
    33. A.A. Kaminskii, C.L. McCray, H.R. Lee, S.W. Lee, D.A. Temple, T.H. Chyba, W.D. Marsh, J.C. Barnes, A.N. Annanenkov, V.D. Legun, H.J. Eichler, G.M.A. Gad, and K. Ueda, "High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals," Opt. Commun.,183(1-4),277-287 (2000).
    34. Y.T. Chang, K.W. Su, H.L. Chang, and Y.F. Chen, "Compact efficient Q-switched eye-safe at 1525 nm with a double-end diffusion-bonded Nd:YVO4 crystal as a self-Raman medium," Opt. Exp.,17(6),4330-4335 (2009).
    35. Y.F. Chen, "Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser," Opt. Lett.,29(11),1251-1253 (2004).
    36. A.A. Kaminskii, M. Bettinelli, J. Dong, D. Jaque, and K. Ueda, "Nonosecond Nd3+:LuVO4 self-Raman laser," Laser Phys. Lett.,6(5),374-379 (2009).
    37. Y.F. Chen, "Efficient 1521 nm Nd:GdVO4 Raman laser," Opt. Lett.,29(16), 2632-2634 (2004).
    38. A.A. Kaminskii, H. Rhee, H.J. Eichler, K. Ueda, K. Oka, and H. Shibata, "New χ(3)-nonlinear-laser manifestations in tetragonal LuVO4 crystal:more than sesqui-octave Raman-induced Stokes and anti-Stokes comb generation and cascaded self-frequency "tripling"," Appl. Phys. B,93(4),865-872 (2008).
    39. Y.G. Zhao, C.L. Du, YY Guo, G.X. Huang, L.J. Chen, S.D. Zhuang, X. Sun. Z.P. Wang, and X.G. Xu, "Raman characteristics of Nd:LuxY1-xVO4 series crystals," Laser Phys.,23(10),105804 (2013).
    40. A.A. Kaminskii, O. Lux, H. Rhee, H.J. Eichler, H. Yoneda, A. Shirakawa, K.. Ueda, B. Zhao, J. Chen, J. Dong, and J. Zhang, "Crystal-host Gd0.5Lu0.5VO4 for Ln3+-lasants:a new high-gain many-phononχ(3)-active tetragonal vanadate-SRS spectroscopy and nonlinear-laser effects,"Appl. Phys. B,109(4),649-658 (2012).
    41. Y.F. Chen, "Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser," Appl. Phys. B,78(6),685-687 (2004).
    42. Z.C. Wang, C.L. Du, S.C. Ruan, and L. Zhang, "Thermal lens measurements in a GdVO4 self-Raman laser," Opt. Laser Technology,42(6),873-877 (2010).
    43. Y.F. Chen, "High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser:influence of dopant concentration," Opt. Lett.,29(16), 1915-1917(2004).
    44. Y.F. Chen, "Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal," Opt. Lett.,29(18),2172-2174 (2004).
    45. W.D. Chen, Y Wei, C.H. Huang,X.L. Wang, H.Y. Shen, S.Y Zhai, S. Xu, B.X. Li, Z.Q. Chen, and G. Zhang, "Second-Stokes YVO4-Nd:YVO4-YVO4 self-frequency Raman laser," Opt. Lett.,37(11),1968-1970 (2012).
    46. S.Z. Fan, X.Y. Zhang, Q.P. Wang, Z.J. Liu, L. Li, Z.H. Cong, X.H. Chen, and X.L. Zhao, "1097 nm Nd:YVO4 self-Raman laser," Opt. Commun.,284(6), 1642-1644 (2000).
    47. A.A. Kaminskii, K. Ueda, H.J. Eichler, Y. Kuwano, H. Kouta, S.N. Bagaev, T.H. Chyba, J.C. Barnes, G.M.A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4-new efficient χ(3)-materials for Raman lasers," Opt. Commun., 194(1-3),201-204 (2001).
    48. A.A. Kaminskii, S.N. Bagaev, K. Oka, H. Shibata, K. Ueda, K. Takaichi, H.J. Eichler, and H. Rhee, "Observation of stimulated Raman scattering in the tetragonal crystal YbVO4,"Laser Phys. Lett.,3(5),263-267 (2006).
    49. Y.F. Chen, M.L. Ku, L.Y. Tsai, and Y.C. Chen, "Diode-pumped passively Q-switched picosecond Nd:GdxY1-xVO4 self-stimulated Raman laser," Opt. Lett., 29(19),2279-2281 (2004).
    50. J. Lin, and H.M. Park, "Nd:GdVO4 self-Raman laser using double-end polarized pumping at 880 nm for high power infrared and visible output," Appl. Phys. B, 108(1),17-24 (2012).
    51. S.N. Karpukhin, and A.I. Stepanov, "Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3, and CaCO3 crystals," Sov. J. Quant. Electron.,16(8),1027-1031 (1986).
    52. P.G. Zverev, T.T. Basiev, V.V. Osiko, A.M. Kulkov, V.N. Votrsekhovskii, and V.E. Yakobson, "Physical, chemical and optical properties of barium nitrate Raman crystal," Opt. Mater.,11(4),315-334 (1999).
    53. V.A. Lisinetskii, HJ. Eichler, H. Rhee, X. Wang, and V.A. Orlovich, "The generation of high pulse and average power radiation in eye-safe region by the third Stokes generation in barium nitrate Raman laser," Opt. Commun.,281(5), 2227-2232 (2008).
    54. J.T. Murray, R.C. Powell, and N. Peyghambarian, "Generation of 1.5μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals," Opt. Lett.,20(9),1017-1019 (2004).
    55. J.A. Piper, and H.M. Park, "Crystalline Raman lasers," IEEE J. Select. Top. Quant. Electron.,13(3) 692-704 (2008).
    56. T.T. Basiev, P.G. Zverev, A.Y. Karasik, V.V. Osiko, A.A. Sobol, and D.S. Chunaev, "Picosecond stimulated Raman scattering in crystals," J. Exp. Theor. Phys.,99(5), 934-941 (2004).
    57.李真,“钼酸锶拉曼激光晶体的生长及其性质研究”硕士论文,山东大学,2011。
    58. S.P.S. Porto and J.F. Scott, "Raman spectra of CaWO4, SrWO4, CaMoO4, and SrMoO4," Phys. Lett,157(3) 716-719 (1967).
    59. T.T. Basiev, A.A. Sobol, P.G. Zverev, L.I. Ivleva, VV. Osiko, R.C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater., 11(4),307-314 (1999).
    60. T.T. Basiev, A.A. Sobol, Y.K. Voronko, P.G. Zverev, "Spontaneous Raman spectroscopy of tungstate and molybdate crystal for Raman lasers," Opt. Mater, 15(3),205-216 (2000).
    61. P.G. Zverev, A.Y. Karasik, T.T. Basiev, L.I. Ivleva, and V.V Osiko, "Stimulated Raman scattering of picosecond pulses in SrMoO4 and Ca3(VO4)2 crystals," Quant. Electron.,33(4) 331-334 (2003).
    62. H.H. Yu, Z. Li, A.J. Lee, J. Li, H.J. Zhang, J.Y. Wang, H.M. Pask, J.A. Piper, and M.H. Jiang, "A continuous wave SrMoO4 Raman laser," Opt. Lett.,36(4) 579-581 (2011).
    63.李兵帅,"YGdVO4混晶的生长与性能研究”硕士论文,烟台大学,2008。
    64. Y.G. Yu, J.Y. Wang, H.J. Zhang, H.H. Yu, Z.P. Wang, M.H. Jiang, H.R. Xia, and R.I. Boughton, "Growth and characterization of Nd:YxGd1-xVO4 series laser crystals,"J. Opt. Soc. Am. B,25(6),995-1001 (2008).
    65. S.B. Stevens, C.A. Morrison, and T.H. Allik, "Nd:NaLa(MoO4)2 as a laser material. Phys. Rew. B,43(10),7386-7394(1991).
    66. X.Y Huang, Z.B. Lin, and L.Z. Zhang, "Growth, spectral and lasing characteristics of Nd3+-doped LiLa(MoO4)2 crystal," J. Synth. Cryst.,36(5), 971-977 (2007).
    67. X.Y. Huang, and G.F. Wang, "Growth, thermal and spectroscopic characteristics of Nd3+:LiGd(MoO4)2 crystal," J. Phys. D:Appl. Phys.,41(22),225401-1-7 (2008).
    68. YJ. Chen, Y.F. Lin, and X.H. Gong, "Polarized spectral characteristics of Nd3+: KY(MoO4)2 crystal with perfect cleavage planes:a promising microchip gain medium," J. Opt. Soc. Am. B,24(3),496-503 (2007).
    69. A.A. Kaminskii, A. Kholov, and P.V. Klevtsov, "Spectroscopy and stimulated emission of Nd3+-doped NaBi(MoO4)2 and NaBi(WO4)2 diaordered crystals," Phys. Status Solidi A,114(2),713-719 (1989).
    70. E. Cavalli, E. Zannoni, and C. Mucchino, "Optical spectroscopy of Nd3+ in KLa(MoO4)2 crystals," J. Opt. Soc. Am. B,16(8),1958-1969(1999).
    71. Y.C. Ye, X.F. Long, and W.X. Lin, "Diode-pumped CW lasing of Nd: KLa(MoO4)2," Opt. Mater.,30(2),231-233 (2007).
    72. X.Y. Huang, and G.F. Wang, "Growth and optical characteristics of Er3+:LiLa(MoO4)2 crystal," J. Alloys Compd,475(1/2),693-697 (2009).
    73. X.Z. Li, Z.B. Lin, and L.Z. Zhang, "Growth, thermal and spectroscopic characterization of Er3+:NaY(MoO4)2 crystal," J. Cryst. Growth,293(1),157-161 (2006).
    74. A.V. Mandrik, A.E. Troshin, V.E. Kisel, A.S. Yasukevich, G.N. Klavsut, N.V. Kuleshov, and A.A. Pavlyuk, "CW and Q-Switched diode-pumped laser operation of Yb3+:NaLa(MoO4)2 crystal,"Appl. Phys. B,81(8),1119-1121 (2005).
    75. L.J. Chen, S.J. Han, Z.P. Wang, H.J. Zhang, H.H. Yu, S. Han, and X.G. Xu, "Controlling laser emission by selecting crystal orientation," Appl. Phys. Lett., 102(1),011137 (2013).
    76. Y.M. Duan, F.G. Yang, H.Y. Zhu, Z.J. Zhu, C.H Huang, Z.Y. Yu, Y. Wei, G. Zhang, C.Y. Tu, "Continuous-wave 560nm light generation by intracavity SrWO4 Raman and KTP sum-frequency mixing," Opt. Commun.,283(14), 5135-5138 (2010).
    77. G. Eckhardt, D.P. Bortfeld, and M. Geller, "Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and alpha-sulfur single crystals," Appl. Phys. Lett.,3(8),137-138 (1963).
    78. K. Andryunas, Y Vishakas, V. Kabellka, I.V. Mochalov, A.A. Pavlyuk, G.T. Petrovskii, and Y Syrus, "Stimulated-Raman self-conversion of Nd3+ laser light in double tungstenate crystals," JETP Lett.,42(8),410-412 (1986).
    79. T.T. Basiev, V.N. Voitsekhovskii, P.G Zverev, F.V. Karpushko, A.V. Lyubimov, S.B. Mirov, V.P. Morosov, I.V. Mochalov, A.A. Pavluik, G.V. Sinitsin, and V.E. Yakobson, "Conversion of tunable radiation from a laser utilizing an LiF crystal containing F2-color centers by stimulated Raman scattering in Ba(NO3)2 and KGd(WO4)2 crystals," Sov. J. Quant. Electron.,17(12),1560-1561 (1987).
    80. E. Granados, D.J. Spence, and R.P. Mildren, "Deep ultraviolet diamond Raman laser," Opt. Exp.,19(11),10857-10863 (2011).
    81. A. McKay, O. Kitzler, H. Liu, D. Fell, and R.P. Mildren, "High average power eye-safe diamond Raman laser," SPIE,8551,855110U-1 (2012).
    82. V.A. Lisinetskii, A.S. Grabtchikov, I.A. Khodasevich, H.J. Eichler, and V.A. Orlovich, "Efficient high energy lst,2nd or 3rd Stokes Raman generation in IR region," Opt. Commun.,272(2),509-513 (2007).
    83. L.Fan, Y.X. Fan, Y.H. Duan, Q.Wang, H.T. Wang, G.H. Jia, and C.Y. Tu, "Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser," Appl. Phys. B,94(4),553-557 (2009).
    84. L. Fan, Y.X. Fan, YQ. Li, H.J. Zhang, Q. Wang, J. Wang, and H.T. Wang, "High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal," Opt. Lett.,34(11) 1687-1689 (2009).
    85. R. Li, R Bauer, and W. Lubeigt, "Continuous-wave Nd:YVO4 self-Raman lasers operating at 1109nm,1158nm and 1231 nm," Opt. Exp.,21(15) 17745-17750 (2013).
    86. P. Cerny, and H. Jelinkova, "Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaW04 crystal," Opt. Lett,27(5) 360-362 (2002).
    87. Z.P. Wang, D.W. Hu, H.J. Zhang, X.F. Cheng, H.H. Yu, X.G. Xu, J.Y. Wang, and Z.S. Shao,'‘外腔式BaWO4拉曼激光器," Infrared and Laser Engineering, 38(4),683-686 (2009).
    88.王正平,胡大伟,张怀金,程秀凤,于浩海,许心光,孙洵,顾庆天,王波,王继扬,邵宗书,“1064 nm皮秒脉冲激发的外腔式SrWO4拉曼激光器,”中国激光,37卷,2期,335-338(2010)。
    89. M. Weitz, C. Theobald, R. Wallenstein, and J.A. Lhuillier, "Passively mode-locked picosecond Nd:YVO4 self-Raman laser," Appl. Phys. Lett.,92(9), 091122 (2008).
    90. A.M. Warner, J.P. Lin, H.M. Park, R.P. Mildren, D.W. Coutts, and D.J. Spence, "Highly efficient picosecond diamond Raman laser at 1240 nm and 1485 nm," Opt. Exp.,22(3),3325-3333 (2014).
    91. L. Gao, Q.P. Wang, X.Y. Zhang, Z.J. Liu, F. Bai, X.H. Chen, H.B. Shen, and W.X. Lan, "High-power Nd:YVO4/BaWO4 intracavity Raman laser emitting at 1103 nm," Appl. Phys. B,109(2),9-13 (2012).
    92. C. Zhang, X.Y. Zhang, Q.P. Wang, S.Z. Fan, X.H. Cong, Z.J. Liu, Z. Zhang, H.J. Zhang, and F.F. Su, "Efficient extracavity Nd:YAG/BaWO4 Raman laser," Laser Phys. Lett.,6(7),505-508 (2009).
    93. T.T. Basiev, M.E. Doroshenko, V.V. Osiko, S.E. Sverchkov, and B.I. Galagan, "New mid IR (1.5-2.2μm) Raman lasers based on barium tungstate and barium nitrate crystal," Laser Phys. Lett.,2(5),237-238 (2005).
    94. Z.H. Li, J.Y. Peng, Y. Zhang, "CW mode-locked self-Raman 1.17μm Nd:GdVO4 laser with a novel long cavity," Opt. Laser Technology,58(1),39-42 (2014).
    95. Z.C. Wang, C.L. Du, S.C. Ruan, and L. Zhang, "Laser diode pumped actively Q-switched Nd:GdVO4 self-Raman laser operating at 1173 nm," Opt. Laser Technology,42(5),716-719 (2010).
    96. P. Cemy, H. Jelinkova, J. Sulc, T.T. Basiev, M.E. Doroshenko, P.G. Zverev, A.V. Komyakova, V.V. Skornjakov, S.B. Kravtsov, L.I. Ivleva, "Comparative study of picosecond stimulated Raman scattering in new crystals Nd:SrWO4 and SrMoO4," SPIE,4968,178-184 (2003).
    97. J. lc, and H. Jelinkova, "Eye-safe Nd:SrMoO4 Raman laser," Conference on Lasers and Electro-Optics Europe, Munich, Germany, (2007).
    98. Y.F. Lu, X.H. Zhang, X.H. Fu, J. Xia, T.J. Zheng, and J.F. Chen, "Diode-pumped Nd:LuVO4 and Nd:YAG crystals yellow laser at 594 nm based on intracavity sum-frequency generation," Laser Phys. Lett.,7(9),634-636 (2010).
    99. Y.J. Yu, G.Y. Jin, C. Wang, X.Y. Chen, D.W. Hao, and J.X. Guo, "All-solid-state continuous-wave doubly resonant all-intracavity cyan laser at 500.8 nm by sum-frequency-mixing in double-crystal RTP generation," Laser Phys. Lett.,6(7), 513-516(2009).
    100. D.W. Hu, Z.P. Wang, H.J. Zhang, X.G. Xu, J.Y. Wang, and Z.S. Shao, "Picosecond stimulated Raman scattering of SrWO4 crystal," Chin. Phys. Lett., 23(10),2766-2769 (2006).
    101. H.M. Park, and J.A. Piper, "Practical 580 nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser," Opt. Common., 148(4-6),285-288 (1998).
    102. H.M. Park, and J.A. Piper, "Efficient all-solid-state yellow laser source producing 1.2 W average power," Opt. Lett.,24(21),1490-1492 (1999).
    103. Z.H. Cong, X.Y. Zhang, Q.P. Wang, Z.J. Liu, S.T. Li, X.H. Chen, X.L. Zhang, S.Z. Fan, H.J. Zhang, and X.T. Tao, "Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser," Opt. Lett.,34(17),2610-2612 (2009).
    104. H.Y. Zhu, Y.M. Duan, G. Zhang, C.H. Huang, Y. Wei, W.D. Chen, Y.D. Huang, and N. Ye, "Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite," Opt. Lett.,34(18),2763-2765 (2009).
    105. H.Y. Zhu, Y.M. Duan, G. Zhang, C.H. Huang, Y. Wei, H.Y. Shen, Y.Q. Zheng, L.X. Huang, and Z.Q. Chen, "Efficient second harmonic generation of double-end diffusion-bond Nd:YVO4 self-Raman laser producing 7.9 W yellow light," Opt. Exp,17(24),21544-21550 (2009).
    106. Z.H. Cong, X.Y. Zhang, Q.P. Wang, Z.J. Liu, X.H. Chen, S.Z. Fan, X.L. Zhang, H.J. Zhang, X.T. Tao, and S.T. Li, "Theoretical and experimental study on the NdiYAG/BaWO4/KTP yellow laser generating 8.3 W output power," Opt. Exp., 18(12),12111-12118(2010).
    107. P. Dekker, H.M. Park, and J.A. Piper, "All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser," Opt. Lett.,32(9),1114-1116 (2007).
    108. A.J. Lee, H.M. Park, and J.A. Piper, "High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4," Opt. Exp.,16(26),21958-21963 (2008).
    109. A.J. Lee, H.M. Park, J.A. Piper, H.J. Zhang, and J.Y. Wang, "An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission," Opt. Exp.,18(6),5984-5992 (2010).
    110. Y.F. Lv, X.H. Zhang, S.T. Li, J. Xia, W.B. Cheng, and Z. Xiong, "All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bond Nd3+:LuVO4 crystal," Opt. Lett.,35(17),2964-2966 (2010).
    111. D.J. Spence, E. Granados, and R.P. Mildren, "Mode-locked picosecond diamond Raman laser," Opt. Lett.,35(4),556-558 (2010).
    112. E. Granados, H.M Park, E. Esposito, G. Mconnell, and D.J. Spence, "Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser," Opt. Exp.,18(5),5289-5294 (2010).
    1. J. J. Zhang, Z.H. Zhang, W.G. Zhang, Q.X. Zheng, YX. Sun, C.Q. Zhang and X.T. Tao, "Polymorphism of BaTeMo2O9:A new polar polymorph and the phase transformation." Chem. Mater.,23(16),3752-3761 (2011).
    2.张俊杰,“新型钼碲酸盐晶体的生长、性能及非线性频率转换研究”博士论文,山东大学,2013。
    3. J.J. Zhang, Z.H. Zhang, YX. Sun, C.Q. Zhang, and X.T. Tao, "Bulk crystal growth and characterization of a new polar polymorph of BaTeMo2O9: a-BaTeMoaO9," CrystEngComm.,13(23),6985-6990 (2011).
    4.张光寅,蓝国祥,王玉芳,“晶格振动光谱学”高等教育出版社,第二版,2001。
    5. M. Maczka, W. Paraguassu, P.T.C. Freire, A. Majchrowski, and PS. Pizani, "Lattice dynamics and pressure-induced phase transitions in α-BaTeMo2O9," J. Phys:Condens. Matter,25(12),125404 (2013).
    6. E. Garmire, F. Pandarese, and C.H. Townes, "Coherently driven molecular vibrations and light modulation," Physics Rev. Lett.,11,160-163 (1963).
    7.夏海瑞,秦自楷,李丽霞,邹志强,“P3121(D34)空间群晶体的Raman谱研究(I):二元系压电晶体Al1-xGaxPO4的Raman谱,”物理学报,42卷,11期,1786-1791(1993)。
    8. 卢贵武,“KDP晶体的生长机制和生长动力学研究”博士论文,山东大学,2002。
    9. 张光寅,杨建勇,吴柏昌,“偏硼酸钡晶体晶格振动的群论分析与喇嘛光谱,”光子学报,5卷,6期,548-556(1985)。
    10.杨虹,卢贵武,于迎辉,李英峰,王增梅,"STGS单晶的晶格振动,”光谱学与光谱分析,28卷,3期,564-568(2008)。
    11. T.T. Basiev, A.A. Sobol, YK. Voronko, P.G. Zverev, "Spontaneous Raman spectroscopy of tungstate and molybdate crystal for Raman lasers," Opt. Mater, 15(3),205-216 (2000).
    12.T.T. Basiev, A.A. Sobol, P.G. Zverev, L.I. Ivleva, V.V. Osiko, RC. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater., 11(4),307-314 (1999).
    13. S.P.S. Proto and J.F. Scott, "Raman spectra of CaW04, SrWO4, CaMoO4, and SrMoO4," Phys. Rew.,157(3),716-719 (1967).
    14. A.A. Kaminsikii, H.J. Eichler, K.I. Ueda, N.V. Klassen, B.S. Redkin, L.E. Li, J. Findeisen, D. Jaque, J.G. Sole, J. Fernandez, and R Balda, "Properties of Nd3+-doped and undoped tetragonal PbW04, NdY(WO4)2, CaW04, and undoped monoclinic ZnW04 and CdWO4 as laser active and stimulated Raman scattering-active crystal," Appl. Opt.,38(21),4533-4547 (1999).
    15. A. A. Kaminskii, "Laser crystals and cerameics:recent advances," Laser Phys. Rew.,1(2),93-177(2007).
    16. M. Maczka, W. Paraguassu, L. Macalik, P.T.C. Freire, J. Hanuza, and J.M. Filho, "A Raman scattering study of pressure-induced phase transitions in nanocrystalline Bi2MoO6,"J. Phys:Condens. Matter,23(4),045401 (2011).
    17. M. Maczka, A. Pietraszko, W. Paraguassu, A.G.S. Freire, J.M. Filho, and J. Hanuza, "Structural and vibrational properities of K3Fe(MoO4)2(Mo2O7)-a novel layered molybdate," J. Phys:Condens. Matter,21(9),095402 (2009).
    18. M. Maczka, J. Hanuza, A.F. Fuentes, and Y. Morilka, "Vibrational studies of A(B2/3C1/3)O3 perovskites (A=Ba, Sr; B=Y, Sm, Dy, Gd, In; C=Mo, W)," J. Phys: Condens. Matter,16(13),2297-2310 (2004).
    19. G.D. Saraiva, M. Maczka, P.T.C. Freire, J.M. Filho, F.E.A. Melo, J. Hanuza, Y. Morioka, and A.G.S. Filho, "Pressure-induced irrecersible phase transition in KSc(MoO4)2" Phys. Rew. B,67(22),224108 (2003).
    20. M. Maczka, A. Majchrowski, and I.V. Kityk, "Vibrational properties of the nonlinear optical crystal β-BaTeMo2O9," Vib. Spectiosc.,64,158-163 (2013).
    21. A.F. Van, D. Elzen, and G.D. Rieck, "Redetemination of the structure of Bi2MoO6, koechlinite," Acta Crystallogr. B,29(11),2436-2438 (1973).
    22. R.L. Frost, and E.C. Keeffe, "Raman spectroscopic study of the mixed anion mineral yecoraite Bi5Fe3O9(Te4+O3)(Te6+04)2·9H2O," J. Raman Spectrosc., 40(9),1117-1120(2009).
    23. R.L. Frost, "Tlapallite H6(Ca, Pb)2(Cu, Zn)3SO4(TeO3)4TeO6, a multi-anion mineral:A Raman spectroscopic study," Spectrochim. Acta A,72(4),903-906 (2009).
    24. D. Christodilos, J. Arvanitidis, E. Kampasakali, K. Papagelis, S. Ves, and G.A. Kourouklis, "High pressure Raman study of BaMoO4," Phys. Statu solidi B, 241(14),3155-3160 (2004).
    25. A.P. Mirgorodsky, T. Merle-Mejean, P. Thomas, J.-C. Champarnaud-Mesjard, B. Frit, "Dynamics and crystal chemistry of tellurites:l. Raman spectra of thallium tellurites:Tl2Te03, Tl2Te2O5 and Tl2Te3O7," J. Phys. Chem. Solids,63(4), 545-554 (2002).
    26. V.O. Sokolov, Y.G. Plotnichenko, V.V. Koltashev, and I.A. Grishin, "On the structure of molybdate-tellurite glasses," J. Non-Crys. Solids,355(4-5),239-251 (2009).
    1. J. J. Zhang, Z.H. Zhang, W.G. Zhang, Q.X. Zheng, YX. Sun, C.Q. Zhang and X.T. Tao, "Polymorphism of BaTeMo2O9:A new polar polymorph and the phase transformation." Chem. Mater.,23(16),3752-3761 (2011).
    2. K. Hakuta, M. Suzuki, M. Katsuragawa, and J.Z. Li, "Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering," Phys. Rew. Lett. 79(2),209-212 (1997).
    3. W.D. Chen, Y. Wei, C.H. Huang, X.L. Wang, H.Y Shen, S.Y Zhai, S. Xu, B.X. Li, Z.Q. Chen, and G. Zhang, "Second-Stokes YVO4-Nd:YVO4-YVO4 self-frequency Raman laser," Opt. Lett.,37(11),1968-1970 (2012).
    4. E. Garmire, F. Pandarese, and C.H. Townes, "Coherently driven molecular vibrations and light modulation," Phys. Rew. Lett.,11(4),160-163 (1963).
    5. H.M. Park, "The design and operation of solid-state Raman lasers," Prog, in Quant. Electron.,27(1),3-56(2003).
    6. "Handbook of lasers and optics," Springer, (2007).
    7. P. Cerny, P.G. Zverev, H. Jelinkova, T.T. Basiev, "Efficient Raman shifting of picosecond pulses using BaWO4 crystal," Opt. Common.,177(1-6),397-404 (2000).
    8. P.G. Zverev, T.T. Basiev, A.M. Prokhorov, "Stimulated Raman scattering of laser radiation in Raman crystals," Opt. Mater.,11(4),335-352 (1999).
    9. V.G. Saviski, I. Friel, J.E. Hastie, M.D. Dawson, D. Burns, and A.J. Kemp, "Characteristic of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers," IEEE J. Quant. Electron.,48(3),328-337 (2012).
    10. R Stegeman, C. Rivero, G. Stegeman, P. Delfyett, K. Richardson, L. Jankovic, and H. Kim, "Raman gain measurements in bulk glass samples," J. Opt. Soc. Am. B,22(9),1861-1867(2005).
    11. V.A. Lisinetskii, S.V. Rozhok, D.N. Busko, R.V. Chulkov, A.S. Grabtchikov, VA. Orlovich, T.T. Basiev, and P.G. Zverev, "Measurements of Raman gain coefficient for barium tungstate crystal," Laser Phys. Lett.,2(8),396-400 (2005).
    12. J.A. Piper, and H.M. Pask, "Crystalline Raman Lasers," IEEE J. Sel. Top. Quantum,13(3),692-704 (2007).
    13. H.T. Huang, D.Y. Shen, and J.L. He, "Simultaneous pulse generation of orthogonally polarized dual-wavelength at 1091 and 1095 nm by coupled stimulated Raman scattering," Opt. Exp.,20(25),27838-27846 (2012).
    14. F.L. Galeener, J.C. Mikkelsen, Jr.R.H. Geils, and W.J. Mosby, "The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5," Appl. Phys. Lett., 32(1),34-36 (1978).
    15.黄海涛,“基于抗灰迹KTP晶体的单一及复合非线性频率转换研究”博士论文,山东大学,2011。
    16. A. Kazzaz, S. Ruschin, I. Shoshan, and G. Ravnitsky, "Stimulated Raman scattering in methane-experimental optimization and numerical model," IEEE J. Quant. Electron,30(12),3017-3024 (1994).
    17. J.K. Brasseur, P. A. Roos, K.S. Repasky, and J.L. Carlsten, "Characterization of a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B,16(8),1305-1312 (1999).
    18.丁双红,“全固态拉曼激光器理论与实验研究”博士论文,山东大学,2006。
    19. J.J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quant. Electron.,25(2),214-220 (1989).
    20. V.A. Lisinetskii, H.J. Eichler, H. Rhee, X. Wang, and V.A. Orlovich, "The generation of high pulse and average power radiation in eye-safe region by the third Stokes generation in barium nitrate Raman laser," Opt. Commun.,281(5), 2227-2232 (2008).
    21. J. Lin, and H.M. Park, "Nd:GdVO4 self-Raman laser using double-end polarized pumping at 880 nm for high power infrared an visible output," Appl. Phys. B, 108(1),17-24(2012).
    22. Y. Sato, and T. Taira, "Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process," IEEE J. Sel. Top. Quantum Electron.,11(3) 613-620 (2005).
    23. X.H. Chen, X.Y. Zhang, Q.P. Wang, P. Li, Z.I. Liu, Z.H. Cong, L. Li, and H.J. Zhang, "Highly efficiency double-ended diffusion-bond Nd:YVO4 1525 run eye-safe Raman laser under direct 880 nm pumping," Appl. Phys. B,106(3), 653-656(2011).
    24. A. J. Lee, H.M. Park, P. Dekker, and J. A. Piper, "High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4," Opt. Exp.,16(26) 21958-21963 (2008).
    25. G.X. Huang, Y.Q. Yu, X.H. Xie, Y.F. Zhang, and C.L. Du, "Diode-pumped simultaneously Q-switched and mode-locked YVO4/Nd:YVO4/YVO4 crystal self-Raman first-Stokes laser," Opt. Exp.,21(17),19723-19731 (2013).
    26. YF. Lv, X.G. Zhang, S.T. Li, J. Xia, W.B. Cheng, and Z. Xiong, "All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bond Nd3+:LuVO4 crystal," Opt. Lett.,35(17) 2964-2966 (2010).
    27. T. Basiev, M. Doroshenko, L. Ivleva, I. Voronina, V. Konjushkin, V Osiko, and S. Vasilyev, "Demonstration of high self-Raman laser performance of a diode-pumped SrMoO4:Nd3+crystal," Opt. Lett.,34(7),1102-1104 (2009).
    28. P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. lc, K. Kopczynski, "Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal," Opt. Commun.,209(4-6),403-409 (2002).
    29. J. Miao, B. Wang, J. Peng, H. Tan, and H. Bian, "Highly stable and efficient KTP-based intracavity optical parametric oscillator with a diode-pumped passively Q-switched laser," Appl. Phys. B,88(2),193-196 (2007).
    30.张玉萍,“高功率全固态绿光激光器的研究”博士论文,天津大学,2006。
    31. RC. Botha, H.J. Strauss, C. Bollig, W. Koen, O. Collett, N.V. Kuleshov, M.J. D. Esser, W.L. Combrinck, and H.M. von Bergmann, "High average power 1314 nm Nd:YLF laser,passively Q-switched with V:YAG",Opt.Lett.,38(6),980-982 (2013).
    32.Y Inoue,and S.Fujikawa,"Diode-pumped Nd:YAG laser producing 122 W CW power at 1.319μm,"IEEE,Quant. Electron.,36(6),751-756(2000).
    33.H.Y. Shen,PR Zeng,YP Zhou,G.F. Yu,and C.H. huang,"Comparision of simultaneous multiple wavelength lassing in various neodymium host crystals at transitions from 4F3/2-4F11/2 and 4F3/2-4F13/2," Appl.Phys.Lett.,56(20),1937-1938 (1990).
    34.Z.D.Zeng,H.Y Shen,M L.Huang,H.Xu,R.R Zeng,Y.P. Zhou,GF Yu,and C.H Huang,''Measurement of the refractive index and thermal refractive index coefficients ofNd:YAP crystal," Appl.Opt.,29(9),1281-1286(1990).
    35.W Koechner,"Solid-state laser engineering"Springe,第五版,2005.
    1. Y. Yang, J. Hou, J.L. He, J.L. Xu, H.Yang, F. Lou, Z.W. Wang, R.H. Wang, and X.M. Liu, "1342 nm high-power picosecond pulse generation by a passively mode-locked Nd:YVO4 laser," IEEE Photon. Technology Lett.,25(15),1506-1509 (2013).
    2. J.L. Xu, Y. Yang, J.L. He, B.Y. Zhang, X.Q. Yang, S.D. Liu, B.T. Zhang, and H. Yang, "Generation of 3.3 ps pluses at 1.34μm from high-power passively mode-locked Nd:GdVO4 laser," IEEE J. Quant. Electron.,48(5),622-627 (2012).
    3. N. Li, Z.H. Cong, Z.G. Qin, X.Y. Zhang, W.T. Wang, C. Wang, H.H. Yu, H.J. Zhang, X.D. Xu, and J. Xu, "Continuous-wave and actively Q-switched laser operations at 1359.5nm of Nd:LYSO crystal," Opt.&Laser Technology.,59(1), 43-46 (2014).
    4. C.H. Zuo, B.T. Zhang, and J.L. He, "Passively Q-switched 1.33μm Nd:GAGG laser with Co2+:LMA saturable absorber," Laser Phys. Lett.,8(11) 782-786 (2011).
    5. Y.B. Li, Z.T. Jia, Y Yang, X.W. Fu, D.S. Yuan, YC. Zhi, C.M. Dong, B.T. Zhang, J.L. He, and X.T. Tao, "Diode-end-pumped passively mode-locked Nd:GAGG laser at1.3μm with SESAM," Laser Phys. Lett,9(8) 557-560 (2012).
    6. H.T. Huang, J.L. He, C.H. Zuo, H.J. Zhang, J.Y Wang, and H.T. Wang, "Co2+:LMA crystal as saturable absorber for a diode-pumped passively Q-switched Nd:YVO4 laser at 1342nm," Appl. Phys. B,89(2-3),319-321 (2012).
    7. F.Q. Liu, J.L. He, B.T. Zhang, J.L. Xu, X.L. Dong, K. J. Yang, HR. Xia, and H. J. Zhang, "Diode-pumped passively Q-switched Nd:LuVO4 laser at 1.34 μm with V3+:YAG saturable absorber," Opt. Exp.,16(16),11759-11763 (2008).
    8. E.M. Dianov, D.G. Fursa, A.A. Abramov, M.I. Belovolov, M.M. Bubnov, A.V. Shipulin, A.M. Prokhorov, G.G. Devyatykh, A.N. Guryanov, and V.F. Khopin, "Raman fibre-optic amplifier of signals at the wavelength of 1.3 μm," Quant. Electron.,24(9),749-751 (1994).
    9. Y Ohishi, T. Kanamori, T. Kitagawa, and S. Takahashi, "Pr3+-doped fluoride fiber amplifier operating at 1.31 μm," Opt. Lett.,16(22),1747-1749 (1991).
    10. E.M. Dianov, D.G. Fursa, A.A. Abramov, M.I. Belovolov, M.M. Bubnov, A.V. Shipulin, A.M. Prokhorov, G.G. Devyatykh, A.N. Guryanov, V.F. Khopin, "Raman fibre-optic amplifier of signals at the wavelength of 1.3 μm," Quant. Electron.,24(9),749-751 (1994).
    11. C. Lin, L.G. Cohen, R.H. Stolen, G.W. Tasker, and W.G. French, "Near-infrared sources in the 1-1.3μm region by efficient stimulated Raman emission in glass fibers," Opt. Commun.,20(3),426-428 (1977).
    12. W.D. Chen, Y Wei, C.H, Huang, X.L. Wang, H.Y Shen, S.Y Zhai, S. Xu, B.X. Li, Z.Q. Chen, and G. Zhang, "Second-Stokes YVO4-Nd:YVO4-YVO4 self-frequency Raman laser," Opt. Lett.,37(11),1968-1970 (2012).
    13. H.M. Park, "The design and operation of solid-state Raman lasers," Prog. in Quant. Electron.,27(2),3-56 (2003).
    14. H.M. Park, P. Dekker, R.P. Mildren, D.J. Spence, J.A. Piper, "Wavelength-versatile and UV sources based on crystalline Raman lasers," Prog. in Quant. Electron.,32(3-4),121-158 (2008).
    15. P. Cemy, H. Jelinkova, P.G. Zverev, T.T. Basiev, "Solid state lasers with Raman frequency conversion," Prog, in Quant. Electron.,28(2),113-143 (2004).
    16. T.T. Basiev, and V.V. Osiko, "New materials for SRS lasers," Russian Chem. Reviews,75(10),847-862 (2006).
    17. L. Bohaty, P. Becker, H. Rhee, O. Lux, H.J. Eichler, H. Yoneda, and A.A. Kaminskii, "Detection of a new SRS-promoting phonon mode and cross-cascaded χ(3)-nonlinear lasing in single crystals of calcite (trigonlal CaCO3)," Laser Photon. Rew.,6(5),690-701 (2012).
    18. A.A. Kaminskii, L. Bohaty, H. Rhee, A. Kaltenbach, O. Lux, H.J. Eichler, R. Ruckamp, and P. Becker, "Cerussite, PbCO3-a new stimulated Raman scattering (SRS)-active crystal with high-order Stokes and anti-Stokes lasing," Laser Photon. Rew.,7(3),425-431 (2013).
    19. T.T. Basiev, and R.C. Powell, "Introduction," Opt. Mater,11(4),301-306 (1999).
    20. H.T. Huang, J.L. He, and Y. Wang, "Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser," Appl. Phys. B,102(4),873-878 (2011).
    21. V.A. Lisinetskii, H.J. Eichler, H. Rhee, X. Wang, and V.A. Orlovich, "The generation of high pulse and averagy power radiation in eye-safe spectral region by the third stokes generation in barium nitrate Raman laser," Opt. Commun., 281(8),2227-2232 (2008).
    22. P.G. Zverev, T.T. Basiev, I.V. Ermakov, A.M. Prokhorov, "Stimulated Raman scattering in barium nitrate crystal in the external cavity," SPIE,2498,164 (1994).
    23. V.A. Lisinetskii, A.S. Grabtchikov, I.A. Khosasevich, H.J. Eicher, V.A. Orlovich, "Efficient high energy 1st,2nd or 3rd Stokes Raman generation in IR region," Opt. Commun.,272(2),509-513 (2007).
    1. N. Zong, Q. J. Cui, Q.L. Ma, X.F. Zhang, Y.F. Lu, C.M. Li, D.F. Cui, Z.Y. Xu, H.J. Zhang, and J.Y. Wang, "High average power 1.5μm eye-safe Raman shifting in BaWO4 crystals,"Qppl. Opt,48(1),7-10 (2009).
    2. J.F. Yang, B.T. Zhang, H.T. Huang, J.L. He, J.L. Xu, S. Zhao, X.Q. Yang, G. Qiu, and Z.K. Liu, "Intracavity optical parametric oscillator based on GTR-KTP driven by laser-diode end pumped Q-switched Nd:YVO4 laser," Opt. Mater, 32(9),1107-1111(2010).
    3. L.R. Marshall, and A. Kaz, "Eye-safe output from noncritically phase-matched parametric oscillators," J. Opt. Soc. Am. B,10(9),1730-1736 (1993).
    4. D.Y Shen, J.K. Salu, and W.A. Clarkson, "Highly efficient in-band pumped Er:YAG laser with 60 W output at 1645 nm," Opt. Lett.,31(6),754-756 (2006).
    5. N.A. Tolstik, A.E. Troshin, S.V Kurilchik, V.E. Kisel, N.V. Kuleshov, V.N. Matrosov, T.A. Matrosova, M.I. Kupchenko, "Spectroscopy, continuous-wave and Q-switched diode-pumped laser operation of Er3+:Yb3+:YVO4 crystal," Appl. Phys. B,86(2),275-278 (2007).
    6. J.W. Kim, D.Y. Shen, J.K. Salu, and W.A. Clarkon, "High-power in-band pumped Er:YAG laser at 1617 nm," Opt. Exp.,16(8),5807-5812 (2008).
    7. YH. Tsang, and D.J. Binks, "Record performance from a Q-switched Er3+:Yb3+:YVO4 laser," Appl. Phys. B,96(1),11-17 (2009).
    8. D.W. Chen, M. Bimbaum, P.M. Belden, T.S. Rose, and S.M. Beck, "Multiwatt continuous-wave and Q-switched Er:YAG lasers at 1645 nm:performance issues," Opt. Lett.,34(10),1501-1503 (2009).
    9. V. Fromzel, N. T. Gabrielyan, and M. Dubinskii, "Acousto-optically Q-switched, resonantly pumped, Er:YVO4 laser," Opt. Exp.,21(13),15253-15258 (2013).
    10. L. Zhu, MJ. Wang, J. Zhou, and W.B. Chen, "Efficient 1645 nm continuous-wave and Q-switched Er:YAG laser pumped by 1532 nm narrow-band laser diode," Opt. Exp.,19(27),26810-26815 (2011).
    11. YM. Duan, H.Y. Zhu, Y.L. Ye, D. Zhang, G. Zhang, and D.Y Tang, "Efiicient RTP-based OPO intracavity pumped by an acousto-optic Q-switched Nd:YVO4 laser," Opt. Lett.,39(5),1314-1317 (2014).
    12. H.T. Huang, J.L. He, J.F. Yang, B.T. Zhang, J.L. Xu, and S.D. Liu, "Efficient GTR-KTP IOPO driven by a diode-pumped Nd:YAG/Cr4+:YAG laser with the shared cavity configuration,"Appl. Phys. B,100(3),471-476 (2010).
    13. L.R. Marshall, J. Kasinski, A.D. Hays, and R. Burnham, "Efficient optical parametric oscillator at 1.6 μm," Opt. Lett.,16(9),681-683 (1991).
    14. Y Tang, C.F. Rae, C. Rahlff, and M.H. Dunn, "Low-threshold, high-efficiency, widly tunable infrared source from a KTP-based optical parametric oscillator," J. Opt. Soc.Am. B,14(12),3442-3451 (1997).
    15. W.R. Bosenberg, L.K. Cheng, and J.D. Bierlein, "Optical parametric frequency conversion properties of KTiOAsO4," Appl. Phys. Lett.,22(28),2765-2767 (1994).
    16. YX. Fan, Y. Liu, Y.H. Duan, Q. Wang, L. Fan, H.T. Wang, G.H. Jia, and C.Y. Tu, "High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal" Appl. Phys. B,93(2-3),327-330 (2008).
    17. A. Mckay, O. Kitzler, H. Liu, D. Fell, and R.P. Mildren, "High average power (11 W) eye-safe diamond Raman laser," SPIE,8551,85510U-1 (2012).
    18. Y.F. Chen, "Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal," Opt. Lett.,29(18),2172-2174 (2004).
    19. Y.F. Chen, "Efficient 1521 nm Nd:GdVO4 Raman crystal," Opt. Lett.,29(22), 2632-2634 (2004).
    20. Z.P. Wang, D.W. Hu, X. Fang, H.J. Zhang, X.G. Xu, J.Y. Wang, and Z.S. Shao, "Eye-safe Raman laser at 1.5μm based on BaWO4 crystal," Chin. Phys. Lett., 25(2),532-535 (2008).
    21. T.T. Basiev, VB. Sigachev, M.E. Dorshenko, A.G. Papashvili, P.G. Zverev, and V.V. Osiko, "Passively Q-switching of 1.3μm Nd-lasers with Nd2+:SrF2 and V3+:YAG crystalline saturable absorbers ans application to Raman shifting to eye-safe region," SPIE,2498,171-178 (1995).
    22. X.H. Chen, X.Y. Zhang, Q.P. Wang, P. Li, Z.J. Liu, Z.H. Cong, L. Li, and H.J. Zhang, "Highly efficient double-ended diffusion-bond Nd:YVO41525 nm eye-safe Raman laser under direct 880 nm pumping," Appl. Phys. B,106(3), 653-656 (2012).
    23. O. Kitzler, H. Jelinkova, J. Sulc, L. Koubikova, M. Nemec, K. Nejezchleb, and V. Skoda, "High energy intracavity pumped eye-safe BaWO4 Raman laser," SPIE, 8599,85991W-1 (2013).
    24. Z.L. Gao, S.D. Liu, J.J. Zhang, S.J. Zhang, W.G. Zhang, S.P. Wang, J.L. He, and X.T. Tao, "A high efficiency third order Stokes Raman laser operating at 1500 nm based on a BaTeMo2O9 crystal," Laser. Phys. Lett.,10(12),125403-125406 (2013).
    25. J.J. Zhang, Z.L. Gao, S.D. Liu, S.J. Zhang, W.G. Zhang, S.P. Wang, J.L. He, and X.T. Tao, "Simultaneous dual-wavelength operation of β-BaTeMo2O9 Raman laser at 1320 nm and 1500 nm," Appl. Phys. Express,6(7),072702 (2013).
    26. M.E. Innocenzi, H.T. Yura, C.L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett.,56(19), 1831-1833(1994).
    27. H.M. Park, "The design and operation of solid-state Raman lasers," Prog. in Quant. Electron.,27(2),3-56 (2003).
    28.白芬,“基于光参量振荡和受激拉曼散射的新型固体激光器研究”博士论文,山东大学,2013。
    29. J.T. Murray, W.L. Austin, and R.C. Powell, "Intracavity Raman conversion and Raman beam cleanup," Opt. Mater.,11(4),353-371 (1999).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700