用户名: 密码: 验证码:
长期施肥下典型农田土壤有效磷的演变特征及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是植物生长发育必需的元素,也是引起水体污染的重要原因。土壤磷的化学、生物有效性变化和机制,是土壤学研究的核心问题之一。针对不同生态气候农田连续施肥下土壤有效磷的演变特征和机制研究相对薄弱,本文分析了十三个15–31年长期试验点(四个单季旱作、五个双季旱作和四个水旱轮作农田)不施磷(Control、N)、化学磷肥(NP、NPK)和有机肥配施化学磷肥(NPM、NPKM)等处理的观测数据,结合温室盆栽试验,主要研究(1)长期不同施肥土壤有效磷的变化特征;(2)不同作物土壤有效磷的农学阈值;(3)不同施肥下土壤有效磷对磷盈亏的响应特征;(4)不同C/N有机物料对磷素循环的影响,主要结果如下:
     (1)长期不同施肥下十三个点土壤有效磷的变化总体为:有机肥配施化学磷肥增加4.2mg/kg/yr,化学磷肥增加0.9mg/kg/yr,不施磷下降0.2mg/kg/yr。旱地农田中有机肥配施化学磷肥提升了土壤有机碳,提高了有效磷及其占全磷百分比(磷活化系数);若土壤有机碳增加1.0g/kg,有效磷增加0.04–0.15mg/kg,磷活化系数增加0.3–1.2%。水旱轮作土壤有机碳与有效磷呈显著正相关,而与磷活化系数关系不显著。
     (2)不同作物土壤有效磷的农学阈值总体为:小麦、玉米和水稻土壤有效磷的农学阈值分别为7.5–23.5mg/kg、5.7–15.2mg/kg和4.3–14.9mg/kg。除哈尔滨外,其余点土壤有效磷需要在基础值提升2.8–18.9mg/kg,才能达到相应作物的农学阈值。
     (3)不同轮作下土壤有效磷的变化显著受到磷盈亏的影响。每盈亏100kg P/ha,双季旱作下土壤有效磷平均增量为:有机肥配施化学磷肥(11.1mg/kg)>化学磷肥(2.3mg/kg)>不施磷(0.7mg/kg);而水旱轮作则不同,化学磷肥(11.6mg/kg)>有机肥配施化学磷肥(6.3mg/kg)>不施磷(~0mg/kg)。单季旱作下,上述两类施磷处理在各试验点的有效磷增量不同。单季和双季旱作下,土壤有机碳增加促进了盈余磷转化成有效磷,而水旱轮作下,有机碳对盈余磷的转化没有显著影响。
     (4)在磷盈余和亏缺下,不同C/N有机物料对磷在土壤-微生物-植物间组分变化有显著差异。在磷盈余下,低C/N有机物料显著增加了微生物对磷的固持、促进了植物对土壤有效磷的吸收,微生物磷占总磷比例在C/N12.5、25和50依次为5.4%、4.7%和1.7%;植物磷比例分别为14.8%、9.5%和2.1%。在磷亏缺下,低C/N有机物料仅增加了微生物对磷的固持,而未增加植物对磷的吸收。
     综上,我国典型旱作农田(特别双季旱作)配施有机肥对土壤有效磷的提升、加快达到有效磷农学阈值的效果显著优于水旱轮作。在农业生产实践中,在磷充足的农田选用低C/N有机肥更有利于促进植物和微生物对土壤磷的吸收利用。
Phosphorus (P) is a major essential element for plant growth, metabolism and productivity, whilstexcess P has resulted in worldwide eutrophication in water bodies. The chemical and biologicalmechanisms of soil P availability are the key points for soil science. The study is mainly to address theevolution characteristics and mechanisms of soil available P under long-term (15–31) fertilizations atvarious eco-climate conditions. Six fertilization treatments were chosen:①Control,②chemical N,③chemical N and P (NP),④chemical NP and K (NPK),⑤chemical NP and manure (NPM);⑥chemical NPK and manure (NPKM) at13long-term experiment sites (four mono-upland sites, fivedouble-upland sites and four rice field-upland sites). Data analyses from these long-term fieldexperiments with a glasshouse pot experiment were used to examine (1) evolution characteristics of soilavailable P (SAP);(2) critical values of soil available P for wheat/barley, maize and rice;(3) response ofsoil available P to P apparent balance under different soils and fertilizations;(4) P cycling insoil-microorganism-plant systems under the addition of organic compounds into soil with differentcarbon/nitrogen ratios. The main findings are as followings:
     (1) Effects of long-term fertilizations on evolution characteristics of SAP of the13sites weregenerally showed that: SAP was increased by4.2and0.9mg/kg respectively under chemical P plusmanure treatment and chemical P treatments, but decreased by0.2mg/kg under no P treatments. At themono-/double-cropping upland sites, an increase of1.0g/kg soil organic carbon (SOC) would increaseSAP by0.04–0.15mg/kg and P activation coefficient (PAC, percentage of soil available P to total P) by0.3–1.2%, respectively. Though significant relationship showed between SOC and SAP, no significantrelationship showed between SOC and PAC at the upland rice sites.
     (2) The critical value of SAP for different crops under different soils showed that:7.5–23.5mg/kgfor the wheat/barley,5.7–15.2mg/kg for the maize and4.3–14.9mg/kg for the rice. An increase of2.8–18.9mg/kg SAP based on their initial values would achieve their relevant critical values of SAP forthese sites except Harbin (which was already achieved the critical SAP value based on its initial value).
     (3) The change in SAP was significantly affected by P apparent balance under different croppingsystems. The mean change in SAP with100kg P/ha surplus ranked as: chemical P plus manuretreatments (11.1mg/kg)> chemical P treatments (2.3mg/kg)> no P treatments (0.7mg/kg) at fivedouble-cropping upland sites, whilst chemical P treatments (mean11.6mg/kg)> chemical P plusmanure treatments (mean6.3mg/kg)> no P treatments (~0mg/kg) at four rice field-upland sites.Change in SAP with P surplus varied among the four mono-upland sites. At mono-/double-croppingupland sites, the promotion of SOC would significantly increase the change in SAP with P surplus.However, there was no significant effect of SOC on the transformation of surplus P into SAP at ricefield-upland sites.
     (4) Effects of organic compounds (OC) with various C/N ratios on the transformation of P amongsoil-microorganism-plant systems were different under P deficit and P surplus conditions. Under the P surplus conditions, OC with low C/N ratios increased P assimilation by microorganisms and P uptakeby plants from soil available P fractionations. The microbial biomass P fractionations were5.4%,4.7%and1.7%, whilst plant P fractionations were14.8%,9.5%and2.1%, respectively. However, OC withlow C/N ratios only increased P assimilation by microorganisms, but had less impact on the P uptake byplants.
     In summary, the use of organic manure to increase soil available P is more effective in Chinesetypical upland (especially double-cropping upland) soils than in rice-field upland soils. In agriculturalpractices, adapting organic manure with lower C/N is more reliable to promote P uptake by crops and Passimilation by microorganisms under P surplus conditions.
引文
1.班立桐,韩志强,黄亮.不同碳氮比培养料对杏鲍菇农艺性状的影响.北方园艺,2010,9:201-203
    2.鲍士旦.土壤农化分析.中国农业出版社,2005
    3.陈敏鹏,陈吉宁.中国区域土壤表观氮磷平衡清单及政策建议.环境科学,2007,28:1305-1310
    4.陈伦寿.应正确看待化肥利用率.磷肥与复肥,1996,4:4-7
    5.杜建军,张一平,白锦鳞,尹志鸥.陕西几种土壤磷吸附特征及温度效应的研究.土壤通报,1993,24:241-243
    6.冯改静,李守勉,李明,田景花,王俊玲,李伟平.不同碳氮比栽培料对猴头菌菌丝及子实体生长的影响.华北农学报,2007,22(增刊):131-135
    7.高静.长期施肥下我国典型农田土壤磷库与作物磷肥效率的演变特征[博士学位论文].北京:中国农业科学院,2009
    8.勾影波,苏永春.土壤温度和含水量对螨类和弹尾类动物数量的影响.常熟理工学院学报(自然科学版),2007,21:57-60
    9.顾益初,钦绳武.长期施用磷肥条件下潮土中磷素的积累、形态转化和有效性.土壤,1997,1:13-17
    10.韩晓日,王颖,杨劲峰,付时丰,刘宁.长期定位施肥对土壤中镉含量的影响及其时空变异研究.水土保持学报,2009,23:101-111
    11.李庆召,王定勇,朱波,刘军坛.川中紫色土早坡地磷素的输出特征研究.水土保持学报,2004,18:97-99
    12.李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题.南昌:江西科学技术出版社,1988,52-60
    13.李书田,金继运.中国不同区域农田养分输入、输出和平衡.中国农业科学,2011,44:4207-4229
    14.李中阳,徐明岗,李菊梅,李林,高静.长期施用化肥有机肥下我国典型土壤无机磷的变化特征.土壤通报,2010,41:1434-1439
    15.刘方,黄昌勇,何腾兵,刘元生,钱晓刚.不同类型黄壤早地的磷素流失及其影响因素分析.水土保持学报,2006,15:37-40
    16.刘杏兰.关中灌区小麦、玉米轮作田磷肥施用定位研究.西北农业学报,1995,4:85-88
    17.陆景陵,张福锁,曹一平,等.植物营养学(上).北京:中国农业大学出版社,2001
    18.鲁如坤,时正元,顾益初.土壤积累态磷研究II:磷肥的表观积累利用率.土壤,1996,6:286-289
    19.鲁如坤,时正元,施建平.我国南方6省农田养分平衡现状评价和动态变化研究.中国农业科学,2000a,33:63-67
    20.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000b
    21.罗春燕,冀宏杰,张维理,徐爱国.鸭粪和猪粪中易溶性磷含量特征研究.农业环境科学学报,2008,27:1320-1325
    22.罗敏.黄土高原土壤对磷素的吸附-解吸特征及其影响因素研究[博士学位论文].西北农林科技大学,2008
    23.罗奇祥,李祖章,刘光荣.江西省肥料施用状况与肥效演变规律.江西农业学报,2004,16:48-54
    24.莫淑勋,钱菊芳,钱承梁.猪粪等有机肥中磷素养分循环在利益的研究.土壤学报,1991,28:309-316
    25.全国农业技术推广中心.中国有机肥养分志.中国农业出版社,1999
    26.全国土壤普查办公室.中国土壤.北京:中国农业出版社,1998
    27.裴瑞娜,杨生茂,徐明岗,樊廷录,张会民.长期施肥条件下黑垆土有效磷对磷盈亏的响应.中国农业科学,2010,43:4008-4015
    28.沈善敏.长期土壤肥力试验的科学价值.植物营养与肥料学报,1995,1:l-7
    29.沈善敏.中国土壤肥力.北京:中国农业出版社,1998
    30.盛荣,肖和艾,谭周进,丁龙君,谢达平.土壤解磷微生物及其磷素有效性转化机理研究进展.土壤通报2010,41:1505-1510
    31.唐旭.小麦-玉米轮作土壤磷素长期演变规律研究[博士学位论文].北京:中国农业科学院.2009
    32.王伯仁,李冬初,黄晶.红壤长期肥料定位试验中土壤磷素肥力的演变.水土保持学报,2008,22:96-101
    33.王旭东,李祖荫,张一平.不同有机物肥料施入土壤后的磷素转化能力的差异.土壤通报,1998,29:113-115
    34.王玄德,石孝均,宋光煜.长期稻草还田对紫色水稻土肥力和生产力的影响.植物营养与肥料学报,2005:11:302-307
    35.王艳玲,何园球,李成亮,李平.长期施肥对红壤磷素持续供应能力的影响.土壤学报,2010,47:503-507
    36.汪涛,杨元合,马文红.中国土壤磷库的大小、分布及其影响因素.北京大学学报(自然科学版),2008,44:945-952
    37.熊毅,李庆逵主编.中国土壤.北京:科学出版社,1987
    38.徐明岗,孙本华,张一平.土壤磷扩散规律及其能量特征的研究II:施磷量及水肥温相互作用对磷扩散的影响.土壤学报,1998,35:55-65
    39.徐明岗,梁国庆,张夫道.中国土壤肥力演变.北京:中国农业科学技术出版社,2006
    40.薛杨,邱素芬.温度对沉积物中磷吸附的影响研究.微计算机信息,2011,27:77-78
    41.于天仁等.可变电荷土壤的电化学.北京:科举出版社,1996
    42.杨长明,杨林章,颜廷梅,欧阳竹.不同养分和水分管理模式对水稻土质量的影响极其综合平衡.生态学报,2004,24:63-66
    43.杨学云,孙本华,古巧珍,李生秀,郝兴顺.长期施肥磷素盈亏及其对土壤磷素状况的影响.西北农业学报,2007,16:118-123
    44.杨学云,孙本华,古巧珍,李生秀,张树兰.长期施肥对塿土磷素状况的影响.植物营养与肥料学报,2009,15:837-842
    45.尹岩,梁成华,杜立宇,吴岩.施用有机肥对土壤有机磷转化的影响研究.中国土壤与肥料,2012,4:39-44
    46.张海涛,刘建玲,廖文华,张作新,郝小雨.磷肥和有机肥对不同磷水平土壤磷吸附-解吸的影响.植物营养与肥料学报,2008,14:284-290
    47.张世贤.我国有机肥料的资源、利用、问题和对策.磷肥与复肥,2001,16:8-11
    48.张桃林,鲁如坤,李忠佩.红壤丘陵区土壤养分退化与养分库重建.长江流域资源与环境,1998,7:18-24
    49.张维理,武淑霞,冀宏杰,Kolbe H.中国农业面源污染形势估计及控制对策I.21世纪初期中国农业面源污染的形势估计.中国农业科学,2004,37:1008-1017
    50.张为政.土壤磷组分的通径分析及其相对有效性.土壤学报,1991,28:417-425
    51.章永松,林咸永,罗安程,苏玲.有机肥(物)对土壤不同形态无机磷的活化作用.植物营养与肥料学报,1998,4:145-150
    52.赵庆累,王凯荣,马加清,杨连群,谢小力,张士永,袁守江.长期不同施肥模式对稻田土壤磷素及水稻磷营养的影响.作物学报,2009,35:1539-1545
    53.郑铁军.黑土长期施肥对土壤磷的影响.土壤肥料,1998,1:39-41
    54.中华人民共和国国家统计局编.中国统计年鉴.北京:中国统计出版社,2012
    55.周宝库,张喜林.长期施肥对黑土磷素积累、形态转化及其有效性影响的研究.植物营养与肥料学报,2005,11:143-147
    56.周宝库.长期施肥条件下黑土肥力变化特征研究[硕士学位论文].北京:中国农业科学院,2011
    57.朱兆良,孙波,杨林章,张林秀.我国农业面源污染的控制政策和措施.科技导报,2005,23:47-51
    58. Adhami E., Ronaghi A., Karimian N., Molavi R. Transformation of phosphorus in highlycalcareous soils under field capacity and waterlogged conditions. Soil Research2012,50:249-255
    59. Ai C., Liang G.Q., Sun J.W., Wang X.B., Zhou W. Responses of extracellular enzyme acivities andmicrobial community in both the rhizosphere and bulk soil to long-term fertilization practices in afluvo-aquic soil. Geoderma2012,173-174:330-338
    60. Aulakh M.S., Kabba B.S., Baddesha H.S., Bahl G.S., Gill M.P.S. Crop yields and phosphorusfertilizer transformations after25years of applications to a subtropical soil under groundnut-basedcropping systems. Field Crops Research2003,83:283-296
    61. Aulakh M.S., Garg A.K., Kabba B.S. Phosphorus accumulation, leaching and residual effects oncrop yields from long-term application in the subtropics. Soil Use and Management2007,23:417-427
    62. Bai Z., Li H., Yang X., Zhou B., Shi X., Wang B., Li D., Shen J., Chen Q., Qin W., Oenema O.,Zhang F. The critical soil P levels for crop yield, soil fertility and environmental safety in differentsoil types. Plant and Soil2013,372:27-37
    63. Baldovinos F., Thomas, G. W. The effect of soil clay content on phosphorus uptake. Soil ScienceSociety of America Journal1967,31:680-682
    64. Barton L., Murphy D.V., Butterbach-Bahl K. Influence of crop rotation and liming on greenhousegas emissions from a semi-arid soil. Agriculture, Ecosystems and Environment2013,167:23-32
    65. Baudoin E., Benizri E., Guckert A. Impact of artificial root exudates on the bacterial communitystructure in bulk soil and maize rhizosphere Soil Biology and Biochemistry2003,35:1183-1192
    66. Bollons H.M., Barraclough P.B. Assessing the phosphorus status of winter wheat crops: inorganicorthophosphate in whole shoots. Journal of Agricultural Science1999,133:285-295
    67. Bossio D.A., Scow K.M. Impacts of carbon and flooding on soil microbial communities:phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology1998,35:265-278
    68. Cao N., Chen X., Cui Z., Zhang F. Change in soil available phosphorus in relation to thephosphorus budget in China. Nutrient Cycling in Agroecosystems2012,94:161-170
    69. Cate R.B., Nelson L.A. A simple statistical procedure ofr partitioning soil test correlation data intotwo classes. Soil Science Society of America Journal1971,35:658-660
    70. Chen C.R., Condron L.M., Davis M.R., Sherlock R.R. Effects of plant species on microbialbiomass phosphorus and phosphatase activity in a range of grassland soils. Biology and Fertility ofSoils2004,40:313-322
    71. Chen M., Chen J., Sun F. Agricultural phosphorus flow and its environmental impacts in China.Science of The Total Envrionment2008,405:140-152
    72. Chen S.B., Xu M.G., Ma Y.B., Yang J.C. Evaluation of different phosphate amendments onavailability of metals in contaminated soil. Ecotoxicology and Environmental Safety2007,67:278-285
    73. Cong, R.H., Xu, M.G., Wang, X.J., Zhang, W.J., Yang, X.Y., Huang, S.M., Wang, B.R. An analysisof soil carbon dynamics in long-term soil fertility trials in China. Nutrient Cycling inAgroecosystems2012,93:201-213
    74. Colomb, B., Debaeke, P., Jouany, C. and Nolot, J. M. Phosphorus management in low inputstockless cropping systems: crop and soil responses to contrasting P regimes in a36-yearexperiment in southern France. European Journal of Agronomy2007,26:154-165
    75. Cross A.F., Schlesinger W.H. A literature review and evaluation of the Hedley fractionation:Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems, Geoderma1995,64:197-214
    76. Daniel T.C., Shatple A.N., Lemunyon J.L. Agricultural phosphorus and eutrophication: asymposium overview. Journal of Environmental Quality1998,27:251-257
    77. Devau N., Hinsinger P., Le Cadre E., Colomb B., Gérard F. Fertilization and pH effects onprocesses and mechanisms controlling dissolved inorganic phosphorus in soils. Geochimica etCosmochimica Acta2011,75:2980–2996
    78. Dou Z., Ramberg C. F., Toth J. D., Wang Y., Sharpley A. N., Boyd S. E., Chen X., Williams D., Xu,Z. Phosphorus speciation and sorption-desorption characteristics in heavily manured soils. SoilScience Society of America Journal2009,73:93-101
    79. Du Z.Y., Wang Q.H., Liu F.C., Ma H.L., Ma B.Y., Malhi S.S. Movement of phosphorus in acalcareous soil as affected by humic acid. Pedosphere2013,23:229-235
    80. Duan Y.H., Xu M.G., Wang B.R., Yang X.Y., Huang S.M., Gao S.D. Long-term evaluation ofmanure application on maize yield and nitrogen use efficiency in China. Soil Science Society ofAmerica Journal2011,75:1562-1573
    81. Emmanuel B., Fagbola O., Osonubi O. Influence of fertiliser application on the occurrence andcolonisation of arbuscular mycorrhizal fungi (AMF) under maize/Centrosema and sole maizesystems. Soil Research2011,50:76-81
    82. Eghball B., Gilley J.E., Baltensperger D.D., Blumenthal J.M. Long-term manure and fertilizerapplication effects on phosphorus and nitrogen in runoff. Biological Systems Engineering2002,45:687-694
    83. Foy R.H., Smith R.V., Jordan C., Lennox S.D. Upward trend in soluble phosphorus loadings toLough Neagh despite phosphorus reduction at sewage treatment works. Water Research1995,29:1015-1063
    84. George S.J. Effects of land-use change on phosphorus forms in south-west Australian soils. PhDthesis, Perth: The University of Western Australia,2004
    85. Guppy C.N., McLaughlin M.J. Options for increasing the biological cycling of phosphorus inlow-input and organic agricultural systems. Crop and Pasture Science2009,60:116-123
    86. Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Moller, S. and White, P.Phosphorus. Marschner’s Mineral Nutrition of Higher Plants.3rd edition, Academic Press, London,UK,2012
    87. Hedley M.J., Stewart J.W.B., Chauhan B.S. Changes in inorganic and organic soil phosphorusfractions induced by cultivation practices and by laboratory incubations. Soil Science Society ofAmerica Journal1982,46:970-976
    88. Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-inducedchemical changes: A review. Plant and Soil2001,237:173-195
    89. Holfod I.C.R., Patrick W.H. Effects of reduction and pH changes on phosphate sorption andmobility in an acid soil. Soil Science Society of America Journal1979,43:292-297
    90. Hooda P.S., Truesdale V.W., Edwards A.C., Withers P.J.A., Aitken M.N., Miller A., Rendell A.R.Manuring and fertilization effects on phosphorus accumulation in soils and potential environmentalimplications. Advances in Environmental Research2001,5:13-21
    91. Pietik inen J., Pettersson M., B th E. Comparison of temperature effects on soil respiration andbacterial and fungal growth rates. FEMS Microbiology Ecology2005,52:49-58
    92. Johnston A.E., Lane P.W., Mattingly G.E.G., Poulton P.R., Hewitt M.V. Effects of soil and fertilizerP on yields of potatoes, sugar beer, barley and winter wheat on a sandy clay loam soil atSazmundham, Suffolk. Journal of Agricultural Science1986,106:155-167
    93. Johnston A.E. Soil and Plant Phosphate. Pairs: International Fertilizer Industry Association Press,2000,27-29
    94. Kang J., Hesterberg D., Osmond D.L.,2009. Soil organic matter effects on phosphorus sorption: apath analysis. Soil Science Society of America Journal73,360-366
    95. Kouno K., Tuchiya Y., Ando T. Measurement of soil microbial biomass phosphorus by an anionexchange membrane method. Soil Biology and Biochemistry1995,27:1353-1357
    96. Kraffczyk I., Trolldenier G., Beringer H. Soluble root exudates of maize: influence of potassiumsupply and rhizosphere microorganisms. Soil Biology and Biochemistry1984,16:315-322
    97. Kpomblekou A.K., Tabatabai M.A. Effect of low-molecular weight organic acids on phosphorusrelease and phytoavailability of phosphorus in phosphate rocks added to soils. Agriculture,Ecosystems and Environment2003,100:275–284
    98. Kucey R.M.N, Janzen H.H., Leggett M.E. Microbially mediated increases in plant availablephosphorus. Advances in Agronomy1989,42:199-228
    99. Kuo S., Huang B., Bembenek R. Effects of long-term phosphorus fertilization and winter covercropping on soil phosphorus transformations in less weathered soil. Biology and Fertility of Soils2005,41:116-123
    100. Kurka A., Starr M., Heikinheimo M., Salkinoja-Salonen M. Decomposition of cellulose strips inrelation to climate, litterfall nitrogen, phosphorus and C/N ratio in natural boreal forests. Plant andSoil2000,219:91-101
    101. Li H., Huang G., Meng Q., Ma L., Yuan L., Wang F., Zhang W., Cui Z., Shen J., Chen X., Jiang R.,Zhang, F. Integrated soil and plant phosphorus management for crop and environment in China. Areview. Plant and Soil2011,349:157-167
    102. Liu Z., Yang J., Yang Z., Zou J. Effects of rainfall and fertilizer types on nitrogen and phosphorusconcentrations in surface runoff from subtropical tea fields in Zhejiang, China. Nutrient Cyclyingin Agroecosystems2012,93:297-307
    103. Lueders T., Kindler R., Miltner A., Friedrich M.W. Kaestner M. Identification of bacterialmicropredators distinctively active in a soil microbial food web. Applied and EnvironmentalMicrobiology2006,72:5342-5348
    104. MacDonald, K.G., Bennett, M.E., Potter, A.P., Ramankutty, N. Agronomic phosphorus imbalancesacross the world’s croplands. Proceedings of the National Academy of Sciences2011,108:3086-3091
    105. Mahdi S.S., Hassan G.I., Hussain A., Faisul-ur-Rasool. Phosphorus availability issue-its fixationand role of phosphate solubilizing bacteria in phosphate solubilization. Research Journal ofAgricultural Sciences2011,2:174-179
    106. Manna M.C., Swarup A., Wanjari R.H., Mishra B., Shahi D.K. Long-term fertilization, manure andliming effects on soil organic matter and crop yields. Soil and Tillage Research2007,94:397-409
    107. Mander C., Walkelin S., Young S., Condron L., O’Callaghan M. Incidence and diversity ofphosphate-solubilising bacteria are linked to phosphorus status in grassland soils. Soil Biology andBiochemistry2012,44:93-101
    108. Mando A., Bonzi M., Wopereis M.C.S., Lompo F., Stroosnijder L. Long-term effects of mineraland organic fertilization on soil organic matter fractions and sorghum yield under sudano-sahelianconditions. Soil Use and Management2005,21:396-401
    109. Mallarino A.P., Blackmer A.M. Comparison of methods for determining critical concentrations ofsoil test phosphorus for corn. Agronomy Journal1992,84:850-856
    110. Mallarino A.P., Atia A.M. Correlation of a resin membrane soil phosphorus test with corn yield androutine soil tests. Soil Science Society of America Journal2005,69:266-272
    111. McDowell R.W., Sharpley A.N. Variation of phosphorus leached from Pennsylvanian soilsamended with manures, composts or inorganic fertilizer. Agriculture, Ecosystems and Environment2004,102:17-27
    112. Messiga, J., Ziadi, N., Plénet, D., Parent, L.E., Morel, C. Long-term changes in soil phosphorusstatus related to P budgets under maize monoculture and mineral P fertilization. Soil Use andManagement2010,26:354-364
    113. Oenema O., Liere van L., Schoumans O. Effects of lowering nitrogen and phosphorus surpluses inagriculture on the quality of groundwater and surface water in the Netherlands. Journal ofHydrology2005,304:289-301
    114. Olson B.M., Bremer E., McKenzie R.H., Bennett D.R. Phosphorus accumulation and leaching intwo irrigated soils with incremental rates of cattle manure. Canadian Journal of Soil Science2010,90,355-362
    115. Olsen S.R., Cole C.V., Watanabe F.S., Dean A. Estimation of available phosphorus in soils byextraction with sodium bicarbonate. USDA Circ.939. U.S. Gov. Print Office, Washington, D. C.,USA,1954
    116. gaard A.F. Relationships between the ratio of plant-available phosphorus (P-AL) to totalphosphorus and soil properties. Acta Agriculturae Scandinavica, Section B–Soil&Plant Science1994,44:136-141
    117. Dunn P.H., Susan C. Barro, Mark Poth. Soil moisture affects survival of microorganisms in heatedchaparral soil. Soil Biology and Biochemistry1985,143-148
    118. Ramos M.C., Martínez-Casasnovas J.A. Erosion rates and nutrient losses affected by compostedcattle manure application in vineyard soils of NE Spain. Catena2006,68:177-185
    119. Richardson A.E. Prospects for using soil microorganisms to improve the acquisition of phosphorusby plants. Australian Journal of Plant Physiology2001,28:897-906
    120. Rui Y., Wang Y., Chen C., Zhou X., Wang S., Xu Z., Duan J., Kang X., Lu S., Luo C. Warming andgrazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-TibetPlateau, China. Plant and Soil2012,357:73-87
    121. Sanginga N., Lyasse O., Singh B.B. Phosphorus use efficiency and nitrogen balance of cowpeabreeding lines in a low P soil of the derived savanna zone in West Africa. Plant and Soil2000,220:119-128
    122. Saleque M.A., Abedin M.J., Bhuiyan N.I., Zaman S.K., Panaullah G.M. Long-term effects ofinorganic and organic fertilizer sources on yield and nutrient accumulation of lowland rice. FieldCrops Research2004,86:53-65
    123. Seilsepour M., Rashidi M., Khabbaz B.G. Prediction of soil available phosphorus based on soilorganic carbon. American-Eurasian Journal of Agricultural&Environmental Science2008,4:189-193
    124. Shafqat M.N., Pierzynski G.M. The effect of various sources and dose of phosphorus on residualsoil test phosphorus in different soils. Catena2013,105:21-28
    125. Sharpley A.N., Chapra S.C., Wedepohl R., Sims J.T. Managing agricultural phosphorus forprotection of surface waters:Issues and Options. Journal of Environmental Quality1994,23:437-451
    126. Sharpley A., Daniel T.C., Sims J.T., Pote D.H. Determining environmentally sound soil phosphoruslevels. Journal of Soil and Water Conservation1996,51:160-166
    127. Sharpley A., Foy B., Withers P. Practical and innovative measures for the control of agriculturalphosphorus losses to water: an overview. Journal of Environmental Quality2000,29:1-9
    128. Shen J., Li R., Zhang F., Fan J., Tang C., Rengel Z. Crop yields, soil fertility and phosphorus inresponse to long-term fertilization under the rice monoculture system on a calcareous soil. FieldCrops Research2004,86:225-238
    129. Shen P., He X.H., Xu M.G., Zhang H.M., Peng C., Gao H.J, Liu H., Xu Y.M. Soil organic carbonaccumulation increases percentage of soil Olsen P to total P at two15-year mono-cropping systemsin northern China. Journal of Integrative Agriculture2014a,13:60345-7
    130. Shen P., Xu M.G., Zhang H.M., Yang X.Y., Huang S.M., Zhang S.X., He X.H. Long-term responseof soil Olsen P and organic C to the depletion or addition of chemical and organic fertilizers.Catena2014b,118:20-27
    131. Shen P., He X.H., Xu M.G., Zhang H.M., Huang S.M., Yang X.Y., Zhang A.J., George J.S., MurphyV.D. Phosphorus accumulation and availability under long-term fertilizer applications in alkalinesoils of northern China, Pedosphere2014c (under review)
    132. Shen M.X., Yang L.Z., Yao Y.M., Wu D.D., Wang J.G., Guo R.L., Yin S.X. Long-term effects offertilizer managements on crop yields and organic carbon storage of a typical rice-wheatagroecosystem of China. Biology and Fertility of Soils2007,44:187-200
    133. Shepherd, M.A., Withers, P.J. Applications of poultry litter and triple superphosphate fertilizer to asandy soil: effects on soil phosphorus status and profile distribution. Nutrient Cycling inAgroecosystems1999,54:233-242
    134. Siddique, M.T., Robinson, J.S. Phosphorus sorption and availability in soils amended with animalmanures and sewage sludge. Journal of Environmental Quality2003,32:1114-1121
    135. Simmons W.J. Background absorption error in determination of copper in plants by flame atomicabsorption spectrometry. Analytical Chemistry1978,50:870-873
    136. Silveira M.L.&O’Connor G.A. Temperature Effects on Phosphorus Release from aBiosolids-Amended Soil. Applied and Environmental Soil Science,2013, DOI:
    10.1155/2013/981715
    137. Smith F.W. The phosphate uptake mechanism. Plant and Soil2002,245:105-114
    138. Tang X., Li J.M., Ma Y.B., Hao X.Y., Li X.Y. Phosphorus efficiency in long-term (15years)wheat-maize cropping systems with various soil and climate conditions. Field Crops Research,2008,108:231-237
    139. Takahashi S., Anwar M.R. Wheat grain yield, phosphorus uptake and soil phosphorus fraction after23years of annual fertilizer application to an Andosol. Field Crops Research2007,101:160-171
    140. Tiessen H., Stewart J.W.B, Cole C.V. Pathways of phosphorus transformations in soils of differingpedogensis. Soil Science Society of America Journal1984,48:853-858
    141. Toor G.S., Bahl G.S. Effect of solitary and integrated use of poultry manure and fertilizerphosphorus on the dynamics of P availability in different soils. Bioresource Technology1997,62:25-28
    142. Tu C., Ristaino J.B., Hu S. Soil microbial biomass and activity in organic tomato farming systems:effects of organic inputs and straw mulching. Soil Biology and Biochemistry2006,38:247-255
    143. Vu D.T., Tang C., Armstrong R.D. Changes and availability of P fractions following65years of Papplication to a calcareous soil in a Mediterranean climate.Plant and Soil2008,304:21-33
    144. Wang W., Cheng W.C., Wang K.R., Xie X.L., Yin C.M., Chen A.L. Effects of long-termfertilization on the distribution of carbon, nitrogen and phosphorus in water-stable agreegates inpaddy soil. Agricultural Sciences in China2011,10:1932-1940
    145. Wang Y., He Y., Zhang H., Schroder J., Li C., Zhou D. Phosphate mobilization by critric, tartaricand Oxalic acids in a clay loam ultisol. Soil Science Society of America Journal2008,72:1363-1268
    146. Walkley A., Black I.A. An examination of the degtjareff method for determining soil organicmatter and a proposed modification of the chromic acid titration method. Soil Science1934,37:29-38
    147. Xie Z.B., Zhu J.G., Liu G., Cadisch G., Hasegawa T., Chen C.M., Sun H.F., Tang H.Y., Zeng Q.Soil organic carbon stocks in China and changes from1980s to2000s. Global Change Biology2007,13:1989-2007
    148. Xu M.G., Zhang Y.P., Sun, B.H. Phosphate distribution and movement in the soil-root interfacezone: I. The influence of transpiration rate. Pedosphere.1995a,5:115-126
    149. Xu M.G., Zhang Y.P., Sun B.H. Phosphate distribution and movement in soil-root interface zone:II. The influence of soil water content and application rates of phosphate. Pedosphere,1995b,5:267-274
    150. Yusran F.H. The relationship between phosphate adsorption and soil organic carbon from organicmatter addition. Journal of Tropical Soils2010,15:1–10
    151. Yang S.M., Malhi S.S., Li F.M., Suo D.R., Xu M.G., Wang P., Xiao G.J., Jia Y., Guo T.W.,WangJ.G.. Long-term effects of manure and fertilization on soil organic matter and quality parameters ofa calcareous soil in NW China. Journal of Plant Nutrition and Soil Science-Zeitschrift FurPflanzenernahrung Und Bodenkunde2007,170:234-243
    152. Zeng S.C., Chen B.G., Jiang C.A., Wu Q.T. Impact of fertilization on chestnut growth, N and Pconcentrations in runoff water on degraded slope land in South China. Journal of EnvironmentalSciences2007,19:827-833
    153. Zhang C., Tian H.Q., Liu J.Y., Wang S.Q., Liu M.L., Pan S.F., Shi X.Z. Pools and distributions ofsoil phosphorus in China. Glob Biogeochemical Cycles2005,19:1-8
    154. Zhang, H., Xu, M., Zhang, F. Long-term effects of manure application on grain yield underdifferent cropping systems and ecological conditions in China. Journal of Agricultural Science2009,147:31-42
    155. Zhang W.J., Wang X.J., Xu M.G, Huang S.M., Liu H., Peng C. Soil organic carbon dynamics underlong-term fertilization in arable land of northern China. Biogeosciences2010,7:409-425

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700