用户名: 密码: 验证码:
海底多金属硫化物中微量与超微量元素的测定方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底多金属硫化物是重要的矿产资源,其测试技术一直是一个难题,主要因为其含有常量硫,矿物组成复杂多样,常常难以完全消解,造成了数据结果的精确度与准确度较差,同时像稀土元素、铂族元素含量超微,远低于检出限,增加了准确测试的难度,本论文针对以上问题及大洋矿产战略需求,系统开展了防腐高效溶样罐的研制,微量元素、稀土元素与铂族方法研究,研究海底多金属硫化物样品中元素之间的相互关系及稀土元素配分模式与成因条件的关系,取得了如下成果:
     (1)设计了防腐高效溶样罐:具有防腐、耐高温高压(合金材质)、密封、操作简单(一秒扣合)、酸不挂壁,不挂顶(提高酸溶效果)、安全(压力极限实验,无爆管现象)、批量消解(可以随意增加、减少使用罐体数量,不影响效果),消解完全等特点,成为目前溶样罐的标志性产品,提高了我国消解容器自主研发的能力。
     (2)解决了硫化物样品的完全消解难题:提出不同消解法测试不同元素的方法,建立了两种消解方法,一是HNO3消解法测试Ag、Bi等元素,测试结果准确可靠,一是HCl+HF加HNO3消解法,能够有效去除S元素,完全消解硫化物样品,溶液清澈、透亮,实现包括Au、Ba、REE在内的30余种元素的准确测试。
     (3)海底多金属硫化物中稀土元素的测定方法:优选选取国产732阳离子树脂,先用2mol/L HCl淋洗,去除Cu、Fe、Pb、Zn等二价元素,再用2.5mol/LHNO3淋洗去掉Ba元素,整个流程最优化设计,可获得REE元素高回收率数据,把实验方法应用到黄铁矿(GBW07267)、黄铜矿(GBW07268)、闪锌矿(GBW07270)与WMS‐1a中REE的测试中,采用加标回收验证与参照值对比的方法研究了测试方法的准确性,REE回收率较高,可以实现海底多金属硫化物中REE的准确测试。
     (4)海底多金属硫化物中铂族元素的测定方法:通过硫镍试金法、阳离子树脂交换法、阴离子树脂交换法实验,发现这些方法都存在着这样或者那样的问题,测试结果不够理想,表现为空白高,干扰大,回收率低或者不稳定等问题,为后续的PGE元素测试方法研究奠定了基础。
     (5)海底多金属硫化物样品中微量元素的作用关系:测试了东太平洋海隆17A-EPR-TVG1与17A-EPR-TVG2站硫化物样品中Fe2O3、Cu、Zn、Mn等13种元素,属于富Fe型,并对相关性与聚类分析,结果表明TVG1中Cd与Zn及Mo与Zn之间呈现出良好的相关性;而样品TVG2中Cd与Zn及Mo与Zn之间基本上不存在相关性,表明虽然这两块样品虽然采自同一位置的两块样品,其元素富集沉淀机理存在一定的差别,需进一步的工作研究成因与来源。
     (6)稀土元素的示踪作用:研究了东太平洋海隆、大西洋洋脊、印度洋中脊、西南印度洋洋脊与北斐济海盆区域内7个热液区海底多金属硫化物中的稀土元素特征表现为明显的LREE富集,HREE亏损,其Eu表现出正异常、负异常与无异常等特征,Ce为无异常或者轻微异常特征,Eu异常与海底多金属硫化物的形成温度有直接关系,Eu负异常对应着低温热液矿物,与低温热液活动有关,Eu正异常对应高温热液矿物,与高温热液活动有关。
As the important mineral resources at the sea floor, the polymetallic sulphidesare very difficult to be determined because it contains major sulfur and manycomplicated mineral which leads to the poor accuracy and precision of the data, andmeanwhile, the rare earth elements (lanthanide series) and platine group elements(PGE) are in the ultra-trace level that are far less than the detection limits, In regard tothe above problems and the strategic demand for the ocean minerals, this Paperdesigned the anticorrosive efficient digestion vessel, studies on the determinationmethods of trace elements, rare earth elements (REE) and the PGE as well as thestudies on the correlations between elements in the samples of polymetallic sulphidesand the relationship between REE assemblage and the formation conditions, and thefollowing achievements have been obtained:
     (1)The design of the anticorrosive efficient digestion vessel. The vessel has thefollowing features: it is made of the anti-corrosion alloy material that is resistant tothe high temperature and high pressure, it is airtight and easy to operate (it can beclosed within1second), it retains no acid on the wall or the top, which improves theeffect of acid dissolving, it is safe and free of tube blasting in the test under thepressure limit, it can be used in any quantity without affecting the results so that thepolymetallic sulphides can be cleared up in batches completely. The bomb is thesymbolic product in the manufacturing of the sample-degesting vessel in China thatenhances the capability to develop the sample-digesting containers independently.
     (2)The solution to problems on clear-up of sulfide samples. This paper puts forward different methods to clear up the different elements and establishes two methods,one is to detect the Ag and Bi elements with HNO3and the results are proven to beaccurate and reliable, and the other is the method of HCl+HF and HNO3, which canefficiently eliminate the S, completely clear up the sulfide samples and make thesolution clear and transparent, and thus achieving the accurate determination for over30elem-ents including Au, Ba, rare earth elements (REE), etc.
     (3)The method of determining the REE in the polymetallic sulphides at sea floor.Preference is given to the domestically-made732cationic resin that is eluted with2mol/L of HCl to get rid of the divalent elements like Cu, Fe, Pb and Zn, etc. andeliminate the Ba with2.5mol/L of HNO3, the whole process is in the optimal designand obtains the data of high recovery of REE. The method has been used to determine the REE in pyrites (GBW07267), chalcopyrite (GBW07268), sphalerite (GBW07270)and WMS-1a, the accuracy of the determination is proven with the methods ofverifying the recovery results by adding the standard and of contrasting with thereference values, the method can be used to obtain a high recovery of REE, and thusachieving the accurate determination of REE in the polymetallic sulphides.
     (4)The method of determining the PGE in the polymetallic sulphides at sea floor.Experiments with the nickel sulphide fire assay method, cation resin exchange andanion resin exchange show that all of those methods have problems, which mainlyincludes the poor experimental effect, great interference, low recovery and instability,etc. which plays a important role in the research of determination of PGE in future.
     (5)The interactive relation of trace elements in the polymetallic sulphides atsea floor. The test has been conducted to determine13elements including Fe2O3, Cu,Zn, Mn in the sulfide samples at Stations of17A-EPR-TVG1and17A-EPR-TVG2atthe rise of the east pacific ocean, all those samples are Fe-concentrated ones, andanalysis was conducted on the correlation and clustering of those elements, and theresults show that there is a good correlation between Cd and Zn, and between Mo andZn in TVG1, while there is no correlation between Cd and Zn, or between Mo and Znin TVG2, which indicates that the two samples, although collected from the sameposition, have difference in the mechanisms of element concentration and deposition,and further work is required to study the causes and sources of the samples.
     (6)The tracer role of REE. The study has been conducted on the REE in thepolymetallic sulphides at sea floor of7hydrothermal areas at the rise of the eastpacific ocean, Indian Ridge,Mid-Atlantic Ridge,North Fiji Basin, which showsthat those areas are enriched with LREE while lack of HREE, of which, the elementof Eu features the positive anomalies, negative anomalies and no anomalies; Cefeatures no or slight anomalies, the anomalies of Eu has direct relation with thetemperature at which the polymetallic sulphides take shape, the negative anomalies ofEu is corresponding to the hydrothermal minerals at low temperature and it hasrelations with the low temperature hydrothermal activities, while the positiveanomalies of Eu to the hydrothermal minerals at high temperature, and the hightemperature hydrothermal activities.
引文
[1]中国常驻国际海底管理局代表处,中国大洋协会与国际海底管理局签订勘探合同,2011.国际海底信息, p.3.
    [2] I. Rubeska.The determination of trace elements in sulphide minerals by atomicabsorption spectrophotometry with absorption tubes.1968,Analytica Chimica Acta,vol.40, pp.187-194.
    [3] T.Stafilov and T.Todorovski. Determination of gold in arsenic-antimony ore offlameless atomic absorption spectrometry.1987.Atomic spectroscopy,vol.8,pp.12-14.
    [4] J.M.Vermeulen. Rapid determination of gold in geological materials by amylacetate extraction, ascorbic acid reduction and electrothermal atomisation atomicabsorption spectrometry.1989.J. Anal. At.Spectrom, vol.4, pp.77-82.
    [5] A. Lazaru and T. Stafilov.Determination of Fe, Mn, Cu, Cr and Ni in sulfideminerals from Alshar by atomic absorption spectrometry.Geol,1993.Macedonica, vol.7, pp.73-80.
    [6] A. Lazaru and T. Stafilov.Determination of copper in sulfide minerals by Zeemanelectrothermal atomic absorption spectrometry.1998.Fresenius journal of analyticalchemistry, vol.360, pp.726-728.
    [7] D. Zenddelovska and T. Stafilov.Extraction separation and electrothermal atomicabsorption spectrometric determination of thallium in some sulfide minerals.2001.Analytical Sciences, vol.17, pp.425-428.
    [8] F. Langmyhr, J. Stubergh, Y. Thomassen, J. Hanssen and J. Doleal. Atomicabsorption spectrometric determination of cadmium, lead, silver, thallium and zinc insilicate rocks by direct atomization from the solid state.1974.Analytica Chimica Acta,vol.71, pp.35-42.
    [9] T. Stafilov.Determination of trace elements in minerals by electrothermal atomicabsorption spectrometry.2000.Spectrochimica Acta Part B: Atomic Spectroscopy, vol.55, pp.893-906.
    [10]R. Brooks, J. Holzbecher, D. Ryan, H. Zhang and A. Chatterjee.A rapid methodfor the determination of gold and silver in sulfide ores and rocks.1981.AtomicSpectroscopy, vol.2, pp.151-154.
    [11]R. Sanzolone, T. Chao and G. Crenshaw.Atomic-absorption spectrometricdetermination of cobalt, nickel, and copper in geological materials with matrixmasking and chelation-extraction.1979.Analytica Chimica Acta, vol.105, pp.247-253.
    [12]I. Rube ka.The determination of trace elements in sulphide minerals by atomicabsorption spectrophotometry with absorption tubes.1968.Analytica Chimica Acta,vol.40, pp.187-194.
    [13]Al-Harahsheh, S. Kingman, C. Somerfield and F. Ababneh.Microwave-assistedtotal digestion of sulphide ores for multi-element analysis.2009.Analytica chimicaacta, vol.638, pp.101-105.
    [14]曾惠芳,戢朝玉,袁玄晖.等离子体直读光谱法分析以Pb, Zn, Cu, Fe为基体的硫化矿物的研究.1986.岩矿测试, vol.4, p.004.
    [15]常平,王松君,孙春华,苏维娜,王丽娟.电感耦合等离子体原子发射光谱法测定黄铁矿中微量元素.2002.岩矿测试, vol.21, pp.304-306.
    [16]王松君,常平,王璞珺,侯天平.电感耦合等离子体发射光谱法直接测定黄铜矿中多元素.2004.岩矿测试, vol.23, pp.228-230.
    [17]王松君,常平,王璞珺,侯天平,侯悦.ICP-AES测定闪锌矿中9种元素的方法.2007.吉林大学学报:理学版, vol.44, pp.993-996.
    [18]王松君,常平,王璞珺,侯天平,侯悦. ICP-AES法测定方铅矿中多元素的方法研究.2007.分析试验室, vol.26, pp.39-42.
    [19]马生凤,温宏利,马新荣,王蕾,巩爱华,曹亚平,屈文俊.四酸溶样-电感耦合等离子体原子发射光谱法测定铁,铜,锌,铅等硫化物矿石中22个元素.2011.矿物岩石地球化学通报, vol.30, pp.65-72.
    [20]A.戴特, A.格雷,李金英,姚继军.电感耦合等离子体质谱分析的应用.北京:原子能出版社,1998.
    [21]贾维斯.著,尹明,李冰译.电感耦合等离子体质谱手册,1997
    [22]李冰,杨红霞.电感耦合等离子体质谱原理和应用,2005
    [23]王小如.电感耦合等离子体质谱应用实例,2005
    [24]西尔维斯特.地球科学中的激光剥蚀——ICP-MS原理和应用,2003
    [25]D. V. Biller and K. W. Bruland.Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb inseawater using the Nobias-chelate PA1resin and magnetic sector inductively coupledplasma mass spectrometry (ICP-MS),2012.Marine Chemistry, vol.130, pp.12-20.
    [26]F. C. Bressy, G. B. Brito, I. S. Barbosa, L. S. Teixeira and M. G. A.Korn.Determination of trace element concentrations in tomato samples at differentstages of maturation by ICP OES and ICP-MS following microwave-assisteddigestion.2013. Microchemical Journal, vol.109,pp,145-149.
    [27]W. Guo, S. Hu, Y. Wang, L. Zhang, Z. Hu, J. Zhang.Trace determination ofselenium in biological samples by CH4-Ar mixed gas plasma DRC-ICP-MS.2013.Microchemical Journal, vol.108,pp,106-112.
    [28]S. F. Jerez Veguería, J. M. Godoy, R. C. de Campos, R. A. Gon alves.Traceelements determination in seawater by ICP-MS using online, offline and bathprocedures of preconcentration and matrix elimination.2013.Microchemical Journal,vol.108,pp,121-128.
    [29]S. A. Kumar, S. P. Pandey, N. S. Shenoy, S. D. Kumar. Matrix separation andpreconcentration of rare earth elements from seawater by poly hydroxamic acidcartridge followed by determination using ICP-MS.2011.Desalination, vol.281, pp.49-54.
    [30]J. Mas, M. Villa, S. Hurtado and R. García-Tenorio. Determination of traceelement concentrations and stable lead, uranium and thorium isotope ratios byquadrupole-ICP-MS in NORM and NORM-polluted sample leachates.2012.Journal ofhazardous materials, vol,205-206,pp,198-207.
    [31]P. A. Usta mer, T. Usta mer, A. Gerdes, A. H. Robertson, A. S. Collins.Evidenceof Precambrian sedimentation/magmatism and Cambrian metamorphism in the BitlisMassif, SE Turkey utilising whole-rock geochemistry and U–Pb LA-ICP-MS zircondating.2012.Gondwana Research, vol.21, pp.1001-1018.
    [32]辛文彩,林学辉,徐磊.电感耦合等离子体质谱法测定海洋沉积物中34种痕量元素.2012.理化检验(化学分册), vol.48, p.459-464.
    [33]殷宁万,何红蓼.等离子体质谱法测定天然水中痕量元素.1991.岩矿测试, vol.10, pp.171-176.
    [34]袁继海,詹秀春,樊兴涛,胡明月.硫化物矿物中痕量元素的激光剥蚀-电感耦合等离子体质谱微区分析进展.2011.岩矿测试, vol.30, pp.121-130.
    [35]朱爱美,张辉,高晶晶,刘季花,任向文.电感耦合等离子体质谱测定富钴结壳中的稀土元素.2012.分析试验室, vol.31, pp.19-22.
    [36]齐剑英,李祥平,王春林,刘娟,陈永亨,常向阳,吴颖娟,张平.微波消解-电感耦合等离子体质谱法测定黄铁矿中重金属元素.2007.冶金分析, vol.27, pp.1-6.
    [37]张红雨.硫化物矿物痕量及贵金属元素丰度ICP-MS测试方法研究,2012.硕士学位论文, pp.17-20.
    [38]殷学博,曾志刚,王晓媛,张国良,陈帅,欧阳荷根.硫化物中微量元素测试方法的比较.2009.矿物学报, vol.1, pp.620.
    [39]殷学博,曾志刚,李三忠,武力,王晓媛,张国良,陈帅.电感耦合等离子体质谱测试硫化物中的微量元素.2011.分析化学, vol.39, pp.1228-1232.
    [40]蒋富清,孟庆勇,徐兆凯,李安春,李铁刚,常凤鸣.冲绳海槽北部15ka BP以来沉积物源及控制因素——稀土元素的证据.2008.海洋与湖沼, vol.39, pp.112-118.
    [41]曾志刚,余少雄,殷学博,王晓媛,张国良,汪小妹,陈代庚.冲绳海槽Jade热液区热液硫化物的元素富集与铀系同位素组成.2009.中国科学: D辑, pp.1579-1590.
    [42]付淑清,朱照宇,欧阳婷萍,邱燕.南海南部陆坡晚第四纪沉积物稀土元素及环境意义.2010.热带地理, pp.24-29.
    [43]周晓静,蒋富清,李安春,孟庆勇.稀土元素作为示踪标记在海洋沉积动力学中应用前景的初步探讨.2010.海洋学报, vol.32,pp.58-73.
    [44]J. Francheteau, H. Needham, P. Choukroune, T. Juteau, M. Seguret, R. Ballard, P.Fox, W. Normark, X. Carranza,D. Cordoba.Massive deep-sea sulphide ore depositsdiscovered on the East Pacific Rise.1979.Nature, vol.277, pp.523-528.
    [45]彭晓彤,周怀阳.EPR9-10N热液烟囱体的结构特征与生长历史.2005.中国科学, vol.35, pp.720-728.
    [46]郑建斌,曹志敏,安伟.东太平洋海隆9°~10°N热液烟囱体矿物成分,结构和形成条件.2008.地球科学:中国地质大学学报, vol.33, pp.19-25.
    [47]曾志刚,陈代庚,殷学博,王晓媛,张国良,汪小妹.东太平洋海隆13N附近热液硫化物中的元素,同位素组成及其变化.2009.中国科学: D辑, pp.1780-1794.
    [48]陶春辉,李怀明,黄威,韩喜球,武光海,苏新,周宁,林间,何拥华,周建平.西南印度洋脊4939′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义.2011.科学通报, vol.56, pp.2413-2423.
    [49]丁振举,刘丛强.海底热液沉积物稀土元素组成及其意义.2000.地质科技情报,vol.19, pp.27-30.
    [50]包申旭,周怀阳,彭晓彤,姚会强. Juan de Fuca洋脊Endeavour段热液硫化物稀土元素地球化学特征.2007.地球化学, vol.36, pp.303-310.
    [51]T. Barrett, I. Jarvis and K. Jarvis.Rare earth element geochemistry of massivesulfides-sulfates and gossans on the Southern Explorer Ridge.1990.Geology, vol.18,p.583-586.
    [52]Y. Sun, M. Sun. Determination of ultra-trace rare earth elements in ultramaficand sulfide samples by quadrupole inductively coupled plasma-massspectrometry.2009.Journal of Analytical Atomic Spectrometry, vol.24, pp.232-236.
    [53]V. Balaram, C. Manikyamba, S. Ramesh,V. Saxena. Determination of Rare EarthElements in Japanese Rock Standards by Inductively Coupled Plasma-MassSpectrometry.1990.At. Spectrosc., vol.11, pp.19-23.
    [54]倪善芹,侯泉林,琚宜文,吴春明,刘庆,武昱东.铂族元素作为地球化学指示剂有关问题讨论.2007.地质论评, vol.53, pp.631-641.
    [55]汪小妹,刘长华,殷学博,王晓媛.铂族元素测试分析中试样预处理方法研究.2007.海洋科学, vol.31, pp.92-96.
    [56]赵正,漆亮,黄智龙,许成.地质样品中铂族元素的分析测定方法.2009.地学前缘, vol.16, pp.181-193.
    [57]何红蓼,吕彩芬,周肇茹,史世云,李冰.锍镍试金一等离子体质谱法测定地球化学勘探样品中的铂族元素和金.2001.岩矿测试, vol.20, pp.191-194.
    [58]靳新娣,朱和平.电感耦合等离子体质谱法测定地质样品中的铂,钯,钌,铑,铱和金.2001.分析化学, vol.29, pp.653-656.
    [59]R. Juvonen, T. Lakomaa and L. Soikkeli. Determination of gold and the platinumgroup elements in geological samples by ICP-MS after nickel sulphide fire assay:difficulties encountered with different types of geological samples.2002.Talanta, vol.58, pp.595-603.
    [60]石贵勇,孙晓明,屈文俊,薛婷,张美,熊德信,王生伟.锍镍试金富集一等离子体质谱法测定西太平洋富钴结壳中的铂族元素.2007.岩矿测试, vol.26, pp.113-116.
    [61]赵素利,张欣,李曼,温宏利,屈文俊,曹亚萍,李超.锍镍试金-电感耦合等离子体质谱法测定硫铁矿中铂族元素.2011.岩矿测试, vol.30, pp.412-415.
    [62]L. Qi, J. Gao, X. Huang, J. Hu, M.-F. Zhoub, H. Zhong.An improved digestiontechnique for determination of platinum group elements in geological samples.2011.J.Anal. At. Spectrom, vol.26, pp.1900-1904.
    [63]漆亮,周美夫,严再飞,皮道会,胡静.改进的卡洛斯管溶样等离子体质谱法测定地质样品中低含量铂族元素及铼的含量.2006.地球化学, vol.35, pp.667-674.
    [64]C. Li, C. Chai, X. Yang, X. Hou and X. Mao. A new preconcentration method forplatinum and gold based on a macropore anion resin HHY-10A.1997.Talanta, vol.44,pp.1313-1317.
    [65]I. Jarvis, M. M. Totland and K. E. Jarvis.Determination of the platinum-groupelements in geological materials by ICP-MS using microwave digestion, alkali fusionand cation-exchange chromatography.1997.Chemical Geology, vol.143, pp.27-42.
    [66]漆亮,胡静.等离子体质谱法快速测定地质样品中的痕量铂族元素和金.1999.岩矿测试, vol.18, pp.267-270.
    [67]L. Qi and M.-F. Zhou. Determination of Platinum-Group Elements in OPY-1:Comparison of Results using Different Digestion Techniques.2008. Geostandards andGeoanalytical Research, vol.32, pp.377-387.
    [68]L. Qi, M.-F. Zhou, C. Y. Wang,M. Sun.Evaluation of a technique for determiningRe and PGEs in geological samples by ICP-MS coupled with a modified Carius tubedigestion.2007.Geochemical Journal, vol.41, pp.407-414.
    [69]杨竞红.岩石样品中低含量铂族元素和锇同位素比值的高精度测量方法.2001.岩石学报, vol.17, pp.325-331.
    [70]董守安.现代贵金属分析.北京:化学工业出版社,2007.
    [71]孙亚莉,孙敏,巩爱华.小锍试金铂族元素富集方法.2000.分析化学, vol.28, pp.1010-1012.
    [72]C. Rao,G. Reddi.Platinum group metals (PGM); occurrence, use and recenttrends in their determination.2000.TrAC Trends in Analytical Chemistry, vol.19, pp.565-586.
    [73]P. Petrova, S. Velichkov, N. Velitchkova, I. Havezov and N. Daskalova.Problems,possibilities and limitations of inductively coupled plasma atomic emissionspectrometry in the determination of platinum, palladium and rhodium in sampleswith different matrix composition.2010.Spectrochimica Acta Part B: AtomicSpectroscopy, vol.65, pp.130-136.
    [74]孙亚莉,管希云.锍试金富集贵金属元素: I.等离子体质谱法测定地质样品中痕量铂族元素.1997.岩矿测试, vol.16, pp.12-17.
    [75]G. Reddi, C. Rao, T. Rao, S. V. Lakshmi, R. Prabhu and T. Mahalingam.Nickelsulphide fire assay ICPMS method for the determination of platinum group elements:a detailed study on the recovery and losses at different stages.1994.Fresenius' journalof analytical chemistry, vol.348, pp.350-352.
    [76]黄珍玉,张勤,胡克,吴健玲,杨苋原.共沉淀一感耦等离子体质谱法测定地质样品中的超痕量金铂钯.2003.光谱学与光谱分析, vol.23, pp.132-134.
    [77]K. Oguri, G. Shimoda,Y. Tatsumi.Quantitative determination of gold and theplatinum-group elements in geological samples using improved NiS fire-assay andtellurium coprecipitation with inductively coupled plasma-mass spectrometry(ICP-MS).1999.Chemical Geology, vol.157, pp.189-197.
    [78]孙亚莉,巩爱华.小铳试金铂族元素富集方法.2000.分析化学, vol.28, pp.1010-1012.
    [79]吕彩芬,张勤.锍镍试金—等离子体质谱法测定地球化学勘探样品中的铂族元素和金Ⅱ.分析流程空白的降低.2002.岩矿测试, vol.21, pp.7-11.
    [80]何红蓼,李冰,韩丽荣,孙德忠,王淑贤,李松.封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价.2002.分析试验室, vol.21, pp.8-12.
    [81]王蕾,何红蓼,李冰.碱熔沉淀ICP-MS法测定地质样品中的多元素.2003.岩矿测试, vol.22, pp.86-92.
    [82]R. Barefoot.Determination of the precious metals in geological materials byinductively coupled plasma mass spectrometry.1998.J. Anal. At. Spectrom., vol.13,pp.1077-1084.
    [83]K. Shinotsuka, K. Suzuki. Simultaneous determination of platinum groupelements and rhenium in rock samples using isotope dilution inductively coupledplasma mass spectrometry after cation exchange separation followed by solventextraction.2007.Analytica Chimica Acta, vol.603, pp.129-139.
    [84]J. C. Ely, C. R. Neal, J. A. O'Neill and J. C. Jain.Quantifying the platinum groupelements (PGEs) and gold in geological samples using cation exchange pretreatmentand ultrasonic nebulization inductively coupled plasma-mass spectrometry(USN-ICP-MS).1999.Chemical Geology, vol.157, pp.219-234.
    [85]R. Djingova, H. Heidenreich, P. Kovacheva,B. Markert.On the determination ofplatinum group elements in environmental materials by inductively coupled plasmamass spectrometry and microwave digestion.2003.Analytica Chimica Acta, vol.489,pp.245-251.
    [86]L. Qi, M.-F. Zhou, J. Gao, Z. Zhao.An improved Carius tube technique fordetermination of low concentrations of Re and Os in pyrites.2010.Journal ofAnalytical Atomic Spectrometry, vol.25, pp.585-589.
    [87]X. Jin, H. Zhu.Determination of platinum group elements and gold in geologicalsamples with ICP-MS using a sodium peroxide fusion and telluriumco-precipitation.2000.Journal of Analytical Atomic Spectrometry, vol.15, pp.747-751.
    [88]L. Qi, D. C. Gregoire, M.-F. Zhou, J. Malpas.Determination of Pt, Pd, Ru and Irin geological samples by ID-ICP-MS using sodium peroxide fusion and Teco-precipitation.2003.GEOCHEMICAL JOURNAL-JAPAN-, vol.37, pp.557-566.
    [89]M. Totland, I. Jarvis, K. E. Jarvis. An assessment of dissolution techniques forthe analysis of geological samples by plasma spectrometry.1992.Chemical Geology,vol.95, pp.35-62.
    [90]W. Diegor, H. Longerich, T. Abrajano, I. Horn.Applicability of a high pressuredigestion technique to the analysis of sediment and soil samples by inductivelycoupled plasma-mass spectrometry.2001.Analytica Chimica Acta, vol.431, pp.195-207.
    [91]Q. Liang, H. Jing,D. C. Gregoire.Determination of trace elements in granites byinductively coupled plasma mass spectrometry.2000.Talanta, vol.51, pp.507-513.
    [92]袁洪林.溶液进样和激光剥蚀等离子体质谱在地球化学中的应用:博士学位论文.2002.
    [93]但德忠.微波溶样技术.1989.化学通报, pp.46-49.
    [94]张霖琳,邢小茹,吴国平,魏复盛.微波消解-ICP-MS测定人体血浆中30种痕量元素.2010.光谱学与光谱分析, vol.29, p.1115.
    [95]王小平,李柏.ICP-OES和ICP-MS测定中日两国大米中27种矿质元素含量.2011.光谱学与光谱分析, vol.30, p.2260.
    [96]黄凤妹.微波消解-电感耦合等离子体质谱法检测土壤中16种稀土元素.2012.质量技术监督研究, pp.13-15.
    [97]梁淑轩,王欣,吴虹,孙汉文.微波消解/ICP-MS测定水系沉积物中的9种重金属元素.2012.光谱学与光谱分析, vol.32, pp.809-812.
    [98]王珲,宋蔷,姚强,陈昌和,俞非漉. ICP-OES/ICP-MS测定煤中多种元素的微波消解方法研究.2012.光谱学与光谱分析, vol.32, pp.1662-1665.
    [99]朱利中,戚文彬.微波消解技术在分析中的应用.1995.冶金分析, vol.15, pp.25-33.
    [100] V. Dufailly, L. No l, T. Guérin.Determination of chromium, iron and seleniumin foodstuffs of animal origin by collision cell technology, inductively coupled plasmamass spectrometry (ICP-MS), after closed vessel microwave digestion.2006.AnalyticaChimica Acta, vol.565, pp.214-221.
    [101] S. Millour, L. No l, A. Kadar, R. Chekri, C. Vastel, T. Guérin,.Simultaneousanalysis of21elements in foodstuffs by ICP-MS after closed-vessel microwavedigestion: Method validation.2011.Journal of Food Composition and Analysis, vol.24,pp.111-120.
    [102]刘虎生,邵宏翔.电感耦合等离子体质谱技术与应用:化学工业出版社,2005.
    [103] PE公司, NexION300ICP‐MS用户操作指南,p.18.
    [104] C. Reimann, U. Siewers, H. Skarphagen,D. Banks. Does bottle type andacid-washing influence trace element analyses by ICP-MS on water samples: A testcovering62elements and four bottle types: high density polyethene (HDPE),polypropene (PP), fluorinated ethene propene copolymer (FEP) and perfluoroalkoxypolymer (PFA).1999.Science of the total environment, vol.239, pp.111-130.
    [105] H. Yuan, S. Hu, J. Tong, L. Zhao, S. Lin, S. Gao.Preparation of ultra-pure waterand acids and investigation of background of an ICP-MS laboratory.2000.Talanta, vol.52, pp.971-981.
    [106] C. Reimann, A. Grimstvedt, B. Frengstad,T. E. Finne.White HDPE bottles assource of serious contamination of water samples with Ba and Zn.2007.Science of thetotal environment, vol.374, pp.292-296.
    [107]田娟娟,杜慧娟,潘秋红,段长青,仇厚援.电热板消解与密闭罐消解对土壤中49种矿质元素ICP—MS法检测的影响.2009.分析测试学报, vol.28, pp.319-325.
    [108]金钦汉,刘伟.进口微波样品处理仪器的性能及选用.2000.理化检验:化学分册, vol.36, pp.480-482.
    [109]董炜峰,曾松福,吴俊文,郑崇荣.微波消解仪在海洋沉积物重金属环境有效态及全量分析形态分析中的应用.2008.海洋通报, vol.27, pp.116-120.
    [110]谭和平,吕昊,高杨,张玉兰,陈能武,王晓玲,唐宇.微波消解在茶叶和土壤稀土元素与重金属元素分析中的应用.2010.中国测试, vol.36, pp.37-40.
    [111]黄智伟,王宪,邱海源,陈丽丹,曾敏.土壤重金属含量的微波法与电热板消解法测定的应用比较.2007.厦门大学学报:自然科学版, vol.46, pp.103-106.
    [112]张芙蕖,蒋晶晶.三种土壤消解方法的对比研究.2008.环境科学与管理, vol.33,pp.132-134.
    [113] J. S. Pereira, L. S. Pereira, L. Schmidt, C. M. Moreira, J. S. Barin, E. M. Flores.Metals determination in milk powder samples for adult and infant nutrition afterfocused-microwave induced combustion.2012.Microchemical Journal,
    [114]刘颖,刘海臣.用ICP—MS准确测定岩石样品中的40余种微量元素.1996.地球化学, vol.25, pp.552-558.
    [115]张保科,温宏利,王蕾,马生凤,巩爱华.封闭压力酸溶-盐酸提取-电感耦合等离子体质谱法测定地质样品中的多元素.2012.岩矿测试, vol.30, pp.737-744.
    [116]章新泉,易永,姜玉梅,苏亚勤,童迎东,刘永林,李翔.电感耦合等离子体质谱测定地质样品中多种元素.2005.分析试验室, vol.24, pp.58-61.
    [117]侯振辉,王晨香.电感耦合等离子体质谱法测定地质样品中35种微量元素.2007.中国科学技术大学学报, vol.37, pp.940-944.
    [118]黄达峰.同位素质谱技术与应用:化学工业出版社,2006.
    [119] R. Nadkarni, G. Morrison.Determination of the noble metals in geologicalmaterials by neutron activation analysis.1974.Analytical chemistry, vol.46, pp.232-236.
    [120] J. Gupta. Determination of noble metals in silicate rocks, ores and metallurgicalsamples by simultaneous multi-element graphite furnace atomic absorptionspectrometry with Zeeman background correction.1993.Talanta, vol.40, pp.791-797.
    [121] G. P. Sighinolfi,A. M. Santos.Determination of gold in geological samples atparts per milliard levels by flameless atomic-absorption spectroscopy.1976.Microchimica Acta, vol.66, pp.33-40.
    [122] R. Kuroda, T. Nakano, Y. Miura and K. Oguma.Determination of trace amountsof nickel and cobalt in silicate rocks by graphite furnace atomic absorptionspectrometry: elimination of matrix effects with an ammonium fluoride modifier.1986.J. Anal. At. Spectrom., vol.1, pp.429-431.
    [123] F. Takekawa andKuroda.Determination of gallium in geological materials bygraphite-furnace atomic-absorption spectrometry.1988.Talanta, vol.35, pp.737-739.
    [124] T. Freudiger, C. Kenner. Ion Exchange Separations and Atomic AbsorptionDetermination of Trace Metals in Ores after Basic Fusion.1972.Applied Spectroscopy,vol.26, pp.302-305.
    [125] W. MacLean. Rare earth element mobility at constant inter-REE ratios in thealteration zone at the Phelps Dodge massive sulphide deposit, Matagami, Quebec,1988. Mineralium Deposita.vol.23, pp.231-238.
    [126] Y. Hongo,Y. Nozaki.Rare earth element geochemistry of hydrothermal depositsand Calyptogena shell from the Iheya Ridge vent field, OkinawaTrough.2001.Geochemical Journal-Janpan, vol.35, pp.347-354.
    [127] J. Schade, D. Cornell. H. Theart. Rare earth element and isotopic evidence forthe genesis of the Prieska massive sulfide deposit.South Africa,1989.EconomicGeology, vol.84, pp.49-63.
    [128] M. Rimskaya-Korsakova, A. Dubinin,V. Ivanov.Determination of rare-earthelements in sulfide minerals by inductively coupled plasma mass spectrometry withion-exchange preconcentration.2003.Journal of Analytical Chemistry, vol.58, pp.870-874.
    [129]张海政,陈宗团.萃取色谱富集—等离子体质谱测定海水中的超痕量稀土.1997.岩矿测试, vol.16, pp.201-206.
    [130]胡圣虹,李清澜,林守麟,方金东.电感耦合等离子质谱法直接测定碳酸盐岩中超痕量稀土元素.2000.岩矿测试, vol.19(4), pp.249-253.
    [131]刘春明,郭伊荇.微柱分离富集电感耦合等离子体质谱法测定海水中痕量稀土元素.2001.分析化学, vol.29, pp.984-984.
    [132]《化学分离富集方法及应用》编委会.化学分离富集方法及应用.湖南:中南工业大学出版社,2001, pp.279-333.
    [133]甘树才,来雅文,段太成,曹淑琴,郭锦勇,赵炳南.DT-1016型阴离子交换树脂分离富集金铂钯.2002.岩矿测试, vol.21, pp.113-116.
    [134]来雅文,段太成. C-410树脂分离富集—电感耦合等离子体质谱法测定地质样品中的金,铂,钯.2002.分析化学, vol.30, pp.1363-1366.
    [135]黄碧燕,.交换柱富集-ICP等离子光谱法测定岩矿中痕量稀土元素.2012.福建分析测试, pp.48-51.
    [136]李艳玲,熊采华,黄慧萍,陶德刚,方金东.基体分离-电感耦合等离子体质谱测定重晶石中超痕量稀土元素.2005.岩矿测试, vol.24, pp.87-92.
    [137]曹心德,尹明,王晓蓉.AG50W2x8树脂分离去除钡的多原子离子对电感耦合等离子体质谱法测定稀土元素的质谱干扰.2001.分析化学, vol.29,
    [138]李冰.耦合等离子体质谱技术在地质调查中的应用研究.2007.地质论评, vol.52, pp.799-803.
    [139] D. Pearson, S. Woodland.Solvent extraction/anion exchange separation anddetermination of PGEs (Os, Ir, Pt, Pd, Ru) and Re–Os isotopes in geological samplesby isotope dilution ICP-MS,2000.Chemical Geology, vol.165, pp.87-107.
    [140]曹淑琴,李滦宁,阴离子交换树脂分离—发射光谱法测定地质样品中的金,钯和铂.1995.光谱实验室, vol.12, pp.31-33.
    [141]杨子庚.海洋地质学:青岛出版社,2000.
    [142]吴世迎.世界海底热液硫化物资源:海洋出版社,2000.
    [143] Y. Fouquet, G. Auclair, P. Cambon,J. Etoubleau.Geological setting andmineralogical and geochemical investigations on sulfide deposits near13N on theEast Pacific Rise.1988.Marine Geology, vol.84, pp.145-178.
    [144] C. Lalou, E. Brichet,Hekinian.Age dating of sulfide deposits from axial andoff-axial structures on the East Pacific Rise near1250′N.1985.Earth and planetaryscience letters, vol.75, pp.59-71.
    [145] F. Marques,F.Barriga,S. Scott.Sulfide mineralization in an ultramafic-rockhosted seafloor hydrothermal system: From serpentinization to the formation ofCu–Zn–(Co)-rich massive sulfides.2007.Marine Geology, vol.245, pp.20-39.
    [146] Z. Zeng, X. Wang, G. Zhang, X. Yin, D. Chen.Formation of Fe-oxyhydroxidesfrom the East Pacific Rise near latitude13N: Evidence from mineralogical andgeochemical data.2008.Science in China Series D: Earth Sciences, vol.51, pp.206-215.
    [147] K. Gillis, A. Smith,J. Ludden, Trace element and Sr isotopic contents ofhydrothermal clays and sulfides from the Snakepit hydrothermal field: ODP site649.in Proc ODP Sci Res,1990, pp.315-319.
    [148] H. Kumagai, K. Nakamura, T. Toki, T. Morishita, K. Okino, J. Ishibashi, U.Tsunogai, S. Kawagucci, T. Gamo,T. Shibuya.Geological background of the Kaireiand Edmond hydrothermal fields along the Central Indian Ridge: Implications of theirvent fluids’distinct chemistry.2008.Geofluids, vol.8, pp.239-251.
    [149] S. Petersen, K. Kuhn, T. Kuhn, N. Augustin, R. Hékinian, L. Franz, C.Borowski.The geological setting of the ultramafic-hosted Logatchev hydrothermalfield (1445′N, Mid-Atlantic Ridge) and its influence on massive sulfideformation.2009.Lithos, vol.112, pp.40-56.
    [150] P. Henderson. General geochemical properties and abundances of the rare earthelements.1984.Rare earth element geochemistry, vol.2, pp.1-32.
    [151] K. H. Johannesson, K. J. Stetzenbach and V. F. Hodge.Speciation of the rareearth element neodymium in groundwaters of the Nevada Test Site and YuccaMountain and implications for actinide solubility.1995.Applied geochemistry, vol.10,pp.565-572.
    [152] D. A. Sverjensky.Europium redox equilibria in aqueous solution.1984.Earth andplanetary science letters, vol.67, pp.70-78.
    [153] D. Sverjensky.The distribution of divalent trace elements between sulfides,oxides, silicates and hydrothermal solutions: I. Thermodynamic basis.1985.Geochimica et Cosmochimica Acta, vol.49, pp.853-864.
    [154] S. Wood,A. Williams-Jones.The aqueous geochemistry of the rare-earthelements and yttrium4. Monazite solubility and REE mobility in exhalative massivesulfide-depositing environments.1994.Chemical Geology, vol.115, pp.47-60.
    [155] R. A. Mills, H. Elderfield.Rare earth element geochemistry of hydrothermaldeposits from the active TAG Mound,26N Mid-Atlantic Ridge.1995.Geochimica etCosmochimica Acta, vol.59, pp.3511-3524.
    [156] M. Rimskaya-Korsakova,A. Dubinin, Rare earth elements in sulfides ofsubmarine hydrothermal vents of the Atlantic Ocean, in Doklady Earth Sciences ofDoklady-Akademiia Nauk,2003, pp.432-436.
    [157] N. Pester, M. Rough, K. Ding,W. Seyfried.A new Fe/Mn geothermometer forhydrothermal systems: Implications for high-salinity fluids at13°N on the EastPacific Rise,2011.Geochimica et Cosmochimica Acta, vol.75, pp.7881-7892.
    [158] R. Mills,H. Elderfield.Rare earth element geochemistry of hydrothermaldeposits from the active TAG Mound,26N Mid-Atlantic Ridge.1995.Geochimica etcosmochimica acta, vol.59, pp.3511-3524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700