用户名: 密码: 验证码:
光子晶体应用于红外辐射光谱控制的探索研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外探测技术已在军事中广泛应用,如何有效避免暴露重要目标红外特征,减少损失,已成为一个亟需解决的问题。因此,红外隐真材料的研发正引起科学家极大的重视。光子晶体(Photonic Crystal)因光谱特性会随结构改变而相应发生变化,在信息处理、光学器件、热光伏系统等领域得到了广泛的应用。而利用光子晶体的特性实现大气窗口红外辐射的抑制则是一个新颖的研究领域。
     在利用光子晶体材料抑制大气窗口波段(3~5μm与8~14μm)发射辐射的初步研究中,建立了一维光子晶体模型,利用传输矩阵法分析了多种基底材料和光子晶体材料组合及其自发辐射对抑制效果的影响。结果表明,当光子晶体的高低折射率介质分别为Silicon(Si)与Potassium Chloride (KCL),在3~5μm与8~14μm内,基底分别为处于100℃的Aluminium (AL)、Silicon Carbide (SiC)及假想表面(发射率为1的表面)时,表面的发射辐射均得到较好的抑制。对于相同基底,如果光子晶体组成材料的高低折射率比值越大(如选择Germanium (Ge)与KCL),抑制效果越好。
     其次,在不考虑3~5μm波段发射辐射的情况下,采用传输矩阵法分析了光子晶体对8~14μm波段发射辐射的抑制作用。依据材料的光学特性,选择了Ge与Zinc Sulfide (ZnS)作为光子晶体的组成材料。对光子晶体的结构进行了优化,Ge与ZnS的优化厚度分别为0.63μm和1.11μm,光学厚度比为1:1,周期数为8。利用真空蒸发镀膜法制备了光子晶体,并测定了制得光子晶体的光学性质,从理论与实验两个角度验证了光子晶体对大气窗口发射辐射的抑制作用。
     然后,针对光子晶体材料对大气窗口发射辐射的抑制作用进行进一步的实验研究,从侧面论证模型的正确性,并探索在不同温度情况下的实际抑制效果。采用真空热蒸镀的方法,在不同材料上制备了多周期的Ge/ZnS光子晶体。通过对底部加热,并采用红外热像仪分别拍摄有无光子晶体覆盖的材料的热图,对比热图来充分展示出该种周期结构材料具有抑制物体表面发射辐射的特性。结果表明,只要能保证基底表面的平整度,就可以通过热图充分展示出光子晶体的禁带特性,当实测温度为100℃时,五组实验中红外热像仪的显示温度最低可达26.5℃。
     接下来,采用有限时域差分法对Ge/Sodium Fluoride (NaF)光子晶体的光谱特性进行了设计。由该结构的反射/透射谱发现,周期数为7的光子晶体在8~14μm内的反射率可达0.99,能较好地抑制大气窗口发射辐射。为实现大气窗口特定波长(如10.6μm)处的光谱透射峰,探索了引入第三种介质或改变原有膜层厚度的方式来形成结构缺陷,从而实现低反射的方法。发现引入第三种红外透明介质形成缺陷的方式无法在特定波长处形成透射峰,而改变原有膜层厚度形成缺陷的方式可在特定波长处实现透射峰,如10.6μm处透射率高达0.938。
     最后,建立了采用一维Magnesium Fluoride (MgF2)/ZnS型光子晶体滤波器的硅电池热光伏(Thermo PhotoVoltaic)系统的热物理模型。针对高温辐射器的辐射能量分布与Si电池的响应带隙失配的情况,设计了一种基本结构为|L/2HL/2|s的一维光子晶体滤波器,并通过主禁带中心波长平移的方式得到了改进型滤波器。当黑体辐射器的温度为1800K时,采用主禁带中心波长为1.69μm的滤波器的TPV系统的电池输出功率密度与水冷功率密度分别为1.57和36.30Wcm-2,相对采用主禁带中心波长为1.39μm的滤波器的TPV系统,分别提高了8.3%和降低了10.4%。并针对水冷功率密度较大的问题,在主禁带中心波长为1.69μm的滤波器基础上,提出了依次将多套不同主禁带中心波长的滤波器组合的方案(结构为|L/2HL/2|a|L/2HL/2|sl…|L/2HL/2|sn,使其主禁带首尾相接形成较宽的反射带,在适当牺牲电池输出功率密度的条件下,可较大幅度地降低水冷功率密度。之后,结合氧化镱选择性辐射器对系统性能做了分析。
Infrared detective technology has been widely used in military affairs. How to avoid important targets to be detected and reduce the loss is of great urgency. So, the development of infrared stealth materials has been paid much attention by scientists. Since the spectral characteristics of photonic crystal will change with the variation of its structure, it has been used in information process, optical device and thermal photovoltaic system, etc.. However, controlling infrared radiation effectively with photonic crystal is a novel research realm.
     Firstly, in the preliminary analysis about the suppression effect of photonic crystal on atmospheric window band emission (3~5μm and 8~14μm), the physical model of one dimensional photonic crystal is set up with transfer matrix method. The effects of several combinations of substrates and photonic crystals and their spontaneous emissions on inhibition effect are discussed. It is found that, when the high and low refractive index medias composing the photonic crystals are Silicon (Si) and Potassium Chloride (KCL), respectively, and the substrates are Aluminum (AL), Silicon Carbide (SiC) and an imaginary surface (of emissivity equal to 1) at 100℃orderly, all the surface emissions are inhibited well in both bands (3~5μm and 8~14μm). For the same substrate, the inhibition effect could be increased if the ratio of the high and low refractive indices of the composing materials is higher, such as Germanium (Ge) and KCL.
     Secondly, without considering the emission between 3 and 5μm, the transfer matrix method is used to analyze the inhibition effect of photonic crystal on atmospheric window emission between 8 and 14μm. According to the optical characteristics of the materials, Ge and Zinc Sulfide (ZnS) are chosen as the composing materials of the photonic crystal. The structure of the photonic crystal is optimized, and the optimal thicknesses of germanium and zinc sulfide are 0.63μm and 1.11μm respectively, while the ratio of optical thickness is 1:1 and the period is 8. The photonic crystal is prepared by vacuum evaporation coating method, and the optical properties of the photonic crystal are measured. The inhibition of the photonic crystal to atmospheric window emission is verified by both experimental and theoretical results.
     Thirdly, the inhibition of photonic crystal to atmospheric window band emission is investigated by further field experiments. The actual inhibition effect is explored when substrates are at different temperatures. By vacuum evaporation coating method, Ge/ZnS type photonic crystals are prepared on different substrates. The infrared thermographies are photographed by infrared thermal imager at different substrate temperatures, when the substrate is coverd with photonic crystal or not, respectively. And the characteristic of photonic crystal inhibiting the atmospheric window emission can be shown sufficiently by comparing the display temperature of thermography with the actual temperature of the substrate. It is found that, if the smoothness of the substrate can be ensured effectively, the stop band characteristic of photonic crystal can be exhibited sufficiently. For example, when the actual temperature of the substrate is 100℃, the lowest display temperature in infrared thermal imager of the five groups of experiments is 26.5℃.
     Fourthly, finite difference time domain method is used to design the spectral properties of Ge/Sodium Fluoride (NaF) photonic crystal. With the analysis results of reflection and transmission spectrum of Transverse Magnetic (TM) and Transverse Electronic (TE) waves, it is found that the reflectivity of the photonic crystal of 7 periods can reach 0.99 between 8 and 14μm. For the realization of transmission peak at a given wavelength among the atmospheric window (for example,10.6μm), the methods of introducing a third medium and tuning the original film thickness are explored, respectively. Introducing a third medium which is transparent in the infrared spectrum can not achieve the aim of forming transmission peak at the special wavelength, but tuning the original film thickness does work, for example, the transmittivity at 10.6μm could reach 0.938.
     Finally, the thermophysical model of Thermo PhotoVoltaic (TPV) system adopting silicon cell is set up while one dimensional Magnesium Fluoride (MgF2)/ZnS type photonic crystal filter is used. In view of the mismatch between the energy distribution of high-temperature radiator and the response band range of silicon cell, one kind of photonic crystal filter is designed and its basic period structure is|L/2HL/2|s. And another improved filter is obtained by tuning the central wavelength of the main stop band. When the blackbody radiator is at 1800K and the central wavelength of main stop band of the filter is 1.69μm, the output power density of cell and the cooling power density in the TPV system are equal to 1.57 and 36.30Wcm-2, respectively. By comparing with the TPV system using the filter whose central wavelength of main stop band is 1.39μm, the output power density of cell and cooling power density are increased by 8.3% and decreased by 10.4%, respectively. In order to solve the problem of large cooling power density, on the basis of the filter structure whose central wavelength of main stop band is 1.69μm, the scheme of combining several filters of different main stop band central wavelengths orderly is proposed (the reformed structure is |L/2HL/2|s|L/2HL/2|sl…|L/2HL/2|sn). And a wide reflection band can be formed by the combination of the main stop band of each filter. It is found that, if the output power density of cell is sacrificed in some extent, the cooling power density will decrease significantly. Then, the performance of TPV system with the ytterbia selective radiator is analyzed.
引文
[1]A. R. Jha著,红外技术应用[M].张孝霖,陈世达,舒郁文等译.北京:化学工业出版社,2004.
    [2]叶玉堂,刘爽,红外与微光技术[M].北京:国防工业出版社,2010.
    [3]石晓光,王蓟,叶文,红外物理[M].北京:兵器工业出版社,2006.
    [4]常本康,蔡毅,红外成像阵列与系统[M].北京:科学出版社,2006.
    [5]吴文健,胡碧茹,满亚辉,地面目标和背景的热红外特性[M].北京:国防工业出版社,2004.
    [6]张建奇,方小平,红外物理[M].西安:西安电子科技大学出版社,2004.
    [7]F. P. Incropera, D. P. DeWitt, T. L. Bergman, A. S. Lavine著,传热和传质的基本原理(第六版)[M].葛新石,叶宏译.北京:化学工业出版社,2007.
    [8]刘辉,吴超,阳富强,李亚威,红外热像技术探测硫化矿石自燃火源的影响因素及其解决方法[J].科技导报.2010,28(2):91-96.
    [9]吴立民,周峰,王怀义,红外探测器比探测率与光学系统工作温度关系研究[J].航天返回与遥感.2010,31(1):36-41.
    [10]牛金星,周仁魁,刘朝晖,杨建国,蔡占恩,林福跳,红外探测系统自身热辐射杂散光的分析[J].光学学报.2010,30(8):2267-2271.
    [11]高波,周斌,用于红外假目标示假的相变材料设计[J].功能材料.2009,40:2054-2057.
    [12]马柳,时家明,袁忠才,许波,陈宗胜,一种大热惯性可控红外假目标材料的设计[J].红外技术.2008,30(2):108-110.
    [14]陈宏烨,曾朝阳,解文彬,卢俊宇,朱超,电热膜假目标红外热特性分析[J].激光与红外.2007,37(4):335-337.
    [14]张寅平,胡汉平,孔祥冬,苏跃红,相变储能-理论和应用[M].合肥:中国科学技术大学出版社,1996.
    [15]M. N. A. Hawlader, M. S. Uddin, M. M. Khin, Microencapsulated PCM thermal-energy storage system[J]. Applied Energy.2003,74(1-2):195-202.
    [16]吴晓森,刘长利,张学骜,吴文健,相变材料应用于红外热成像假目标的探讨[J].材料工程.2006,1:264-268.
    [17]X. X. Zhang, Y. F. Fan, X. M. Tao, K. L. Yick, Crystallization and prevention of supercooling of microencapsulated n-alkanes[J]. Journal of Colloid and Interface Science.2005,281(2): 299-306.
    [18]孙浩,吴文健,石蜡微胶囊化及其红外伪装隐身性能研究[J].光电技术应用.2005,20(3): 41-44.
    [19]满亚辉,吴文健,胡碧茹,王建方,热红外假目标相变材料的改性[J].化工新型材料.2007,35(10):41-43.
    [20]孙翠玲,徐国跃,石蜡接枝丙烯酸制备红外隐身用相变材料[J].红外技术.2008,30(11):671-673.
    [21]H. Ye, L. F. Jiang, Theoretical investigation and experimental verification of passive simulation of metal plate infrared thermal characteristics with that of PCM[J]. Journal of China Ordnance.2007,3(4):281-285.
    [22]H. Ye, L. F. Jiang, Optimization design of thermal conduction enhanced PCM plates for simulating the infrared signature of steel plate[J]. Journal of China Ordnance.2008,4(1): 52-60.
    [23]高颂,乐洪宇,国外红外隐身技术的发展[J].舰船电子工程.2010,30(10):1-6.
    [24]崔锦峰,马永强,杨保平,马宏,红外隐真材料的研究现状及发展趋势[J].表面技术.2010,39(6):71-74.
    [25]胡传炘,隐身涂层技术[M].北京:化学工业出版社,2004.
    [26]邢丽英,隐身材料[M].北京:化学工业出版社,2004.
    [27]徐鹏,红外隐身技术的发展与动态分析[J].舰船电子工程.2009,29(7):40-44.
    [28]T. W. Wang, C. L. Cheng, Q. T. Zhang, Study on low infrared emissivity of coating in 8~14μm[J]. Optical Technique.2005,31(4):598-600.
    [29]B. Wang, X. Q. Sun, Z. R. Wang, Study on stealth effect evaluation of infrared coating[J]. Chinese Journal of Quantum Electronics.2004,21(4):538-541.
    [30]R. A. Mckinney, Y. G. Bryant, D. P. Colvin, Method of reducing infrared viewability of objects[P]. United States, US6373058,2002.
    [31]穆武第,程海峰,唐耿平,陈朝辉,热红外隐身伪装技术和材料的现状与发展[J].材料导报.2007,21(1):114-117.
    [32]赵均英,王卺,孙方兵,热红外伪装隐身技术探讨[J].红外技术.2008,30(7):373-375.
    [33]Beatty, J. Michael, Hennessy, M. David, Newman, A. Cameron, Camouflage nets[P]. AMSAFE Bridport LTD, EP1467914,2005.
    [34]M. Hellwig, C. F. P. Gmbh, Camouflage net[P]. United States, US5348789,1994.
    [35]R. F. Supcoe, Formulation for producing low infrared coating in the 2-15 micron range[P]. United States, US4289677,1981.
    [36]万梅香,李素珍,李军朝,杨静,微波与红外兼容的新型隐身材料[J].宇航材料工艺.1991,6:26-29.
    [37]吕绪良,许卫东,崔传安,陈玉华,葛强林,席夫碱的合成及其在热红外伪装涂料中的 应用[J].解放军理工大学学报.2000,1(6):54-57.
    [38]余慧娟,徐国跃,邵春明,程传伟,胡晨,EPDM基涂层在8~14μm波段红外低发射率的研究[J].红外技术.2008,30(3):154-157.
    [39]E. Yablonovitch, T. J. Gmitter, K. M. Leung, Photonic bands tructure:The face-centered-cubic case employing monspherical atoms[J]. Physics Review Letters.1991,67(17): 2295-2298.
    [40]E. Yablonovitch, Photonic band structures [J]. J. Opt. Soc. Am. B.1993,10(2):283-297.
    [41]黄昆,固体物理学[M].北京:北京大学出版社,2009.
    [42]J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic crystals:Molding the flow of light[M].2th edition. United States:Princeton University Press,2008.
    [43]P. Blaha, H. Hofstater, O. Koch, R. Laskowski, K. Schwarz, Iterative diagonalization in augmented plane wave based methods in electronic structure calculations[J]. Journal of Computational Physics.2010,229(2):453-460.
    [44]M. Aichhorn, L. Pourovskii, V. Vildosola, Michel Ferrero, et al., Dynamical mean-field theory within an augmented plane-wave framework:Assessing electronic correlations in the iron pnictide LaFeAsO[J]. Physics Review B.2009,80(8):085101.
    [45]S. Y. Shi, C. H. Chen, D. W. Prather, Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs[J]. Applied Physics Letters.2005,86(4):043104.
    [46]H. Itoh, H. Tatebe, Analysis of nanomechanical antenna structure resonator using transfer matrix method and examination of its frequency gap[J]. Japanese Journal of Applied Physics. 2010,49:07BH09.
    [47]T. E. Vigran, Sound transmission in multilayered structures-introducing finite structural connections in the transfer matrix method[J]. Applied Acoustics.2010,71:39-44.
    [48]J. Li, L. X. Guo, Y. C. Jiao, K. Li, Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method[J]. Optics Express.2011,19(2): 1091-1100.
    [49]W. Chien, C. H. Huang, C. C. Chiu, C. L. Li, Image reconstruction for 2D homogeneous dielectric cylinder using FDTD method and SSGA[J]. International Journal of Applied Electromagnetics and Mechanics.2010,32(2):111-123.
    [50]J. F. Liu, X. L. Xi, G. B. Wan, L. L. Wang, Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method[J]. IEEE:Transactions on Plasma Science.2011,39(3):852-855.
    [51]M. Choubani, F. Choubani, A. Gharsallah, J. David, N. E. Mastorakis, Characterization of electromagnetic propagation in multilayered structures using the finite-difference time domain method[C].15th IEEE Mediterranean Electrotechnical Conference, Valletta,2010.
    [52]E. Hoch, L. W. Jelinski, H. G. Craighead, Nanofabrication and biosystems:Integrating materials science engineering and biology[M]. United Kingdom:Cambridge University Press, 1996.
    [53]F. Meseguer, S. F. Garcia, H. T. Miyazaki, et al., Nanorobotic manipulation of microspheres for on-chip diamond architectures[J]. Advanced Materials.2002,14(16):1144-1147.
    [54]E. R. Dedman, D. N. Sharp, A. J. Turberfield, C. F. Blanford, R. G. Denning, Photonic crystals with a chiral basis by holographic lithography [J]. Photonics and Nanostructures-Fundamentals and Application.2005,3(2):79-83.
    [55]C. G. Choi, C. S. Kee, H. Schift, Fabrication of polymer photonic crystal slabs using nanoimprint lithography[J]. Current Applied Physics.2006,6(1):8-11.
    [56]S. Y. Goldin, A. Cashingad, A. Perez, R. Dror, B. Sfez, Simulations of and experiments on the holographic lithography fabrication of photonic crystals[J]. Optical Materials.2008,30(11): 1759-1765.
    [57]G. A. Derose, L. Zhu, J. K. S. Poon, A. Yariv, A. Scherer, Periodic sub-wavelength electron beam lithography defined photonic crystals for mode control in semiconductor lasers[J]. Microelectronic Engineering.2008,85:758-760.
    [58]T. Endo, S. Ozawa, N. Okuda, Y. Yanagida, S. Tanaka, T. Hatsuzawa, Reflectometric detection of influenza virus in human saliva using nanoimprint lithography-based flexible two-dimensional photonic crystal biosensor[J]. Sensors Actuators B.2010,148(1):269-276.
    [59]S. Cabrini, A. Carpentiero, R. Kumar, L. Businaro, P. Candeloro, M. Prasciolu, A. Gosparini, C. Andreani, M. D. Vittorio, T. Stomeo, E. D. Fabrizio, Focused ion beam lithography for two dimensional array structures for photonic applications[J]. Microelectronic Engineering.2005, 78:11-15.
    [60]T. Stomeo, A. Passaseo, R. Cingolani, M. D. Vittorio, Fast nanopatterning of two-dimensional photonic crystals by electron beam lithography[J]. Superlattices and Microstructures.2004, 36(1):265-270.
    [61]X. Q. Meng, G. Gomard, O. E. Daif, E. Drouard, R. Orobtchouk, Absorbing photonic crystals for silicon thin-film solar cells:Design, fabrication and experimental investigation[J]. Solar Energy Materials and Solar Cells.2011, in Press.
    [62]R. Ji, M. Hornung, M. A. Verschuuren, R. V. D. Laar, J. V. Eekelen, UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing[J]. Microelectronic Engineering.2010,87(5):963-967.
    [63]M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography [J]. Nature.2000, 404(53):53-56.
    [64]J. H. Moon, A. Small, G. R. Yi, S. K. Lee, W. S. Chang, D. J. Pine, S. M. Yang, Patterned polymer photonic crystals using soft lithography and holographic lithography [J]. Synthetic Metals.2005,148(1):99-102.
    [65]B. R. Lu, J. Wan, Z. Shu, S. Q. Xie, Y. F. Chen, E. Huq, X. P. Qua, R. Liu, Metallic and dielectric photonic crystals with chiral elements by combined nanoimprint and reversal lithography in SU-8[J]. Microelectronic Engineering.2009,86(4):619-621.
    [66]T. Pan, Z. Y. Li, The effect of etching interfacial layers on the absolute photonic band gap in two-dimensional photonic crystals[J]. Solid State Communications.2003,128(5):187-191.
    [67]O. Hanaizumi, Y. Sakurai, Y. Aizawa. S. Kawakami, E. Kuramochi, S. Oku, Fabrication of structures with Ⅲ-Ⅴ compound semiconductors embedded into 3D photonic crystals[J]. Thin Solid Films.2003,426(1):172-177.
    [68]K. Avary, J. P. Reithmaier, F. Klopf, T. Happ, M. Kamp, A. Forchel, Deeply etched two-dimensional photonic crystals fabricated on GaAs/AlGaAs slab waveguides by using chemically assisted ion beam etching[J]. Microelectronic Engineering.2002,61:875-880.
    [69]S. I. Inoue, K. Kajikawa, Inductivity coupled plasma etching to fabricate the nonlinear optical polymer photonic crystal waveguides[J]. Materials Science and Engineering B.2003,103(2): 170-176.
    [70]A. P. Milenin, C. Jamois, R. B. Wehrspohn, M. Reiche, The SOI planar photonic crystal fabrication:patterning of Cr using Cl2/O2 plasma etching[J]. Microelectronic Engineering. 2005,77(2):139-143.
    [71]M. Zhou, X. S. Chen, Y. Zeng, J. Xu, W. Lu, Fabrication of two-dimensional infrared photonic crystals by deep reactive in etching on Si wafers and their optical properties[J]. Solid State Communications.2004,132(8):503-506.
    [72]T. Baba, N. Kamizawa, M. Ikeda, Nanofabrication of GaInAsP/InP 2-dimensional photonic crystals by a methane-based reactive ion beam etching[J]. Physica B.1996,227(1):415-418.
    [73]V. A. Tolmachev, E. V. Astrova, J. A. Pilyugina, T. S. Perova, R. A. Moore, J. K. Vij, 1D photonic crystal fabricated by wet etching of silicon[J]. Optical Materials.2005,27(5): 831-835.
    [74]J. Y. Ye, V. Mizeikis, Y. Xu, S. Matsuo, H. Misawa, Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice[J]. Optics Communications.2002,211(1):205-213.
    [75]J. H. Zhang, Z. Q. Sun, B. Yang. Self-assembly of photonic crystals from polymer colloids[J]. Current Opinion in Colloid and Interface Science,2009,14(2):103-114.
    [76]F. Meseguer, Colloidal crystals as photonic crystals[J]. Colloids Surface A.2005,270:1-7.
    [77]N. V. Dziomkina, G. J. Vancso, Colloidal crystal assembly on topologically patterned templates[J]. Soft Materials.2005,1(4):265-279.
    [78]D. D. Evanoff, S. E. Hayes, Y. Ying, G. H. Shim, J. R. Lawrence, J. B. Carroll, Functionalization of crystalline colloidal arrays through click chemistry[J]. Advanced Materials.2007,19(21):3507-3512.
    [79]X. Chen, Z. Q. Sun, Z. M. Chen, W. J. Shang, K. Zhang, B. Yang, Alternative preparation and morphologies of self-assembled colloidal crystals via combining capillarity and vertical deposition between two desired substrates[J]. Colloid and Surfaces A.2008,315(1):89-97.
    [80]P. Maksymovych, O. Voznyy, D. B. Dougherty, et al., Gold adatom as a key structural component in self-assembled monolayers of organosulfur molecules on Au[J]. Progress in Surface Science.2010,85:206-240.
    [81]D. Boudinet, M. Benwadih, Y. Qi, et al., Modification of gold source and drain electrodes by self-assembled monolayer in staggered n-and p-channel organic thin film transistors[J]. Organic Electronics.2010,11(2):227-237.
    [82]Y. A. Vlasov, Z. B. Xiang, C. S. James, et al., On-chip natural assembly of silicon photonic bandgap crystals[J]. Letters to Nature.2001,414:289-293.
    [83]贾辉,韩莉,孙淑晶,孙光东,赵翠梅,王欣,对靶磁控溅射FeCoN薄膜的结构与磁性[J].吉林大学学报.2011,49(1):125-130.
    [84]L. Mao, H. Ye, New development of one-dimensional Si/SiO2 photonic crystals filter for thermophotovoltaic applications[J]. Renewable Energy.2010,35(1):249-256.
    [85]J. Lekner, Omnidirectional reflection by multilayer dielectric mirrors[J]. J. Opt. A.2000,2(5): 349-352.
    [86]关春颖,史金龙,光子晶体全角度反射器件的研究[J].应用科技.2009,36(3):66-69.
    [87]D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, S. V. Gaponenko, All dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control[J]. Journal of Lightwave Technology.1999,17(11):1-7.
    [88]C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, A. J. Shields, An entangled-light-emitting diode[J]. Nature Letters.2010,465(3):594-597.
    [89]C. C. Chen, J. R. Chen, Y. C. Yang, M. H. Shih, H. C. Kuo, Light emission enhancement of GaN-based photonic crystal with ultraviolet AIN/AlGaN distributed bragg reflector[J]. Journal of Lightwave Technology.2010,28(22):3189-3192.
    [90]W. Sun, M. Shatalov, J. Deng, X. Hu, J. Yang, A. Lunev, Y. Bilenko, M. Shur, R. Gaska, Efficiency droop in 245-247nm AlGaN light-emitting diodes with continuous wave 2mW output power[J]. Applied Physics Letters.2010,96(6):061102.
    [91]H. Lchikawa, T. Baba, Efficienty enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal[J]. Applied Physics Letters.2004,84(4): 457-459.
    [92]G. P. Liu, Y. M. Xuan, et al., Investigation of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic filter[J]. Science in China Series E:Technological Science.2008,51(11): 2031-2039.
    [93]J. A. Oswald, B. I. Wu, K. A. McIntosh, L. J. Mahoney, S. Verghese, Dual-band infrared metallodielectric photonic crystal filters[J]. Applied Physics Letters.2000,77(14): 2098-2101.
    [94]J. B. Yeo, H. Y. Lee, S. D. Yun, H. Y. Yang, J. H. Kim, Design of one-dimensional photonic quasi-crystal arrays for the flat-band pass filters[J]. International Journal of Modern Physics B.2009,23(6):1670-1675.
    [95]S. D. Stieler, A. Barsic, R. Biswas, G. Tuttle, K. M. Ho, A planar four-port channel drop filter in the three-dimensional woodpile photonic crystal[J]. Optics Express.2009,17(8): 6128-6133.
    [96]G. Alagappan, P. Wu, Design of sharp transmission filters using band-edge resonances in one-dimensional photonic crystal hetero-structures[J]. Applied Physics B-Lasers and Optics. 2009,96(4):709-713.
    [97]A. C. Jr, K. Z. Nobrega, H. E. H. Figueroa, F. DiPasquale, PCFDT:An accurate and friendly photonic crystal fiber design tool[J]. Optik-International Journal for Light and Electron Optics.2008,119(15):723-732.
    [98]S. Mathews, G. Farrell, Y. Semenova, All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers[J]. Sensors and Actuators A:Physica.2011, in Press.
    [99]F. Desevedavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, et al., Chalcogenide glass hollow core photonic crystal fibers[J]. Optical Materials.2010,32(11):1532-1539.
    [100]J. S. Y. Chen, T. G. Euser, G. O. S. Williams, A. C. Jones, P. St. J. Russell, Photoswitching in photonic crystal fiber[C]. Optical Sensors Conferences, Karlsruhe, Germany,2010.
    [101]H. Ademgil, S. Haxha, Bending insensitive large mode area photonic crystal fiber[J]. Optik-International Journal for Light and Electron Optics.2011, in Press.
    [1]O. D. Lavrentovich, Liquid crystals, photonic crystals, metamaterials, and transformation optics[C]. Proceedings of National Academy of Sciences of the United States of America, 2011.
    [2]E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electrics[J]. Physics Review Letters.1987,58(20):2059-2062.
    [3]B. J. Lee, Z. M. Zhang, Coherent thermal emission from modified periodic multilayer structures[J]. Journal of Heat Transfer.2007,129:17-26.
    [4]Y. L. Han, H. Wang, L. P. Yu, Manipulating overlapping of bangap in one-dimensional complex photonic crystal composed of anisotropic material[C]. Photonics and Optoelectronics Conference, Wuhan, China,2009.
    [5]V. G. Chigrinov, Liquid crystal applications in photonics[J]. Emerging Liquid Crystal Technologies.2009,7232:288-295.
    [6]J. D. Joannopoulos, R. D. Meade, N. W. Joshua, et al., Photonic Crystals:Molding the flow light[M]. New Jersey:Princeton University Press,1995.
    [7]J. E. G. Ramirez, J. Fuentes, L. C. Henandez, et al., Evaluation of the thickness in nanolayers using the transfer matrix method for modeling the spectral reflectivity[J]. Research Letters in Physics.2009,2009:1-4.
    [8]F. P. Incropera, D. P. DeWitt, T. L. Bergman, A. S. Lavine著,传热和传质的基本原理(第六版)[M].葛新石,叶宏译.北京:化学工业出版社,2007.
    [9]方容川,固体光谱学[M].合肥:中国科学技术大学出版社,2003.
    [10]E. Ward, D. Palik, Handbook of optical constants of solid[M]. Orlando:Academic Press, 1985.
    [11]E. Shiles, T. Sasaki, M. Inokuti, et al., Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data:Applications to aluminum[J]. Physics Review B. 1980,22(4):1612-1628.
    [1]E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electrics[J]. Physics Review Letters.1987,58(20):2059-2062.
    [2]E. Yablonovitch, T. J. Gmitter, Photonic band structure:The face-centered-cubic case employing nonspherical atoms [J]. Physics Review Letters.1991,67(17):2295-2298.
    [3]J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic crystals:Molding the flow of light[M].2th edition. United States:Princeton University Press,2008.
    [4]S. Y. Shi, C. H. Chen, D. W. Prather, Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs[J]. Applied Physics Letters.2005,86(4):043104.
    [5]C. Oubre, P. Nordlander, Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method[J]. Journal of Physics and Chemistry B.2004, 108(46):17740-17747.
    [6]Y. F. Liu, J. Kim, Numerical investigation of finite thickness metal-insulator-metal structure for waveguide-based surface plasmon resonance biosensing[J]. Sensors and Actuators B: Chemical.2010,148(1):23-28.
    [7]A. Z. Khachatrian, A method of generalized transfer matrix for a problem electromagnetic wave through a arbitrary one dimensional absorbing medium[J]. American Journal of Physics. 2010,3(3):178-186.
    [8]D. Felbacq, B. Guizal, F. Zolla, Wave propagation in one-dimensional photonic crystals[J]. Optics Communications.1998,152(1):119-126.
    [9]唐晋发,顾培夫,刘旭,李海峰,现代光学薄膜技术[M].杭州:浙江大学出版社,2007.
    [1]张以忱,真空镀膜技术[M].北京:冶金工业出版社,2009.
    [2]杨世铭,陶文铨,传热学(第四版)[M].高等教育出版社,2006.
    [3]F. P. Incropera, D. P. DeWitt, T. L. Bergman, A. S. Lavine著,传热和传质的基本原理(第六版)[M].葛新石,叶宏译.北京:化学工业出版社,2007.
    [1]E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electrics[J]. Physics Review Letters.1987,58(20):2059-2062.
    [2]Da-Wei Yeh, Chien-Jang Wu. Thickness-dependent photonic bandgap in a one-dimensional single-negative photonic crystal[J]. J. Opt. Soc. Am. B.2009,26(8):1506-1510.
    [3]J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic crystals:Molding the flow of light[M]. Second edition. Princeton:Princeton University Press,2008.
    [4]M. M. Hawkeye, R. Joseph, J. C. Sit, M. J. Brett, Coupled defects in one-dimensional photonic crystal films fabricated with glancing angle deposition[J]. Optics Express.2010, 18(12):125961.
    [5]E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, et al., Optomechanical coupling in a two-dimensional photonic crystal defect cavity[J]. Physics Optics.2011, in Press.
    [6]V. Ya. Zyryanov, S. A. Myslivets, V. A. Gunyakov, M. Alexander, Parshin, et al., Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell[J]. Optics Express.2010, 18(2):120934.
    [7]F. P. Incropera, D. P. DeWitt, T. L. Bergman, A. S. Lavine著,传热和传质的基本原理(第六版)[M].葛新石,叶宏译.北京:化学工业出版社,2007.
    [8]H. X. Qiang, L. Y. Jiang, X. Y. Li, Design of broad omnidirectional total reflectors based on one-dimensional dielectric and magnetic photonic crystals[J]. Optics and Laser Technology. 2010,42(1):105-109.
    [9]T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, P. M. Petroff, Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal[J]. Applied Physics Letters.2009,94(2):023101-1-3.
    [10]S. K. Srivastava, S. P. Ojha, Omnidirectional reflection bands in one-dimensional photonic crystal structure using fullerene films[J]. Progress in Electromagnetics Research.2007,74: 181-194.
    [11]D. A. Mazurenko, A. V. Akimov, A. B. Pevtsov, et al., Ultrafast all-optical switching in a three-dimensionalphotonic crystal[J]. Journal of Luminescence.2004,108(12):163-166.
    [12]Z. Kral, J. F. Borrull, T. Trifonov, L. F. Marsal, A. Rodriguez, J. Pallares, R. Alcubilla, Mid-IR characterization of photonic bands in 2D photonic crystals on silicon[J]. Thin Solid Films.2008,516(22):8059-8063.
    [13]P. Theodoni, P. Bayiati, M. Chatzichristidi, Th. Speliotis, et al., Efficient infrared emission from periodically patterned thin metal films on a Si photonic crystal[J]. Microelectronic Engineering.2008,85(5):1112-1115.
    [14]葛德彪,闫玉波,电磁波时域有限差分法[M].西安:西安电子科技大学出版社,2002.
    [15]K. S. Kunz, R. J. Luebbers, The finite difference time domain method for electro-magnetics[M]. Boca Raton:CRC Press,1993.
    [16]D. P. Edward, Handbook of optical constants of solids[M]. London:Academic Press,1985.
    [17]R. R. Wei, X. Chen, J. W. Tao, C. F. Li, Giant and negative bistable shifts for one-dimensional photonic crystal containing a nonlinear metamaterial defect[J]. Physics Letter A.2008,372(45):6797-6800.
    [18]X. Li, K. Xie, H. M. Jiang, Properties of defect modes in one-dimensional photonic crystals containing two nonlinear defects[J]. Optics Communications.2009,282(21):4292-4295.
    [19]Z. Y. Wang, X. M. Chen, X. Q. He, S. L. Fan, Photonic crystal narrow filter with negative refractive index structural defects[J]. Progress in Electromagnetics Research.2008,80: 421-430.
    [20]唐晋发,顾培夫,刘旭,李海峰,现代光学薄膜技术[M].杭州:浙江大学出版社,2007.
    [1]X. F. Zhai, J. J. Lai, H. F. Liang, S. H. Chen, Performance analysis of thermophotovoltaic system with an equivalent cut-off blackbody emitter[J]. Journal of Applied Physics.2010, 108(7):074507-1-7.
    [2]T. A. Butcher, J. S. Hammonds, E. Horne, B. Kamath, J. Carpenter, D. R. Woods, Heat transfer and thermophotovoltaic power generation in oil-fired heating systems[J]. Applied Energy.2011,88(5):1543-1548.
    [3]W. M. Yang, S. K. Chou, J. F. Pan, J. Li, X. Zhao, Comparison of cylindrical and modular micro combustor radiators for micro-TPV system application[J]. Journal of Micromechanics and Microengineering.2010,20(8):085003-1-8.
    [4]T. Kumano, K. Hanamura, A feasibility study on spectral control using piled ar-coated quartz filters for application to TPV[C].7th World Conference on Thermophotovoltaic Generation of Electricity of AIP,2007.
    [5]F. O. Sullivan, I. Celanovic, N. Jovanovic, et al., Optical characteristic of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications[J]. Journal of Applied Physics. 2005,97(3):033529-033535.
    [6]H. Y. Lee, T. Yao, Design and evaluation of omnidirectional one dimensional photonic crystals[J]. Journal of Applied Physics.2003,93(2):819-830.
    [7]G. P. Liu, Y. M. Xuan, et al., Investigation of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic filter[J]. Science in China Series E:Technological Science.2008,51(11): 2031-2039.
    [8]L. Mao, H. Ye, New development of one-dimensional Si/SiO2 photonic crystals filter for thermophotovoltaic applications[J]. Renewable Energy.2010,35(1):249-256.
    [9]I. Celenovic, F. O. Sullivan, N. Jovanovic, et al., 1D and 2D photonic crystals for thermophotovoltaic applications[C]. Proceedings of SPIE.2004,5450:416-422.
    [10]F. P. Incropera, D. P. DeWitt, T. L. Bergman, A. S. Lavine著,传热和传质的基本原理(第六版)[M].葛新石,叶宏 译.北京:化学工业出版社,2007.
    [11]L. Stalmans, Porous silicon in crystalline silicon solar cells:A review and the effect on the internal quantum efficiency[J]. Progress in Photovoltaics:Research and Applications.1998, 6(4):233-246.
    [12]T. J. Coutts, A review of progress on thermophotovoltaic generation of electricity[J]. Renewable and Sustainable Energy Reviews.1999,3(2-3):77-184.
    [13]Y. M. Xuan, X. Chen, Y. G. Han, Design and analysis of solar photovoltaic systems[J]. Renewable Energy.2010,36(1):374-387.
    [14]K. Qiu, A. C. S. Hayden, M. G. Mauk,O. V. Sulima, Generation of electricity using InGaAsSb and GaSb TPV cells in combustion-driven radiant sources[J]. Solar Energy Materials and Solar Cells.2006,90(1):68-81.
    [15]唐晋发,顾培夫,刘旭,李海峰,现代光学薄膜技术[M].杭州:浙江大学出版社,2007.
    [16]G. E. Guazzoni, High-temperature spectral emittance of oxides of erbium, samarium, neodymium and ytterbium[J]. Applied Spectroscopy.1972,26(1):60-65.
    [17]B. Bitnar, W. Drisch, J. C. Mayor, et al., A TPV system with silicon photocells and a selective emitter[C].28th Photovoltaic Specialists Conference, Anchorage, USA,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700