用户名: 密码: 验证码:
位置与标识分离网络关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互联网的飞速发展,当今互联网体系结构在路由可扩展性、移动性支持、多宿主和流量工程支持等方面存在许多亟待解决的问题。如何设计满足未来互联网发展需求的下一代互联网体系结构已经成为学术界和工业界研究的热点。
     针对位置与标识分离网络的研究范畴,深入研究了关键技术以及应用部署的发展现状,提出了一种支持路由可扩展、移动性、多宿主和流量工程的位置与标识分离网络模型以及一种可扩展标识映射系统,重点研究了基于前缀哈希树的并行查询算法、基于广义回归神经网络的映射数据预测算法、区域网络标识路由技术以及位置与标识分离网络的移动支持技术,并在此基础上设计实现了一个原型系统。主要贡献包括以下几个方面:
     一、在深入分析已有研究的基础上,提出一种支持路由可扩展、移动性、多宿主和流量工程的位置与标识分离网络模型RSMT-LISN(Routing Scalability, Mobility, multihoming and Traffic engineering Supporting Locator/Identifier Separation Network),并且从概念术语、物理结构、逻辑结构、协议结构、数据结构和工作原理六个层面对模型进行了详细设计。RSMT-LISN可以支持IPv4和IPv6,可扩展性较好,同时支持移动性、多宿主和流量工程。
     二、在深入分析了基于DHT结构的标识映射系统的优缺点后,基于核心网络与边缘网络分离的基本思想,提出一种可扩展位置与标识映射系统——SILMS(Scalable Identifier/Locator Mapping System)。SILMS是两级层次化结构,由底层映射系统BMPS(Bottom-level Mapping System)和顶层映射系统TMPS(Top-level DHT-based Mapping System)组成。SILMS将区域网络内部节点之间的映射查询请求隔离在区域网络内部依靠BMPS完成,而TMPS主要负责区域网络之间节点的映射查询请求的响应,同时它也保存着区域网络标识与所属区域网络标识映射路由器的全局地址的映射关系。SILMS的这种分级层次结构能够有效降低映射系统中节点的负载,提高可扩展性,同时易于大规模部署,可有效地降低查询延迟。
     三、针对现有映射查询算法只具备单一精确匹配的映射查询能力的现状,提出一种基于前缀哈希树PHT(Prefix Hash Tree)的映射数据并行查询算法PS-Chord,并应用在TMPS中。该算法能够充分利用映射查询请求的时间分布特点,降低映射查询延时。通过理论分析和互联网真实数据集的模拟实验验证了PS-Chord算法的准确性和可行性,查询延迟、查询跳数、映射系统节点负载都明显优于同类型解决方案。
     四、对于映射请求预测问题,基本思路是:根据映射系统中关于标识映射请求的历史记录,基于人工神经网络进行映射请求的预测,从而决定如何在边缘路由器的Cache中对映射数据进行更新,使得映射查询延迟尽可能减小。基于以上分析,提出一种基于广义回归神经网络的映射数据预测算法MRP_GRNN(Mapping Request Prediction based on Generalized Regression Neural Network)。MRP_GRNN借助广义回归神经网络建立映射请求预测模型,自适应选择网络参数,动态更新预测模型。MRP_GRNN学习速度快,预测精度高,非线性映射能力强,在逼近能力、分类能力和学习速度上较其他神经网络有着较强的优势,较准确地预测了映射查询请求的趋势,为边缘路由器Cache数据的高效更新提供了很好的参考依据。
     五、针对位置与标识分离网络,提出了一种可扩展标识路由框架SIRA(Scalable Identifier based Routing Architecture),其中还包括位置与标识分离网络网络拓扑的表示方法、路由信息的表示以及路由信息的聚合方法。在此基础上,提出一种区域网络标识路由协议IDRP(Identifier based Routing Protocol),包括邻居信任关系的建立与状态机的维护、路由信息的学习与路由表的维护、最优路由选择以及路由信息的发布。并进一步提出与SILMS相结合的报文转发基本原理与机制以及与SILMS相结合的多宿主与多路径的支持机制。
     六、针对移动性支持问题,提出一种基于“直线通信”与瞬时代理机制的无丢包移动支持协议SMOS,主要包括:1)分别针对节点域内移动和节点域间移动提出两类位置更新方法;2)瞬时代理机制,仅在通信对端所在网络的边缘路由器本地cache数据未更新之前,借助家乡网络边缘路由器充当通信双方的间接通信代理,解决了移动切换中的报文丢弃问题;3)“直线通信”机制,在满足无报文丢弃的前提下为通信双方提供最短路径路由,减小了移动切换过程中的报文传输延迟;4)区域内映射数据全映射的存储方式,采用“以空间换时间”的策略减少了移动节点在区域内移动的信令开销;5)映射数据动态更新算法,家乡网络边缘路由器根据移动节点的状态对移动节点的过期映射数据进行处理,映射系统在一个时间段内同时保存移动节点的过期映射数据和新映射数据,避免了报文丢失。
     七、基于上述关键技术的研究,设计并实现了位置与标识分离网络原型系统IdComm,细化了其中的关键设备,最后介绍了IdComm系统的测试环境、测试内容与结果。
     本文是对位置与标识分离网络的一次有益探索,研究成果对于促进下一代互联网体系结构研究具有良好的理论价值和实践意义。本文所做的工作已在承研的国家科技支撑计划、自然科学基金以及实际工程项目中得到了应用。
With the rapid development of Internet, the existing Internet architecture has been confronting many serious challenges such as routing scalability, mobility support, multi-homing and traffic engineering support. It has been widly recognized by both industry and academia today that how to design the architecture for future Internet is one of the hot research topics.
     To address several problems during the research process of Locator/Identifier separation network (LISN), we study the current key technologies and the application deployment, and propose a LISN model which supports the routing scalability, mobility, multihoming and traffic engineering, and a scalable Identifier/Locator mapping system. And then we focus on the following key technologies: the parallel request algorithm based on prefix hash tree, mapping request prediction algorithm based on generalized regression neural network, Identifier-based routing method for area networks and mobility support method for LISN. We also design and implement a prototype system to validate our work. The major contributions of this thesis are as following:
     1. Based on the analysis of the existing proposals, a routing scalability, mobility, multihoming and traffic engineering supporting Locator/Identifier separation network model (RSMT-LISN) is proposed. RSMT-LISN is designed from six aspects such as terminologies, phisical structure, logical structure, protocol structure, data structure and working principle. RSMT-LISN can support both IPv4 and IPv6, and have good scalability. Besides, RSMT-LISN can also support mobility, multihoming and traffic engineering.
     2. Considering the advantages and disadvantages of the mapping systems based on DHT, a scalable Identifier/Locator mapping system (SILMS) based on the core-edge separation idea is proposed. SILMS has a two-level hierarchical structure which is composed of the bottom-level mapping system (BMPS) and the top-level DHT-based mapping system (TMPS). If the communicating nodes are in the same area network, the mapping request messages will be isolated in the area network, and the related mapping request process will be done with the aid of BMPS. In addition, TMPS stores the mapping data which consist of the area network identifiers (AIDs) and the global locators (GLocs) of the corresponding border routers with mapping function, and responses for the mapping request messages from different area networks. The two-level hierarchical structure can efficiently reduce the load of nodes in SILMS and improve the system scalability. Moreover, this structure is good for the large scale deployment of SILMS. Besides, the request latency can be reduced greatly.
     3. According to the single exact matching problems and common requirements of the existing mapping request algorithms, a parallel request algorithm (PS-Chord) based on prefix hash tree (PHT) is proposed in TMPS. PS-Chord utilizes the arrival distribution feature of mapping request messages, and reduces the mapping request latency. Using the theory analysis and the simulation based on real traffic, the accuracy and feasibility of PS-Chord are proved. Experimental results indicate that PS-Chord is significantly better than the same kind of solutions in the aspects of mapping-request latency, mapping-request hop-count and node load.
     4. Aiming at the mapping request prediction problem, the basic idea of our proposal is as follows: according to the historical mapping request messages in SILMS, the mapping request prediction is done based on neural network. Thus, the prediction results can give some hints to the mapping data updating processes in the caches of border routers, then the mapping request latency can be reduced where applicable. Based on the above analysis, a mapping request prediction algorithm based on generalized regression neural network (MRP_GRNN) is proposed. MRP_GRNN constructs a mapping request prediction model with the aid of GRNN, selects network parameters adaptively, and updates the prediction model dynamically with the arrival of new data. MRP_GRNN is fast, accuracy, and has superiorities in approximation ability, classification ability and learning speed over Back-Propagation Network or Radial Basis Function Network. In hence, MRP-GRNN can be used to predict the trend of the coming mapping request, and provide the reference data for the mapping data updating in the caches of border routers.
     5. In LISN, a scalable Identifier based routing architecture (SIRA) is proposed. In SIRA, we present the topology and routing information representation of LISN, and the aggregation method of the routing information. On the basis of SIRA, an identifier based routing protocol (IDRP) is proposed for area networks. In IDRP, we present the neighbor trust relationship contruction, routing information learning, routing table maintenance, optimal route selection and routing information distribution. Then, the packet forwarding principles, multihoming and multipath supporting schemes combined with SILMS are introduced.
     6. Aiming at the mobility support problem, a seamless mobility support protocol (SMOS) is proposed in LISN. The contributions of SMOS are summarized as follows: 1) SMOS provides different location update schemes for inter-ARN mobility (macro mobility) and intra-ARN (micro mobility) mobility respectively. 2) SMOS addresses the packet loss problem by introducing short term indirections to the routing mechanism realized by using the home agents (HA) as the indirect agents for mobile node (MN) and corresponding node (CN) before the complement of the updating process in the border router of CN's home network. 3) SMOS introduces the shortest path between MN and CN to minimize the packet transmission latency. 4) In the area networks, SMOS uses the entire storage mode to reduce the signal overhead while MN moves inside the area network. 5) Dynamic mapping updating algorithm (DMU). According to the state of MN, the border router of MN’s home network deals with the corresponding old mapping data properly. During a period, the old mapping data and new mapping data may coexist in the mapping system. Thus, SMOS can solve the packet loss problem to some extent.
     7. To validate these key technologies described upon, a LISN prototype system (IdComm) is designed and implemented. We specify the design details of key equipments in IdComm. Finally, a testing environment is built. According to the proposed testing content, the testing results are shown.
     To sum up, our research is a beneficial exploration of Locator/Identifier Separation network. It has the good theoretical and practical value to the future Internet architecture research. The research has been integrated into the national science and technology support program of China, the natural science foundation of China and our actual project.
引文
[1]陆璇,王文东,程时端.互联网路由扩展性研究状况分析[J].中兴通讯技术,2010,16(2):17~22.
    [2] BGP Routing Table Analysis Reports [EB/OL]. http://bgp.potaroo.net/, 2011.
    [3]侯婕,刘亚萍,龚正虎.标识路由关键技术[J].软件学报,2010,21(6):1326~1340.
    [4] IETF RFC 4984, Report from the IAB workshop on routing and addressing [S].
    [5] IETF RFC 3582, Goals for IPv6 Site Multihoming Architectures [S].
    [6]林闯.多媒体信息网络QoS的控制[J].软件学报,1999,10(10):1016~1024.
    [7]郭云飞,朱宣勇,王娜.对新型网络路由机制的思考[J].中兴通讯技术,2008,14(1):21~26.
    [8] Xu XH, Guo DY. Hierarchical routing architecture (HRA) [C]//Proceedings of Next Generation Internet Networks (NGI’08), Apr. 2008, Krakow, Poland. Washington, DC: IEEE Computer Society, 2008:92~99.
    [9] Vogt C. Six/One Router: A Scalable and Backwards Compatible Solution for Provider-Independent Addressing [C]//Proceedings of ACM International Workshop on Mobility in the Evolving Internet Architecture (MobiArch), Aug. 2008, Seattle, WA, USA. New York: ACM, 2008:13~18.
    [10]陆璇,龚向阳,程时端.新一代互联网体系结构[J].中兴通讯技术,2009,15(4):57~60.
    [11]张宏科,董平,杨冬.新互联网体系理论及关键技术[J].中兴通讯技术,2008,14(1):17~20.
    [12]张威,毕军,吴建平.互联网域间路由可扩展性[J].软件学报,2011,22(1):84~100.
    [13] Meyer D. The locator identity separation protocol (LISP) [J]. The Internet Protocol Journal, 2008, 11(1):23~36.
    [14] Internet draft: draft-vogt-rrg-six-one-02, Six/One: A solution for routing and addressing in IPv6 [S].
    [15] Jen D, Meisel M, Massey D, Wang L, Zhang BC, Zhang LX. APT: A practical tunneling architecture for routing scalability [R]. Los Angeles: Technical Report of University of California Los Angeles (UCLA), Report No.080004, 2008.
    [16] IVIP - A new routing and addressing architecture for the Internet [EB/OL]. http://www.firstpr.com.au/ip/ivip/, 2008.
    [17] Tunneling route reduction protocol (TRRP) [EB/OL]. http://bill.herrin.us/network/trrp.html.
    [18]唐明董,张国清,杨景,张国强.互联网可扩展路由[J].软件学报,2010,21(10):2524~2541.
    [19] Stoica I, Adkins D, Zhuang S, Shenker S, Surana S. Internet indirection infrastructure [J]. IEEE/ACM Trans. on Networking (TON), 2004, 12(2):205~218.
    [20] Zhang XY, Francis P, Wang J ,et al. Scaling IP routing with the core router-integrated overlay [C]//Proceedings of the 14th International Conference on Network Protocols(ICNP’06), Nov. 2006, Santa Barbara, CA, USA. Washington, DC: IEEE Computer Society, 2006:147~156.
    [21] Ballani H ,Francis P, Cao T, et al. Making routers last longer with ViAggre [C]//Proceedings of the 6st USENIX Symposium on Networked Systems Design and Implementation(NSDI'09), Apr. 2009, Boston, MA,USA. Berkeley, CA, USA: USENIX Association, 2009:453~466.
    [22] Zhang LX, Wakikawa R, Zhu ZK. Support Mobility in the Global Internet [C]//Preceedings of the 1st ACM workshop on Mobile internet through cellular networks, Sep. 2009, Beijing China. New York: ACM, 2009:1~6.
    [23] Akyildiz IF, Wang W. A Predictive User Mobility Profile for Wireless Multimedia Networks [J]. IEEE/ACM Trans. Networking, 2004, 12(6):1021~1035.
    [24] IETF RFC 3344, IP Mobility Support for IPv4 [S].
    [25] IETF RFC 3775, Mobility Support in IPv6 [S].
    [26] IETF RFC 5563, WiMAX forum/3GPP2 proxy mobile IPv4 [S].
    [27] IETF RFC 5213, Proxy mobile IPv6 [S].
    [28] IETF RFC 4068, Fast handovers for mobile IPv6 [S].
    [29] IETF RFC 4140, Hierarchical mobile IPv6 mobility management (HMIPv6) [S].
    [30] IETF RFC 3963, Network mobility (NEMO) basic support protocol [S].
    [31] Hu X, Li L, Mao ZM. Wide-Area IP Network Mobility [C]//Proceedings of IEEE INFOCOM 2008, Apr. 2008, Phoenix, AZ, USA. Washington, DC: IEEE Computer Society, 2008:951~959.
    [32] Snoeren AC, Balakrishnan H. An End-to-End Approach to Host Mobility [C]//Proceedings of the Sixth International Conference on Mobile Computing and Networking (MobiCom), Aug. 2000, Boston, MA, USA. New York: ACM, 2000:155~166.
    [33] Maltz D and Bhagwat P. MSOCKS: An Architecture for Transport Layer Mobility [C]//Proceedings of.IEEE INFOCOM 1998, Apr. 1998, San Francisco, CA, USA. Washington, DC: IEEE Computer Society, 1998:1037~1045.
    [34] Conrad PT, Heinz GJ, Caro ALJ, Amer PD, Fiore J. SCTP in Battlefield Networks [C]//Proceedings of IEEE Military Communications Conference (MILCOM 2001), Oct. 2001, Philadelphia, PA, USA. Washington, DC: IEEE Computer Society, 2001:289~295.
    [35] Wedlund E, Schulzrinne H. Mobility Support Using SIP [C]//Proceedings ofSecond ACM International Workshop on Wireless Mobile Multimedia, Aug. 1999, Seattle, Washington, USA. New York: ACM, 1999:76~82.
    [36]黄金锋,王慧,孙志刚.IPv6多宿主技术研究[J].计算机工程与科学,2009,31(1):20~24.
    [37]刘叙友,张思东.基于身份与位置分离策略可选的多宿主研究[J].计算机技术与发展,2010,20(12):24~28.
    [38] Launois C de, Bonaventure O, Lobelle M. The NAROS Approach for IPv6 Multihoming with Traffic Engineering [J]. Lecture Notes in Computer Science, 2003, Volume 2811/2003:112~121.
    [39] IETF RFC 5533, Shim6: Level 3 multihoming shim protocol for IPv6 [S].
    [40] Awduche D. MPLS and traffic engineering in IP networks [J]. IEEE Communications Magazine, 1999, 37(12):42~47.
    [41]刘亚萍.基于流量平衡的BGP出口选择技术的研究[D].长沙:国防科学技术大学, 2006:1~195.
    [42]吴建平,刘莹,吴茜.新一代互联网体系结构理论研究进展[J].中国科学E辑:信息科学,2008,38(10):1540~1564.
    [43] Global Environment for Network Innovations [EB/OL]. http://www.geni.net/.
    [44] Future Internet Network Design [EB/OL]. http://find.isi.edu/.
    [45] Future Internet Architecture [EB/OL]. http://www.nets-fia.net/.
    [46] Named Data Networking [EB/OL]. http://www.named-data.net/index.html.
    [47] MobilityFirst [EB/OL]. http://mobilityfirst.winlab.rutgers.edu/.
    [48] NEBULA [EB/OL]. http://nebula.cis.upenn.edu/.
    [49] eXpressive Internet Architecture [EB/OL]. http://www.cs.cmu.edu/~xia/.
    [50] Seventh Framework Programme [EB/OL]. http://cordis.europa.eu/fp7/home_en.html.
    [51] Future Internet Research and Experimentation [EB/OL]. http://cordis.europa.eu/fp7/ict/fire/.
    [52] 4WARD [EB/OL]. http://www.4ward-project.eu/.
    [53] Architecture Design Project for New Generation Network [EB/OL]. http://akari-project.nict.go.jp/eng/index2.htm.
    [54]罗军舟,韩志耕,王良民.一种可信可控的网络体系及协议结构[J].计算机学报,2009,32(3):391~404.
    [55] Subramanian L, Caesar M, Ee CT, Handley M, Mao M, Shenker S, Stoica I. HLP: A next-generation inter-domain routing protocol [J]. ACM SIGCOMM Computer Communication Review, 2005, 35(4):13~24.
    [56] Quoitin B, Iannone L, Launois CD, Bonaventure O. Evaluating the benefits of the locator/identifier separation [C]//Proceedings of the 2nd ACM/IEEE Int’lWorkshop on Mobility in the Evolving Internet Architecture (MobiArch) Conf., Aug. 2007, Kyoto, Japan. New York: ACM, 2007:1~6.
    [57]涂睿.位置与标识分离网络体系结构及关键机制研究[D].长沙:国防科学技术大学, 2009:1~140.
    [58] Clark D, Braden R, Falk A, Pingali V. FARA: Reorganizing the addressing architecture [J]. ACM SIGCOMM Computer Communication Review, 2003, 33(4):313~321.
    [59] IETF RFC 4423, Host identity protocol (HIP) Architecture [S].
    [60] Caesar M, Condie T, Kannan J, Lakshminarayanan K, Stoica I, Shenker S. ROFL: Routing on flat labels [C]//Proceedings of the ACM SIGCOMM Conf., Sep. 2006, Pisa, Italy. New York: ACM, 2006:363~374.
    [61] Francis P, Gummadi R. IPNL: A NAT-extended Internet architecture [C]//Proceedings of the ACM SIGCOMM Conf., Aug. 2001, San Diego, California, USA. New York: ACM, 2001:69~80.
    [62] Gritter M, Cheriton DR. An architecture for content routing support in the Internet [C]//Proceedings of the 3rd Conf. on USENIX Symposium on Internet Technologies and Systems (USITS 2001) Conf., Mar. 2001, San Francisco, California, USA. Berkeley, CA: USENIX Association, 2001:4~15.
    [63] Guha S, Francis P. An end-middle-end approach to connection establishment [C]//Proceedings of the ACM SIGCOMM Conf., Aug. 2007, Kyoto, Japan. New York: ACM, 2007:193~204.
    [64] Ford B. Unmanaged internet protocol: Taming the edge network management crisis [C]//Proceedings of the ACM HotNets-II, Nov. 2003, Boston, MA. New York: ACM, 2003:93~98.
    [65] Menth M, Hartmann M, Klein D. Global locator, local locator, and identifier split (GLI-Split) [R]. Wurzburg: University of Wurzburg, University of Wurzburg Institute of Computer Science Research Report Series, Report No.470, 2010.
    [66] Feldmann A, Cittadini L, Mühlbauer W, Bush R, Maennel O. HAIR: Hierarchical architecture for Internet routing [C]//Proceedings of the 2009 Workshop on Re-Architecting the Internet, Dec. 2009, Rome, Italy. New York: ACM, 2009:43~48.
    [67]李丹,吴建平,崔勇,徐恪.互联网名字空间结构及其解析服务研究[J].软件学报,2005,16(8):1445~1455.
    [68]曹锐,吴建平,徐明伟.互联网命名问题研究[J].软件学报,2009,20(2):363~374.
    [69] IETF RFC 3031, Multiprotocol label switching architecture [S].
    [70] MPLS [EB/OL]. http://baike.c114.net/view.asp?MPLS.
    [71] IETF RFC 2460, Internet protocol, version 6 (IPv6) Specification [S].
    [72] Mazières D, Kaminsky M, Kaashoek MF, Witchel E. Separating key management from file system security [J]. Operating Systems Review, 1999, 34(5):124~139.
    [73] Ford B. Unmanaged internet protocol: Taming the edge network management crisis [C]//Proceedings of the ACM HotNets-II, Nov. 2003, Boston, MA. New York: ACM, 2003:93~98.
    [74] Balakrishnan H, Lakshminarayanan K, Ratnasamy S, Shenker S, Stoica I, Walsh M. A layered naming architecture for the Internet [C]//Proceedings of the ACM SIGCOMM Workshops, Aug. 2004, Portland, Oregon, USA. New York: ACM, 2004:343~352.
    [75] Koponen T, Chawla M, Chun BG, Ermolinskiy A, Kim KH, Shenker S, Stoica I. A data-oriented (and beyond) network architecture [C]//Proceedings of the ACM SIGCOMM Conf., Aug. 2007, Kyoto, Japan. New York: ACM, 2007:181~192.
    [76] Winoto WA, Schwartz E, Balakrishnan H, Lilley J. The design and implementation of an intentional naming system. Operating Systems Review [J], 1999, 34(5):186~201.
    [77] Ahlgren B, D’Ambrosio M, Dannewitz C, Marchisio M, Marsh I, Ohlman B, Pentikousis K, Rembarz R, Strandberg O, Vercellone V. Design considerations for a network of information [C]//Proceedings of the Re-Architecting the Internet Conf. (ReArch 2008), Dec. 2008, Madrid, Spain. New York: ACM, 2008:66.
    [78]林闯,雷蕾.下一代互联网体系结构研究[J].计算机学报,2007,30(5):693~711.
    [79] Jen D, Meisel M, Yan H, Massey D, Wang L, Zhang BC, Zhang LX. Towards a new internet routing architecture: arguments for separating edges from transit core [C]//Proceedings of the 7th ACM Workshop on Hot Topics in Networks (HotNets-VII), Oct. 2008, Calgary, Alberta, Canada. New York: ACM, 2008:1~6.
    [80] IETF RFC 1955, New Scheme for Internet routing and addressing (ENCAPS) for IPNG [S].
    [81] Internet draft: draft-wang-ietf-efit-00, A proposal for scalable Internet routing and addressing [S].
    [82]涂睿,苏金树,彭伟.位置与标识分离的命名和寻址体系结构研究综述[J].计算机研究与发展,2009,46(11):1777~1786.
    [83]昝风彪,徐明伟,吴建平.主机标识协议(HIP)研究综述[J].小型微型计算机系统,2007,28(2):224~228.
    [84] Luo HB, Qin YJ, Zhang HK. A DHT-based identifier-to-locator mapping approach for a scalable Internet [J]. IEEE Trans. on Parallel and Distributed System, 2009, 20(12):1790~1802.
    [85] Internet draft: draft-ietf-ipngwg-gseaddr-00, GSE– An Alternate AddressingArchitecture for IPv6 [S].
    [86] Internet draft: draft-ietf-lisp-10, Locator/ID separation protocol (LISP) [S].
    [87] Internet draft: draft-iannone-lisp-mapping-versioning-02, LISP mapping versioning [S].
    [88] Internet draft: draft-lear-lisp-nerd-08, NERD: A Not-so-novel EID to RLOC Database [S].
    [89] Internet draft: draft-curran-lisp-emacs-00, EID mappings multicast across cooperating systems for LISP [S].
    [90] Mathy L, Iannone L. LISP-DHT: Towards a DHT to map identifiers onto locators [C]//Proceedings of the Re-Architecting the Internet Conf. (ReArch 2008), Dec. 2008, Madrid, Spain. New York: ACM, 2008:61.
    [91] Ratnasamy S, Francis P, Handley M, Karp R, Shenker S. A scalable content-addressable network [C]//Proceedings of the ACM SIGCOMM Conf., Aug. 2001, UC San Diego, CA, USA. New York: ACM, 2001:161~172.
    [92] IETF RFC 5015, Bidirectional Protocol Independent Multicast (BIDIR-PIM) [S].
    [93] Stoica I, Morris R, Liben-Nowell D. Chord: A scalable peer-to-peer lookup service for Internet applications [C]//Proceedings of the ACM SIGCOMM Conf., Aug. 2001, UC San Diego, CA, USA. New York: ACM, 2001:149~160.
    [94] Brampton A, MacQuire A, Rai IA, Race NJP, Mathy L. Stealth distributed hash table: A robust and flexible super-peered DHT [C]//Proceedings of the 2nd Conf. on Future Networking Technologies (CoNEXT 2006), Dec. 2006, Lisboa, Portugal. New York: ACM, 2006:19.
    [95] Internet draft: draft-ietf-lisp-alt-06, LISP alternative topology (LISP-ALT) [S].
    [96] Internet draft: draft-meyer-lisp-cons-04, LISP-CONS: A content distribution overlay network service for LISP [S].
    [97] IETF RFC 2784, Generic routing encapsulation (GRE) [S].
    [98] Jakab L, Cabellos-Aparicio A, Coras F, Saucez D, Bonaventure O. LISP-TREE: A DNS Hierarchy to Support the LISP Mapping System [J]. IEEE Journal on Selected Areas in Communications, 2010, 28(8): 1332~1343.
    [99] Oliveira R, Lad M, Zhang BC, Zhang LX. Geographically informed inter-domain routing [C]//Proceedings of the 15th IEEE Int’l Conf. on Network Protocols (ICNP 2007), Oct. 2007, Beijing, China. Washington, DC: IEEE Computer Society, 2007:103~112.
    [100]王娜,马海龙,程东年,汪斌强.Hidra:一个分级域间路由架构[J].计算机学报,2009,32(3):377~390.
    [101] Ahlgren B, Arkko J, Eggert L, Rajahalme J. A node identity internetworking architecture [C]//Proceedings of the IEEE INFOCOM Global Internet Symp., Apr. 2006, Barcelona, Catalunya, Spain. Washington, DC: IEEE ComputerSociety, 2006:1~6.
    [102] Krioukov D, Claffy K, Fall K, Brady A. On compact routing for the Internet [J]. ACM SIGCOMM Computer Communication Review (CCR), 2007, 37(3):41~52.
    [103] Krioukov D, Fall K, Yang XW. Compact routing on Internet-like graphs [C]//Proceedings of the IEEE INFOCOM 2004 Conf., Mar. 2004, Hong Kong, China. Washington, DC: IEEE Computer Society, 2004:209~219.
    [104] Afek Y, Gafni E, Ricklin M. Upper and lower bounds for routing schemes in dynamic networks [C]//Proceedings of the 30th Symp. On Foundations of Computer Science Conf., Oct. 1989, Research Triangle Park, NC, USA. Washington, DC: IEEE Computer Society, 1989:370~375.
    [105] Francis P. Comparison of geographical and provider-rooted Internet addressing [J]. Computer Networks and ISDN Systems, 1994, 27(3):437~448.
    [106] Internet Draft, draft-hain-ipv6-pi-addr-10, An IPv6 provider-independent global unicast address format [S].
    [107] Michael M, Hartmann M, H?fling M. FIRMS: a Mapping Sytem for Future Internet Routing [J]. IEEE Journal on selected areas in communications, 2010, 28(8):1326~1331.
    [108] Hanka O, Kunzmann G, Splei? C, Ebersp?cher J, Bauer A. HiiMap: Hierarchical Internet Mapping Architecture [C]//Proceedings of the first International Conference on Future Information Networks (ICFIN 2009), Oct. 2009, Beijing, China. Washington, DC: IEEE Computer Society, 2009:17~24.
    [109] Internet Draft, draft-xu-rangi-04, Routing Architecture for the Next Generation Internet (RANGI) [S].
    [110] Pan JL, Jain R, Paul S, Chakchai SI. MILSA: A New Evolutionary Architecture for Scalability, Mobility, and Multihoming in the Future Internet [J]. IEEE Journal on Selected Areas in Communications, 2010, 28(8):1344~1362.
    [111] IETF RFC 4193, Unique Local IPv6 Unicast Addresses [S].
    [112] Balamash A, Krunz M. An overview of web caching replacement algorithms [J]. IEEE Communications Surveys and Tutorials, 2004, 6(2):44~56.
    [113] Rizzo L, Vicisano L. Replacement Policies for a Proxy Cache [J]. IEEE/ACM Transactions on Networking, 2000, 8(2):158~170.
    [114] J. O’Neil E, E. O’Neil P, Weikun G. The LRU-K page replacement algorithm for database disk buffering [C]//Proceedings of ACM SIGMOD 1993, May, 1993, Washington, D.C., USA. New York: ACM, 1993:297~306.
    [115] Johnson T., Shasha D. 2Q: A low overhead high performance buffer management replacement algorithm [C]//Proceedings of the 20th International Conference on Very Large Data Bases (VLDB’94), Sep. 1994, Santiago de Chile. Morgan Kaufmann Publishers, 1994:439~450.
    [116]贺琛,陈肇雄,黄河燕.Web缓存技术综述[J].小型微型计算机系统,2004,25(5):836~842.
    [117] Arlitt M, Cherkasova L, Dilley J, Friedrich R, Jin T. Evaluating content management techniques for web proxy caches [J]. ACM SIGMETRICS Performance Evaluation Review, 27(4), 2000:3~11.
    [118]张超群,李陶深,张增芳.代理缓存一致性策略和替换策略的研究[J].计算机工程与设计,2005,26(11):2913~2916.
    [119] Nanopoulos A, Katsaros D, Manolopoulos Y. A data mining algorithm for generalized Web prefetching [J]. IEEE Trans on Knowledge and Data Engineering, 2003, 15(5):1155~1169.
    [120] Yang Q, Li T, Wang K. Building association-rule based sequential classifiers for Web-document prediction [J]. Data Mining and Knowledge Discovery, 2004, 8(3):253~273.
    [121] Mobasher B, Dai H, Luo T, Nakaqawa M. Using sequential and non-sequential patterns in predictive Web usage mining tasks [C]//Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM’02), Dec. 2002, Los Alamitos, CA. Washington, DC: IEEE Computer Society, 2002:669~672.
    [122] Xu C, Ibrahim TI. A keyword-based semantic prefetching approach in the Internet news services [J]. IEEE Trans on Knowledge and Data Engineering, 2004, 16(5):601~611.
    [123] Zuckerman I, Albrecht DW, Nicholson AE. Predicting user’s requests on the WWW [C]//Proceedings of the 7th International Conference on User Modeling, June, 1999, Banff, Canada. Berlin: Springer, 1999:275~284.
    [124] Chawathe Y, Ramabhadran S, Ratnasamy S, LaMarca A, Shenker S, Hellerstein J. A case study in building layered DHT applications [C]//Proceedings of ACM SIGCOMM 2005, Aug. 2005, Philadelphia, PA, USA. New York: ACM, 2005:97~108.
    [125]张一鸣,李东升,卢锡城.虚拟计算环境中的可扩展分布式资源信息服务[J].软件学报,2007,18(8):1993~1942.
    [126] Jagadish HV. Linear clustering of objects with multiple attributes [C]//Proceedings of the ACM SIGMOD 1990, May, 1990, Atlantic, NJ, USA. New York: ACM, 1990:332~342.
    [127] http://lisp4.cisco.com/ [M/OL].
    [128] http://www.openlisp.org/ [M/OL].
    [129] https://github.com/aless/ [M/OL].
    [130] http://www.lisp4.net/ [M/OL].
    [131] http://www.lisp4.net/beta-network/ [M/OL].
    [132] Coras F. CoreSim: A Simulator for Evaluating LISP Mapping Systems [D].Diplom Thesis, Technical University of Cluj-Napoca, June 2009.
    [133] http://iplane.cs.washington.edu/ [M/OL].
    [134]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
    [135]葛哲学,孙志强.神经网络理论与MATLAB R2007实现[M].北京:电子工业出版社,2007.
    [136] http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/radial_5.html [M/OL].
    [137] Deguang L, Xiaoming F, Dieter H. A Review of Mobility Support Paradigms for the Internet [J]. IEEE Communications Survey &Tutorials (S1553-877X), 2006, 8(1):38~51.
    [138] Dong P, Zhang HK, Luo HB, et al. A network-based mobility management scheme for future Internet [J]. Computers and Electrical Engineering, 36(2010):291~302.
    [139] Internet draft: draft-meyer-lisp-mn-04, LISP Mobility Architecture [S].
    [140] GLAB-MN: An Alternative LISP Mobility Architecture [EB/OL]. http://www3.informatik.uni-wuerzburg.de/~menth/Publications/papers/Menth09-Sub-9.pdf, 2010.
    [141] Internet draft: draft-farinacci-lisp-12, Locator/ID Separation Protocol (LISP) [S].
    [142] Chakchai SI, Jain R, Paul S, Pan JL. Virtual ID: ID/Locator Split in a Mobile IP Environment for Mobility, Multihoming and Location Privacy for the Next Generation Wireless Networks [J]. International Journal of Internet Protocol Technology (IJIPT), 5(3):142~153.
    [143] Thomas R H. Host Mobility for IP Networks: A Comparison [J]. IEEE Networks (S0890-8044), 2003, 17(6):18~26.
    [144] Internet draft: draft-ietf-lisp-interworking-01, Interworking LISP with IPv4 and IPv6 [S].
    [145]赵阿群.移动支持协议切换性能研究[J].软件学报,2005,16(4):587~594.
    [146] Vatche I, Joseph A, Ibrahim M. On Supporting Mobility and Multihoming in Recursive Internet Architectures [R]. Technical report, BUCS-TR-2010-035 (2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700