用户名: 密码: 验证码:
混凝土结构抗震性能的不确定性分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不确定性分析是土木工程领域的一个重要而广泛的研究方向。不确定性分析的理论及方法既是真实反映实际工程不确定性问题的数学语言,也是有效处理实际工程不确定性问题的计算逻辑。包括贝叶斯理论、区间分析等在内的不确定性基本理论,使结构不确定性分析方法具有更为广泛的理论基础,拓展了以往经典概率为基础的分析方法所涉及的工程应用领域。围绕结构抗震分析,本文主要的研究内容总结如下:
     (1)构造了基于贝叶斯网的专家系统通用原型机用于结构工程的诊断评估。在该系统中,领域知识采用离散贝叶斯网表达,系统的推理采用合树算法。系统的构造采用了模块化设计思路。系统依据功能可划分为用户界面模块、贝叶斯网编辑模块以及推理模块。用户界面模块接受用户的输入,包括贝叶斯网的编辑、证据的输入以及最终结果的输出;推理模块负责将贝叶斯网编译为合树、根据证据进行不确定性推理以及边缘化最终的联合概率;编辑模块实现用户界面动作到贝叶斯网构造的转变。本文以钢筋混凝土耐久性诊断为例,说明了贝叶斯网合树算法的推理过程;结合钢筋混凝土结构的抗震性能评估,演示了该系统如何在信息不完备这类土木工程中常见的不确定性环境下的具体应用。
     (2)根据所搜集到的1918条地震记录,对具有不同屈服水平系数及周期的单自由度体系作了弹塑性时程分析,通过拟合得到了简化的延性需求计算公式;根据回归分析构造了一个新的参数用于描述地震频谱特性对延性需求的影响。在此基础上,建立了一个10节点的连续型贝叶斯网用于地震延性概率需求分析。该模型可以根据观测数据不断修正概率分布从而得到更准确的后验分布。贝叶斯网的后验分布是一个非常复杂的高维积分问题。本文引进马尔科夫链蒙特卡罗模拟方法,即基于Metropolis-Hastings采样及收敛性检验算法,计算给定地震强度观察值条件下延性需求的后验分布。算例分析了各地震强度参量及观测值对延性需求预测结果的影响。
     (3)通过收集12次近场地震的71条地震纪录,分析了三种典型框架结构在近场地震作用下的响应,提出了两个基于模糊代表值的新地震强度指标。第一个地震强度指标是根据结构模糊周期,通过扩张原理获得相应的谱速度平方值模糊集,再由模糊集取重心而确定的代表值。对于中长周期的两种典型框架结构,新指标相较于已有的9种指标表现出较好的充分性和有效性。另一个强度指标则以推覆分析中模糊化的加载力向量为基础,通过扩张原理及推覆分析得到结构位移延性模糊集再取代表值求得。分析表明该指标对中短周期结构具有较好的充分性和有效性。总体说来,模糊代表值化的新地震强度指标考虑了结构在环境作用下所具有的模糊性,因此具有较高的充分性和有效性。
     (4)“强剪弱弯”是保证结构延性的一个重要设计概念。本文采用区间变量表达认知不确定性,对钢筋混凝土框架柱的强剪弱弯性能进行了非经典概率可靠性分析。根据失效事件对基本事件的包含关系建立了“强剪弱弯”可靠性概率区间模型。对于含有区间值参数的结构承载力计算,引进泰勒模型以减少由于区间扩张而导致的过大误差。引进考虑“不可行度”的模拟退火遗传算法确定“强剪弱弯”的大致设计区间,根据该设计区间进行重要性采样模拟从而得到了失效概率区间。误差分析表明该方法具有较好的精度。最后通过算例分析了各设计因素对“强剪弱弯”可靠性的影响,并提出了相应的设计建议。
Uncertainty analysis is an important and comprehensive aspect in civil engineering. Uncertainty analysis theorems and methods are not only the mathematic languages for describing the uncertain realistic engineering problems, but also the computational logic to handle the uncertain realistic engineering problems. Uncertainty theorems, including Bayesian theory, interval analysis theory etc, have made the uncertainty structural analysis based on more broader theory foundations and extent the application domains of uncertainty analysis used to be based on classic probabilistic theorem. Around structural seismic analysis, primary research works of this dissertation conclude as following:
     (1) Generic prototype of expert system based on Bayesian network is built for structure assessment and diagnosis. In this system, domain knowledge is expressed as discrete Bayesian network, the inference system is based on junction tree algorithm. Modular design is adopted in construction of the expert system. The whole system can be divided into user interface module, Bayesian network edit module and inference module according to the function. The user interface module accepts the user input, including edit of the Bayesian network, evidence input, and outputs results; inference module compiles the Bayesian network to junction tree, inference uncertainties with given evidences and marginalizes the result joint distribution, Bayesian network edit module converts the activity of user interface to the construction of Bayesian network. Take the example of durability diagnosis of reinforced concrete to illuminate the inference process of junction tree algorithm for discrete Bayesian network; combined with seismic performance evaluation of reinforced concret frame structures, demonstrates how the reasoning can be performed in the situation where the input information is uncertain and incomplete that frequently encountered in civil engineering.
     (2) Nonlinear time history analysis of SDOF with various yield strength coefficient and period are performed based on1918earthquake ground motion records; simplified formula of ductility demand is acquired by curve fitting. A new parameter that quantifies the earthquake spectrum character effect on the ductility demand is constructed by regression analysis. Based on above, a ten-node continuous Bayesian network is established for seismic ductility demand probability analysis. The Bayesian network can acquire the posterior distribution which is more accurate updated by observed data. The posterior probability distribution involved in Bayesian network updating is a complicated multi-dimensional integral, Markov Chain Monte Carlo method, more specifically, Metropolis-Hastings sampling algorithm and convergence diagnosis algorithm, is introduced to update the ductility demand posterior probability distribution with earthquake intensity observations. Case study is carried out to analyze how the earthquake intensity parameters and given observations effect on the calculation results.
     (3) Based on71time history acceleration records of12near-fault earthquakes occurred in recent years, responses of three typical frame structures are analyzed and two new intensity measures are proposed. First intensity measure, based on the fuzzy structure vibration period, acquiring the corresponding squared spectrum velocity fuzzy set according to extension principle, is determined as representative value by taking the center of gravity of fuzzy set. For the frame structures with medium and long period, the new measure exhibits more efficiency and sufficiency than other9present available intensity measures. Another intensity measure, based on fuzzy valued force shape vector used in pushover analysis, obtaining the fuzzy set of displacement ductility by extension principle and pushover analysis, is also determined as representative value. This new measure is efficiency and sufficiency for the frame structures with medium and short period. In general, new fuzzy representative valued IMs are more efficiency and sufficiency than other available IMs for consideration of vague uncertainty of structure under complicated realistic circumstance.
     (4) In the seismic design of reinforced concrete structures,"strong shear weak bending" is an important design conception to guarantee the ductibility of the structure. Interval variable is introduced to express the epistemic uncertainty and failure probability interval of strong shear weak bending of reinforced concrete column is analyzed. The interval-valued probabilistic reliability model for "strong shear weak bending" is formulated according to the inclusion relationship of the element events and the failure event. For the calculation of the resistance capability involving interval-valued parameters, Taylor model is introduced in computation to reduce the error induced by interval inflation. The simulated annealing genetic algorithm considering "infeasible degree" is applied to determine the approximate design interval of the "strong shear weak bending". A specific sampling function constructed by such design interval is adopted to obtain the interval-valued probabilistic reliability index; error analysis indicates that the precision of the method is acceptable. Case study is carried out to analyze the different design parameters affecting the reliability and corresponding design suggestions are proposed.
引文
[1]Ayyub B M. Elicitation of expert opinions for uncertainty and risks. USA:CRC Press LLC,2001,28-31
    [2]Oberkampf W L, Helton J C, Sentz K. Mathematical representation of uncertainty, Paper No.2001-1645. In:42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Seattle, WA,2001,1-16
    [3]Zadeh L A. Fuzzy sets. Information & Control,1965,8:338-353
    [4]Moore R E. Interval Analysis. Englewood Cliffs, NJ:Prentice-Hall,1966, 1-158
    [5]Dempster A P. Upper and lower probabilities induced by a multivalued mapping. The Annals of Mathematical Statistics,1967,38 (2):325-339
    [6]Shafer G. A mathematical theory of evidence. Princeton, NJ:Princeton University Press,1976,1-217
    [7]Beck J L, Katafygiotis L S. Updating models and their uncertainties. Part Ⅰ: Bayesian statistical framework. Journal of Engineering Mechanics,1998, 124(4):455-461
    [8]Katafygiotis L S, Beck J L. Updating models and their uncertainties. Part Ⅱ: Model identificablity. Journal of Engineering Mechanics,1998,124(4): 463-467
    [9]Sohn H, Law K H. Application of load-dependent Ritz vectors to Bayesian probabilistic damage detection. Probabilistic Engineering Mechanics,2000,15: 139-153
    [10]Yuen K V, Katafygiotis L S. Bayesian time-domain approach for modal updating using ambient data. Probabilistic Engineering Mechanics,2001,16: 219-231
    [11]Yuen K V, Beck J L, Katafygiotis L S. Unified probabilistic approach for model updating and damage detection. Journal of Applied Mechanics,2004,73: 555-564
    [12]易伟建,吴高烈,徐丽.模态参数不确定性分析的贝叶斯方法研究.计算力学学报,2006,23(6):700-705
    [13]邱洪兴.用贝叶斯方法确定单桩竖向承载力.工业建筑,1997,27(2):33-36
    [14]李小勇,谢康和.土性参数相关距离的计算研究和统计分析.岩土力学,2000,21(4):350-353
    [15]姚继涛.现有结构材料强度的统计推断.西安建筑科技大学学报,2003,35(4):307-311
    [16]张仪萍.地基沉降泊松曲线拟合的概率方法.岩土工程学报,2005,27(7):837-840
    [17]陈斌,刘宁,卓家寿.岩土反分析的扩展贝叶斯法.岩土力学与工程学报,2004,23(4):555-560
    [18]Geyskens P, Kiureghian A D, Monterio P. Bayesian prediction of elastic modulus of concrete. Journal of Structural Engineering,1998,124 (1):89-95
    [19]Cheung S H, Beck J L. Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters. Journal of Engineering Mechanics,2009,135(4):243-255
    [20]Coolen F P A. On Bayesian reliability analysis with informative priors and censoring. Reliability Engineering & System Safety,1996,53:91-98
    [21]Byers W G, Marley M J, Mohammadi J, et al. Fatigue reliability reassessment procedures:state-of-the-art paper. Journal of Structural Engineering,1997, 123(3):271-276
    [22]Zhang R, Mahadevan S. Model uncertainty and Bayesian updating in reliability-based inspection. Structural Safety,2000,22:145-160
    [23]Papadimitriou C, Beck J L, Katafygiotis L S. Updating robust reliability using structural test data. Probilistic Engineering Mechanics,2001,16:103-113
    [24]Sasani M, Kiureghian A D, Bertero V V, Seismic fragility of short period reinforced concrete structural walls under near-source ground motions. Structural Safety,2002,24:123-138
    [25]刘章军,叶燎原,潘文.基于模糊贝叶斯的震害预测.昆明理工大学学报,2002,27(6):108-111
    [26]Zhong J, Gardoni P, Rosowsky D, Haukaas T. Probabilistic seismic demand models and fragility estimates for reinforced concrete bridges with two-column bents. Journal of Engineering Mechanics,2008,134(6):495-504
    [27]Cremona C, Gao Y. The possibilistic reliability theory:theoretical aspects and applications. Structural Safety,1997,19(2):173-201
    [28]Moller B, Beer M, Graf W, Hoffmann A. Possibility theory based safety assessment. Computer-Aided Civil Infrastructure Eng,1999,14:81-91
    [29]郭书祥,吕震宙,冯立富.基于可能性理论的结构模糊可靠性方法.计算力 学学报,2002,19(1):89-93
    [30]曹文贵,张永杰.基于区间截断法的地下结构模糊能度可靠性模型研究.岩土工程学报,2007,29(10):1455-1459
    [31]Biondini F, Bontempi F, Malerba P G. Fuzzy reliability analysis of concrete structures. Computers & Structures,2004,82:1033-1052
    [32]李云贵,赵国藩.基于模糊随机概率理论的可靠度分析模型.大连理工大学学报,1995,35(4):528-53 1
    [33]王光远,刘玉彬.结构模糊随机可靠度的实用计算方法.地震工程与工程振动,1995,15(3):38-46
    [34]Liu Y B, Qiao Z, Wang G Y. Fuzzy random reliability of structures based on fuzy random variables. Fuzzy Sets & Systems,1997,86:345-355
    [35]Moller B, Graf W, Beer M. Safety assessment of structures in view of fuzzy randomness. Computers & Structures,2003,81:1567-1582
    [36]李贞新,郭丰哲,钱永久.既有钢筋混凝土拱桥耐久性的模糊综合评估.西南交通大学学报,2006,41(3):366-370
    [37]杨建江,张永超.模糊层次分析法和模糊理论在危险房屋鉴定中的应用.河北工业大学学报,2005,34(6):91-95
    [38]徐敬海,刘伟庆,邓民宪.建筑物震害预测模糊震害指数法.地震工程与工程振动,2002,22(6):84-88
    [39]刘伟庆,徐敬海,邓民宪.震害影响因子的多级模糊综合评判研究.地震工程与工程振动,2003,23(2):123-127
    [40]Zhao Z Y, Chen C Y. A fuzzy system for concrete bridge damage diagnosis. Computers & Structures,2002,80:629-641
    [41]Kawamura K, Miyamoto A. Condition state evaluation of existing reinforced concrete bridges using neuro-fuzzy hybrid system. Computers & Structures, 2003,81:1931-1940
    [42]Silva S, Junior M D, Junior V L, Brennan M J. Structural damage detection by fuzzy clustering. Mechanical Systems & Signal Processing,2008,22: 1636-1649
    [43]Altunok E, Taha M M R, Ross T J. Possibilistic approach for damage detection in structural health monitoring. Journal of Structural Engineering,2007,133(9): 1247-1256
    [44]Qiu Z, Chen S H, Song D T. The displacement bound estimation for structures with interval description of uncertain parameters. Communications in Numerical Methods in Engineering,1996,12:1-11
    [45]Qiu Z, Elishakoff I. Anti-optimization of structure with large uncertain-but-non-random parameters via interval analysis. Computer Methods in Applied Mechanics & Engineering,1998,152:361-372
    [46]Chen S H, Yang X W, Interval finite element method for beam structures. Finite Elements in Analysis & Design,2000,34:75-88
    [47]郭书祥,吕震宙.区间有限元静力控制方程的一种迭代解法.西北工业大学学报,2002,20(1):20-23
    [48]Guo S X, Lu Z Z. Interval arithmetic and static interval finite element method. Applied Mathematics & Mechanics,2001,20(1):1390-1396
    [49]郭书祥,吕震宙.线性区间有限元静力控制方程的组合解法.计算力学学报,2003,20(1):34-38
    [50]Muhanna R L, Mullen R L. Uncertainty in mechanics problems—interval-based approach. Journal of Engineering Mechanics,2001,127(6):557-566
    [51]Muhanna R L, Mullen R L, Zhang H. Penalty-Based Solution for the interval finite-element methods. Journal of Engineering Mechanics,2005,131(10): 1102-1111
    [52]Koyluoglu H U, Cakmak A S, Nielsen S R. Interval algebra to deal with pattern loading and structural uncertainties. Journal of Engineering Mechanics,1995, 121(11):1149-1157
    [53]Rao S S, Berke L. Analysis of uncertain structural systems using interval analysis. AIAA Journal,1997,35(4):725-735
    [54]陈怀海.非确定结构系统区间分析的直接优化法.南京航空航天大学学报,1999,31(2):146-150
    [55]王登刚,李杰.计算不确定结构系统静态响应的一种可靠方法.计算力学学报,2003,20(6):662-669
    [56]王登刚.计算具有区间参数结构的固有频率的优化方法.力学学报,2004,36(3):364-372
    [57]王登刚,李杰.计算具有区间参数结构特征值范围的一种新方法.计算力学学报,2004,21(1):56-61
    [58]Yakov B H. A non-probabilistic concept of reliability. Structural Safety,1994, 14(4):227-245
    [59]Yakov B H. A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Structural Safety,1995,17(2):91-109
    [60]郭书祥,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型.计算力学学报,2001,18(1):56-60
    [61]郭书祥,吕震宙.结构可靠性分析的概率和非概率混合模型.机械强度,2002,24(4):524-526
    [62]Nakagin S, Suzuki K. Finite element interval analysis of external loads identified by displacement input with uncertainty. Computer Methods in Applied Mechanics & Engineering,1999,168:63-72
    [63]王登刚,刘迎曦,李守巨,刚宪约.巷道围岩初始应力场和弹性模量的区间反演方法.岩石力学与工程学报,2002,21(3):305-308
    [64]王登刚,刘迎曦,李守巨.混凝土坝振动参数区间逆分析.大连理工大学学报,2002,42(5):522-526.
    [65]Abrahamson N A, Silva W J. Empirical response spectral attenuation relations for shallow crustal earthquake. Seismological Research Letters,1997,68(1): 94-127
    [66]Boore D M, Joyner W B, Fumal T E. Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Western North American Earthquakes:A Summary of Recent Work. Seismological Research Letters, 1997,68(1):128-153
    [67]Campbell K W. Empirical Near-Source Attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectral. Seismological Research Letters, 1997,68(1):154-179
    [68]李春锋,赵庆英,刘普超.NGA计划简介.地震地磁观测与研究,2008,29(1):115-119
    [69]Moss R. Reduced Uncertainty of Ground Motion Prediction Equations through Bayesian Variance Analysis. Pacific Earthquake Engineering Research Center Report 2009/105, http://works.bepress.com/rmoss/26/,2010-10-12
    [70]Sigbjornsson R, Ambraseys N N. Uncertainty analysis of strong-motion and seismic hazard. Bulletin of Earthquake Engineering,2003,1(3):321-347
    [71]Luco N, Cornell C A. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions. Earthquake Spectra,2007, 23(2):357-392
    [72]Baker J W, Cornell C A. A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon. Earthquake Engineering & Structural Dynamics,2005,34(10):1193-1217
    [73]Baker J W, Cornell C A. Vector-valued intensity measures for pulse-like near-fault ground motions. Engineering Structures,2008,30:1048-1057
    [74]Tothong P, Luco N. Probabilistic seismic demand analysis using advanced ground motion intensity measure. Earthquake Engineering & Structural Dynamics,2007,36(13):1837-1860
    [75]欧进萍,段宇博,刘会仪.结构随机地震作用及其统计参数.哈尔滨建筑工程学院学报,1994,27(5):1-10
    [76]Veletsos A S, Newmark N M. Effect of inelastic behavior on the response of simple systems to earthquake motions. In:Proceeding of the second WCEE. Tokyo and Kyoto,1960,895-912.
    [77]Nassar A A, Krawinkler H. Seismic demands for SDOF and MDOF systems, Report No.95. Standford, California:The John A. Blume Earthquake Engineering Center, Dept. of Civil Engineering, Standford Univ,1991,12-45
    [78]Miranda E, Bertero V V. Evaluation of strength reduction factor for earthquake-resistance design. Earthquake Spectra,1994,10(2):357-259
    [79]Miranda E. Site dependent strength reduction factors. Journal of Structural Engineering,1993,119(12):3503-3519
    [80]卓卫东,范立础.结构抗震设计中强度折减系数研究.地震工程与工程振动,2001,21(1):84-88
    [81]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱.地震工程与工程振动,2004,24(1):39-48
    [82]YI W J, Zhang H Y. Probabilistic Constant-Strength Ductility Demand Spectra. Journal of Structural Engineering,2007,133 (4):567-575
    [83]Krawinkler H, Seneviratna G D P K. Pros and Cons of a pushover analysis of seismic performance evaluation. Engineering Structure,1998,20:452-464
    [84]Gupta B, Kunnath S K. Adaptive spectra-based pushover procedure for seismic evaluation of structures. Earthquake Spectra,2000,16(2):367-391
    [85]Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering & Structural Dynamics, 2002,31(3):561-582
    [86]欧进萍,侯钢领,吴斌.概率Pushover分析方法及其在结构体系抗震可靠度评估中的应用.建筑结构学报,2001,22(6):81-86
    [87]贾立哲,段忠东,陆钦年.基于凸集模型的界限Pushover分析.地震工程与工程振动,2006,26(5):81-87
    [88]侯爽,欧进萍.钢筋混凝土框架结构体系抗震可靠度及抗力衰减影响分析.地震工程与工程振动,2006,26(5):114-119
    [89]高小旺,沈聚敏.大震作用下钢筋混凝土框架房屋变形能力的抗震可靠度 分析.土木工程学报,1993,26(3):3-12
    [90]欧进萍,段宇博.高层建筑结构的抗震可靠度分析与优化设计.地震工程与工程振动,1995,15(1):1-13
    [91]马宏旺,赵国藩.钢筋混凝土梁抗震可靠度校核以及强剪弱弯设计可靠性分析.建筑结构,2000,30(10):3-8
    [92]袁贤讯,易伟建.钢筋混凝土框架“强柱弱梁”及轴压比限值的概率分析.重庆建筑大学学报,2000,22(3):64-68.
    [93]Dooley K L, Bracci J M. Seismic evaluation of column-to-beam strength ratios in reinforced concrete frames. ACI Structural Journal,2001,98(6):843-851.
    [94]张海燕.RC框架强柱弱梁设计的可靠度分析.昆明理工大学学报,2009,34(2):58-63.
    [95]Ishizuka M, Fu K S, Yao J T P. SPERIL-Ⅰ:computer based structural damage assessment system, Tech Report No.CE-SET-81-36. West Lafayette:School of of Civil Engineering, Purdue Univ,1981,1-40
    [96]Ogawa H, Fu K S, Yao J T P. Knowledge representation and inference control of SPERIL-Ⅱ. In:Proceedings of the 1984 annual conference of the ACM on The fifth generation challenge. New York, USA,1984,42-49
    [97]陈瑞金,刘西拉.钢筋混凝土单层工业厂房可靠性评估知识获取与知识分析.四川建筑科学研究,1989,1:2-7.
    [98]Chiang W, Liu K F R, Lee J. Bridge damage assessment through Fuzzy Petri Net based expert system. Journal of Computing in Civil Engineering,2000, 14(2):142-149
    [99]李楚舒,刘西拉,张之勇.基于事例推理的高层建筑结构初步设计专家系统(基础篇).建筑结构学报,2003,24(2):76-82
    [100]李楚舒,刘西拉,张之勇.基于事例推理的高层建筑结构初步设计专家系统(应用篇).建筑结构学报,2003,24(3):82-96
    [101]Mathew A, Kumar B, Sinha B P, et al. Analysis of masonry panel under biaxial bending using ANNs and CBR. Journal of Computing in Civil Engineering, 1999,13(3):170-177
    [102]Morcous G, Hanna H R. Modeling Bridge Deterioration Using CBR. Journal of Infrastructure Systems,2002,8(3):86-95
    [103]施宏宝,王秋荷.专家系统.西安:西安交通大学出版社,1990,10-136
    [104]Nilsson N J.人工智能.郑扣根,庄越挺等译.北京:机械工业出版社,2000,106-135
    [105]Giarratano J C. CLIPS User's Guide. http://clipsrules.sourceforge.net/document ation/v630/ug.pdf,2011-1-18
    [106]Boer T W. A beginner's guide. http://download.pdc.dk/vip/72/books/deBoer/Vis ualPrologBeginners.pdf,2011-1-18
    [107]Zadeh L A. Toward a perception-based theory of probabilistic reasoning with imprecise probabilities. Journal of Statistical Planning & Inference,2002,105: 233-264
    [108]Pearl J. Probabilistic Reasoning in Intelligent Systems:Networks of Plausible Inference. San Francisco, California:Morgan Kaufmann,1988,29-141
    [109]Spiegelhalter D J, Dawid A P, Lauritzen S L, et al. Bayesian Analysis in Expert Systems. Statistical Science,1993,8(3):219-247
    [110]欧进萍,张世海等.高层钢筋混凝土结构抗震选型的模糊专家系统.地震工程与工程振动,1997,17(2):82-91.
    [111]张在明,陈雷,沈小克.工程勘察场地复杂程度划分及其专家系统的建立.土木工程学报,1998,31(6):15-22.
    [112]杨育文,袁建新.改进的逆向推理技术在深基坑工程专家系统中的应用.岩土工程学报,1999,21(6):700-703.
    [113]杨纶标,高英仪.模糊数学.广州:华南理工大学出版社,2003,195-271
    [114]Mamdani E H, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies,1975,7(1): 1-13.
    [115]Mamdani E H. Applications of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers,1977,26(12): 1182-1191.
    [116]冯乃谦,邢锋.混凝土与混凝土结构的耐久性.北京:机械工业出版社,2009,65-78
    [117]Heckerman D. A tutorial on learning with Bayesian networks, Tech. report MSR-TR-95-06 (1995). http://research.microsoft.com/research/pubs/view.aspx ?msrtrid=MSR-TR-95-06,2003-3-3
    [118]Newton M A, Raftery A E. Approximate Bayesian inference by the weighted likelihood bootstrap, Tech. Report No.199. Sealtte, Washington:Dept. of statistics, University of Washington,1991,1-51
    [119]Pearl J. Fusion, propagation, and structuring in belief networks. Artificial Intelligence,1986,29:241-288
    [120]Dawid A P. Application of a general propagation algorithm for probabilistic expert systems. Statistics & Computing,1992,2:25-26.
    [121]Huang C, Darwiche A. Inference in belief networks:a procedural guide. International Journal of Approximate Reasoning,1996,15:225-263.
    [122]Kj(?)rulff U. Triangulation of graphs—algorithms giving small total state space, Tech. Report R-90-90. Denmark:Dept. of mathematics and computer science, Aalborg Univ,1990,1-38.
    [123]Scheines R. D-separation. http://www.andrew.cmu.edu/user/scheines/tutor/d-se p.html,2006-9-16
    [124]Cowell R G, Dawid P, Lauritzen S L, Spiegelhalter D J. Probabilistic Networks and Expert Systems. NJ, USA:Springer-Verlag New York,1999,31-33
    [125]Hammersley J M, Clifford P. Markov fields on finite graphs and lattices (1971). http://www.statslab.cam.ac.uk/-grg/books/hammfest/hamm-cliff.pdf,2003-4-1
    [126]Tarjan R, Yannakakis M. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acylic hypergraphs. SIAM Journal on Computing,1984,13(3):566-579.
    [127]Jensen F V, Lauritzen S, Olesen K. Bayesian updating in causal probabilistic networks by local computation. Computational Statistics Quarterly,1990,4: 269-282.
    [128]刘正林.面向对象程序设计.武汉:华中科技大学出版社,2001,30-160
    [129]微软公司.Microsoft Visual C++ 6.0 MFC类库参考手册.北京:北京希望电子出版社,1999,10-200
    [130]Cornell C A, Krawinkler H. Progress and challenges in seismic performance assessment, http://peer.berkeley.edu/news/2000springs/index.html,2004-1-5
    [131]Borzi B, Calvi G M, Elnashai A S, et al. Inelastic spectra for displacement-based seismic design. Soil Dynamics & Earthquake Engineering, 2001,21:47-61.
    [132]Tena C A. Displacement ductility demand spectra for the seismic evaluation of structures. Engineering Structures,2003,23:1319-1330.
    [133]周定松,吕西林.延性需求谱在基于性能的抗震设计中的应用.地震工程与工程振动,2004,24(1):30-38.
    [134]Malhotra P K. Response of buildings to near-field pulse-like ground motions. Earthquake Engineering & Structural Dynamics,1999,28:1309-1326
    [135]黄建文,朱晞.近震作用下单自由度结构的非弹性响应分析研究.中国安全科学学报,2003,13(11):59-65
    [136]高小旺,鲍霭斌.地震作用的概率模型及其统计参数.地震工程与工程振动,1985,5(1):13-22.
    [137]刘恢先,卢荣俭,陈达生等.修订我国地震烈度表的一个建议方案.见:地震工程研究报告集(第四集).北京:科学出版社,1981,1-13.
    [138]Casella G, George E I. Explaining the Gibbs sampler. The American Statistician, 1992,46(3):167-174.
    [139]Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equations of state calculations by fast computing machines. The Journal of Chemical Physics, 1953,21(6):1087-1091.
    [140]Hastings W K. Monte Carlo sampling methods using Markov Chains and Their applications. Biometrika,1970,57(1):97-109.
    [141]朱嵩,毛根海,刘国华,黄跃飞.改进的MCMC方法及其应用.水利学报,2009,40(8):1019-1023
    [142]Geweke J. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In:Bayesian Statistics 4. Oxford, UK: Oxford Univ. Press,1992,169-193.
    [143]Raftery A E, Lewis S. How many iterations in the Gibbs sampler. In:Bayesian Statistics 4. Oxford, UK:Oxford Univ. Press,1992,763-773.
    [144]Cowles M K, Carlin B P. Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review. Journal of the American Statistical Association,1996, 91(434):883-904.
    [145]王凌.智能优化算法及其应用.北京:清华大学出版社,2001,17-30.
    [146]Miranda E. Evaluation of site-dependent inelastic seismic design spectra. Journal of Structural Engineering,1993,119 (5),1319-1338
    [147]Fajfar P, Vidic T, Fischinger M. A measure of earthquake motion capacity to damage medium—period structures. Soil Dynamics & Earthquake Engineering, 1990,9(5):236-242
    [148]郝敏,谢礼立,李伟.基于砌体结构破坏损伤的地震烈度物理标准研究.地震工程与工程振动,2007,27(5):27-32
    [149]Vamvatsikos D, Cornell C A. Developing efficient scalar and vector intensity measures for IDA capacity estimation by incorporating elastic spectral shape information. Earthquake Engineering & Structural Dynamics,2005,34:1-22.
    [150]Shome N, Cornell C A, Bazzurro P, Carballo J E. Earthquakes, records, and nonlinear responses. Earthq Spectra,1998,14 (3),469-500.
    [151]Riddell R, Garcia J E. Hysteretic energy spectrum and damage control. Earthquake Engineering & Structure Dynamics,2001,30:1791-1816.
    [152]王京哲,朱晞.近场地震速度脉冲下的反应谱加速度敏感区.中国铁道科学, 2003,24(6):27-30
    [153]Sucuoglu H, Nurtug A. Earthquake ground motion characteristics and seismic energy dissipation. Earthquake Engineering & Structural Dynamics,1995, 24(9):1195-1213
    [154]Alavi B, Krawinkler H. Effects of near fault ground motions on frame structures, Report No.138. Standford, California:The John A. Blume Earthquake Engineering Center, Dept. of Civil Engineering, Standford Univ, 2001,156-188
    [155]李新乐,朱晞.近断层地震动等效速度脉冲研究.地震学报,2004,26(6):634-643
    [156]韦韬,赵凤新,张郁山.近断层速度脉冲的地震动特性研究.地震学报,2006,28(6):629-637
    [157]Uniform Building Code. California:International Conference of Build Officials 1997,120-130
    [158]谭平,谈忠坤,周福霖.近场地震动特性及弹性和塑性谱的研究.华南地震,2008,28(2):1-9
    [159]Housner G W. Spectrum intensities of strong motion earthquakes. In: Proceedings of the Symposium on Earthquakes and Blast Effects on Structures. Los Angeles, California:EERI,1952,20-36
    [160]Arias A. A measure of earthquake intensity. In:Seismic design for nuclear power plants. Cambridge, Massachusetts:MIT Press,1970,438-483
    [161]Housner G W. Measure of severity of earthquake ground shaking. In:1st Proceedings of the U.S. National Conference on Earthquake Engineering, Ann Arbor, Michigan. Oakland, California:EERI,1975,25-33
    [162]Park Y J, Ang A H S, Wen Y K. Seismic damage analysis of reinforced concrete buildings. Journal of Structural Engineering,1985,111(4):740-757
    [163]Bazzurro P, Cornell C A, Shome N, et al. Three proposals for characterizing MDOF non-linear seismic response. Journal of Structural Engineering,1998, 124(11):1281-1289
    [164]Sarma S K, Yang K S. An evaluation of strong motion records and a new parameter A95. Earthquake Engineering & Structural Dynamics,1987,15(1): 119-132
    [165]Benjamin J R. A criterion for determining exceedance of the operating basis earthquake, EPRI Report NP-5930. Palo Alto, California:Electric Power Research Institute,1988,1-28
    [166]叶燎原,潘文.结构静力弹塑性分析的原理和计算实例.建筑结构学报,2000,21(1):37-43
    [167]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响.地震工程与工程振动,2004,24(3):89-97
    [168]Paulay T, Priestley M J N.钢筋混凝土和砌体结构的抗震设计.戴瑞同等译.北京:中国建筑工业出版社,1999,98-225
    [169]薛素铎,赵均,高向宇.建筑抗震设计.第二版.北京:科学出版社,2007,13-18
    [170]中华人民共和国国家标准.混凝土结构设计规范(GB50010-2002).北京:中国建筑工业出版社,2002,41-50
    [171]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001).北京:中国建筑工业出版社,2001,36-37
    [172]Berz M, Hoffstatter G. Computation and Application of Taylor Polynomials with interval remainder bounds. Reliable Computing,1998,4:83-97.
    [173]Mu S, Su H, Mao WJ, et al. A new genetic algorithm to handle the constrained optimization problem. In:Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, Nevada USA,2002,739-740
    [174]白生翔.适筋混凝土构件配筋界限条件的概率分析.建筑结构,1996,5:3-11
    [175]管品武,邹银生,刘立新.反复荷载下钢筋混凝土框架柱抗剪承载力分析.世界地震工程,2000,16(2):52-56
    [176]马宏旺.钢筋混凝土柱“强剪弱弯”设计可靠度分析.水利学报.2002,4:88-92
    [177]赵国藩,金伟良,贡金鑫.结构可靠度理论.北京:中国建筑工业出版社,2000,79-101
    [178]陈国良,王煦法,庄镇泉等.遗传算法及其应用.北京:人民邮电出版社,1996,117-130
    [179]马洪波,陈建军,马芳,张建国.遗传算法在随机参数刚架结构概率优化设计中的应用.计算力学学报,2004,21(4):487-492
    [180]赵衍刚,江近仁.一种以遗传算法为基础的结构可靠性分析方法.地震工程与工程振动,1995,15(3):47-58
    [181]中华人民共和国国家标准.中国地震动参数规划图(GB18306-2001).北京:中国标准出版社,2001,36-38
    [182]Trifunac MD, Brady AG. A study on the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America,1975,65(3):581-626
    [183]刘恢先.工程建设中智能辅助决策系统.北京:中国建筑工业出版社,1992, 10-126
    [184]FEMA. NEHRP Guidelines for the seismic rehabilitation of buildings. FEMA-273. Washington, D.C:Federal Emergency Management Agency,1996, 98-106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700