用户名: 密码: 验证码:
介孔铈锆复合氧化物—聚合物杂化材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机-有机杂化材料是一种分散均匀的多相材料,在光学透明性、可调折射率、力学性能、耐温性能、耐磨性、柔韧性、功能性等方面具有明显的性能优势,在涂料领域有着重要的应用,采用无机金属氧化物粉体材料如Al_2O_3、TiO_2等改性有机聚合物已经成为无机-有机杂化材料研究的一个重要方面。
     与传统金属氧化物粉体相比,金属氧化物介孔材料拥有更大的表面积,特殊的结构特征,如孔道和空腔,具备更多的催化点或反应点。选用铈锆复合氧化物介孔材料对有机聚合物进行改性,通过介孔粒子在聚合物基体中的均匀分散,达到聚合物分子既能包覆在无机粒子外部,又能在粒子的孔内部生长的目的;同时,介孔结构材料的一维和三维孔洞结构有可能使聚合物分子链穿过粒子形成“无机-有机互穿网络”结构,能够将铈锆复合氧化物介孔粒子的多孔性、孔内可反应性、刚性、尺寸稳定性和热稳定性与聚合物的韧性、易加工性及介电性能等很好地结合起来,改善聚合物的断裂韧性、抗弯曲强度及抗高温氧化性等,获得高性能的无机-有机杂化材料,具有重要的现实背景和研发意义,为此,本文开展了以下四个方面的研究:
     (1)采用嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯(P123)为模板剂的软模板合成路线,利用水热合成法,制备CeO_2-ZrO_2介孔结构材料。研究不同铈锆摩尔比、焙烧温度、升温速率、晶化和陈化行为对材料的介孔结构、比表面积大小、孔径及其分布等方面的影响。分析CeO_2-ZrO_2的晶体结构,观察材料的表面和孔道结构,确定了制备最大比表面积CeO_2-ZrO_2介孔结构材料的最佳反应参数,即铈锆摩尔比为6:4,焙烧温度400°C,焙烧时间8h。实验结果还表明:当晶化温度过高时,介孔材料的比表面积将下降,而适当的陈化有利于介孔材料的粒度分布变窄。在焙烧阶段加快升温速率有利于保持更多完整的介孔结构,提高材料的比表面积,但过高的焙烧温度会使介孔材料的晶化程度增加,晶粒长大并在表面发生一定程度的烧结,粒径变大,颗粒间发生聚集而导致介孔材料的比表面积显著下降。
     (2)选用月桂酸、硬酯酸、油酸和硅烷偶联剂γ―甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)四种有机分子对CeO_2-ZrO_2介孔粒子进行有机改性,研究有机改性剂对介孔粒子在非极性溶剂中分散性的影响。确定了油酸和硅烷偶联剂KH570作为CeO_2-ZrO_2介孔粒子的有效改性剂,制备出CeO_2-ZrO_2-PMMA接枝聚合物,探讨PMMA接枝改性CeO_2-ZrO_2介孔材料的机理和效果。结果表明:油酸对介孔粒子的有机改性是物理吸附和化学键合的共同结果,硅烷偶联剂KH570改性CeO_2-ZrO_2介孔材料的效果则受到反应时间和pH值的影响。油酸和KH570改性后的CeO_2-ZrO_2介孔粒子在非极性溶剂中具有良好的分散性和稳定性,便于进一步采用“由表面接枝法”,引发PMMA在CeO_2-ZrO_2介孔粒子上的接枝反应,得到的CeO_2-ZrO_2-PMMA接枝聚合物的热分解温度高于纯PMMA。由于在CeO_2-ZrO_2-PMMA的接枝链上存在活性端基,有利于进一步制备出新型的无机-有机杂化材料。
     (3)以苯乙烯和油酸改性后的介孔CeO_2-ZrO_2粒子为原料,采用原位聚合法制备出CeO_2-ZrO_2-PS杂化材料。研究CeO_2-ZrO_2-PS的杂化机制以及反应参数对聚苯乙烯分子量的影响,利用红外光谱、比表面分析、TEM、TG等多种方法对CeO_2-ZrO_2-PS杂化材料进行分析和表征。考察油酸含量和CeO_2-ZrO_2含量对CeO_2-ZrO_2-PS杂化材料拉伸强度和缺口抗冲击强度的影响,探讨CeO_2-ZrO_2刚性介孔粒子改善聚苯乙烯力学性能的机理。结果表明:CeO_2-ZrO_2粒子与苯乙烯基体间的界面粘结作用增强,可以有效改善聚苯乙烯的拉伸强度、缺口抗冲击强度等力学性能和耐热性能。相对于纯的聚苯乙烯热分解温度而言,CeO_2-ZrO_2-PS杂化材料的耐热性能增强,热分解温度提高。
     (4)使用硅烷偶联剂KH570对介孔CeO_2-ZrO_2粒子进行改性,采用共混法制备出CeO_2-ZrO_2-环氧树脂杂化材料。利用红外光谱、TEM、DSC、TG等多种方法对CeO_2-ZrO_2-环氧树脂杂化材料进行表征和分析;研究CeO_2-ZrO_2-环氧树脂固化物的力学性能;探讨CeO_2-ZrO_2刚性介孔粒子在环氧树脂体系中的共混行为以及固化后力学性能改善的机理。结果表明:添加CeO_2-ZrO_2的环氧树脂固化后的拉伸性能,缺口抗冲击性能和弯曲强度随着CeO_2-ZrO_2含量的增加呈先增大后减小的趋势,适当含量的CeO_2-ZrO_2粒子可以使CeO_2-ZrO_2-环氧树脂固化后的多项力学性能得到优化,邵氏硬度提高,耐热性能提高。引入脆韧转变的“逾渗模型”,初步建立有机改性CeO_2-ZrO_2介孔粒子在环氧树脂中共混行为的数学模型,解释杂化体系中不同含量的CeO_2-ZrO_2介孔粒子对杂化材料力学性能造成影响的原因。
Inorganic-organic hybrid materials are heterogeneous materials with good dispersion, which have important applications in the area of coating preparation. These materials have the obvious performance advantage in the fields of optical transparency, adjustable refractive index, mechanical property, heat resistance, abrasive resistance, flexibility and functionality. At the present time, one of the most important aspects in inorganic-organic hybrid materials research is modifying polymer by using different inorganic metallic oxide particles such as Al_2O_3,TiO_2, etc.
     Compared with traditional metallic oxide particles, metallic oxide mesoporous materials have larger specific area, peculiar structural characteristic such as pore canal and cavity, possessing more catalytic and reactive sites. The cerium–zirconium mixed oxide mesoporous materials are uniformly dispersed in the polymer matrix and organic molecules can not only be coated on the surface of mesoporous particles, but also be filled in the pore canal when polymer matrix is modified by these mesoporous particles. Meanwhile, the one or three dimensional pore canal structure make it easy forming“Organic-Inorganic Interpenetrating Networks”when polymer chain threading into pore canal. Thus, the features such as porosity, reactivity, rigidity, dimentional stability and heat stability of cerium–zirconium mixed oxide mesoporous particles are combined with ductility, good dielectric properties and easy processing performance of polymer matrix, which improve fracture toughness, bending strength resistance and high temperature oxidation resistance of polymer dramatically. In this way,high-performance of inorganic-organic hybrid materials can be obtained. Based on these facts, research of the mesoporous materials modifying polymer matrix has practical value and we are focusing on studies as follows:
     CeO_2-ZrO_2 mesoporous materials were synthesized after calcinations by the way of using block copolymers P123 as templates, zirconium chloride octahydrate(ZrOCl2·8H2O) and cerium nitrate hexahydrate(Ce(NO3)3·6H2O) as raw materials. The effects of cerium/zirconium molar ratio, calcinations temperature, heating rate, crystallization and aging behavior on mesopore structure, specific areas, pore diameter and its distribution of mesoporous materials were investigated. The crystal structure of CeO_2-ZrO_2 was studied and the morphology of the CeO_2-ZrO_2 mesoporous materials was examined. The optimum parameters of largest specific areas of CeO_2-ZrO_2 are determined when the Ce/Zr molar ratio is 6/4, the calcinations temperature is 400°C and the calcinations time are 8 hours. Other experiment results also reveal the specific areas of mesoporous materials will decrease when the crystallization temperature is above certain temperature and the pore diameter distribution will become narrow when aging time is appropriate. Increasing heating rate at calcinations stage is beneficial for maintaining intact mesoporous structure and increasing mesoporous specific areas. However, excessively high temperature is harmful for large specific areas if the particles gather together for the reason of crystalline grain growing up and sintering.
     To enhance the interfacial interaction of cerium–zirconium mixed oxide mesoporous particles in filled polymer composites, an organic grafting method was applied to modify mesoporous materials by treating with lauric acid, stearic acid, oleic acid and silane coupling agent (γ-methacyloxypropyl trimethoxy silane), and effects of these organic agents on dispersing mesoporous particles in the non-polar solvent were studied. It proves that the oleic acid and silane coupling agent are effective organic agents for mesoporous particles. The CeO_2-ZrO_2-grafted PMMA was synthesized and the grafting mechanism or effects was discussed. The results illustrate that the oleic acid modification for mesoporous particles is a common result of physical adsorption and chemical bonding. The effect efficiency of silane coupling agent modification is influenced by the reaction time and pH value. The mesoporous particles modified by oleic acid and silane coupling agent have favorable dispersibility and stability in the non-polar solvent, which imply that we can initiate polymethylmethacrylate (PMMA) grafting polymerization onto the mesoporous particles. The heat decomposition temperature of PMMA grafted CeO2–ZrO2 is higher than that of pure PMMA, which demonstrates that the CeO2–ZrO2 mesoporous materials are potential superior performance filler into thermoplastic polymers to improve polymer properties. Meanwhile, the active groups existing on the CeO_2-ZrO_2-grafted PMMA chain are beneficial for preparing new kinds of inorganic-organic hybrid materials.
     CeO_2-ZrO_2-PS hybrid materials were prepared with styrene and CeO_2-ZrO_2 mesoporous particles modified by oleic acid in situ polymerization. Different influences of reaction parameter for polystyrene molecular weight and hybridization mechanism were studied. The characteristics of hybrid materials were investigated by using infrared spectrum, N2 adsorption-desorption instrument, TEM and thermo-gravimetric analysis. Various contents of oleic acid and mesoporous particles, which influenced tensile strength and impact strength of hybrid materials were examined, and the mechanism of improving polystyrene mechanical property by mesoporous particles was discussed. The results reveal that the interface cohesive force is increased between the CeO_2-ZrO_2 particles and polystyrene matrix so that the mechanical property such as tensile strength, impact strength and heat resistance performance of polystyrene are greatly improved. Compared with pure polystyrene thermal decomposition temperature, the thermo-stability of CeO_2-ZrO_2-PS is improved significantly.
     CeO_2-ZrO_2-epoxy hybrid materials were prepared by blending method after modifying CeO_2-ZrO_2 mesoporous particle with silane coupling agent (γ-methacyloxypropyl trimethoxy silane). The characteristics of hybrid materials were investigated by using infrared spectrum, TEM and thermo-gravimetric analysis,and the mechanical property of hybrid materials was examined. Blending behavior of CeO_2-ZrO_2 mesoporous particles in the epoxy and mechanism of mechanical property improvement were also explored. The results show that thermo-stability of cured CeO_2-ZrO_2-epoxy is improved after adding mesoporous particles into epoxy resin. The tensile strength, impact strength and flexural strength of hybrid materials increase first and then decrease along with the contents of CeO_2-ZrO_2 increasing. Approprite amount of mesoporous particles can optimize the hybrid materials mechanical property and increase the Shore hardness. After introducing“percolation model”, the preliminary mathematical model of blending modified CeO_2-ZrO_2 mesoporous particles into epoxy resin is established and the variation of hybrid materials property with different content mesoporous particles can be explained.
引文
[1] Saegusa T. Organic-inorganic polymer hybrids[J].Pure and applied chemistry, 1995, 67(12):1965-1970.
    [2]黄丽,郭江江,姜志国,等.纳米科学技术在高分子材料领域的现状[J].化工进展, 2003, 22(6): 564-567.
    [3]徐光宪.稀土(上册) [M].北京:冶金工业出版社, 1995,P1-3.
    [4]徐超,刘大壮,董雪茹,等.醇酸涂料用钴催干剂的替代[J].胶体与聚合物, 2007, 12: 33-34.
    [5]孙日圣,贺晓慧,吴琴芬,等.稀土元素对涂料催干性能的影响及其机理[J].稀土,2000,10: 27-29.
    [6]章伟光.稀土精细化工产品生产技术[M].南昌:江西科学技术出版社, 2002. 137-139.
    [7]梁金生,金宗哲,王静,等.室内环境净化功能建筑涂料的研究[J].河北工业大学学报,2000,6: 15-18.
    [8]李群,滕晓明,庄卫东,等.稀土长余辉发光材料的研究现状和发展趋势[J].稀土,2005,8:62-66.
    [9]喻胜飞,皮丕辉,文秀芳,等.稀土铝酸盐长余辉蓄能发光涂料的研究进展[J].涂料工业, 2007, 3: 47-49.
    [10]浦鸿汀,袁莹,李学申,等.铝酸锶铕类长余辉荧光涂料的研究[J].建筑材料学报, 1999, 3:64-67.
    [11] Anders I. Phosphorescent Highway Paint Composition[P]. US 5874491, 1999-02-23.
    [12]史东梅,熊子发. FBT(稀土)保温涂料在沥青油罐中的应用[J].山西建筑, 2000, 12: 87-88.
    [13]张振英.初论稀土元素在保温材料中应用[J].中国新技术新产品精选, 2007, 4: 68-69.
    [14]王苏,马继红,黄如喜,等.稀土电热涂料在混凝土冬季施工的应用研究[J].现代涂料与涂装, 2006, 6: 10-13.
    [15] Watanabe T., Soyama M., Kanzawa A., et al. Reduction and separation of silica- alumina mixture with argon-hydrogen thermal plasmas [J]. Thin Solid Films, 1999, 34(5): 1631.
    [16]刘广海.第一届中日热喷涂技术研讨会论文集[M].北京:中国农业大学出版社, 1994, P67-71.
    [17]黄拿灿,胡社军.稀土化学热处理与稀土材料表面改性[J].稀土, 2003, 24(3): 59-63.
    [18]于兴文,李宁,周玉红,等.铝合金表面稀土耐蚀转化膜[J].宇航材料工艺, 1998, 3: 15-18.
    [19]文九巴,李全安,赵万祥,等.富Ce混合稀土铝合金热浸镀渗工艺研究[J].热加工工艺, 2003, 4: 13-14.
    [20]宋加金,刘长维,陈红军.耐腐蚀环氧粉末涂料的改性研究[J].热固性树脂, 2007, 7: 24-26.
    [21] Nguyen M N. . Thermal Interface Materials[P]. US 6908669, 2005-1-21.
    [22]林翠,杜楠,赵晴.高温涂层研究的新进展[J].材料保护, 2001, 6: 4-7.
    [23]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社工业装备与信息工程出版中心, 2003, P219-230.
    [24]徐向荣,黄拿灿,杨少敏.稀土表面改性在改善高温抗氧化和耐蚀性方面的应用[J].热处理技术与装备, 2006, 6: 8-11.
    [25]李安敏,许伯藩.稀土在金属表面改性中的应用[J].表面技术, 2002, 8: 40-43.
    [26]王引真,孙永兴,何艳玲.涂层结构对Cr2O3涂层组织和性能的影响[J].金属热处理, 2004, 29 (12): 7-9.
    [27]张红松,徐强,王富耻,等. ZrO2基热障涂层陶瓷材料研究进展[J].宇航材料工艺, 2007, 3: 1-3.
    [28] Choi H., Kim H., Lee C. Phase Evolutions of Plasma Sprayed Ceria and Yttria Stabilized Zirconia Thermal Barrier Coating[J]. Journal of Materials Science Letters, 2002, 21(17): 1359-1361.
    [29]何忠义,刘棉玲,章家立,等.稀土在高温摩擦中的应用研究概况[J].华东交通大学学报, 2001, 18 (1): 62-63.
    [30]杨柳,李建保,杨晓战,等.热处理对稀土掺杂氮化硅陶瓷性能的影响[J].稀有金属, 2004, 28 (4): 609-611.
    [31] Yoshimura M., Sando M., Niihara K. Effect of Nano-sized SiC Dispersion on Microstructure and Mechanical Properties of Rare Earth Oxide Ceramics [J]. Ceramic Engineering and Science Proceedings, 1996, 17(3): 330-333
    [32] Kim Y W., Mitomo M., et al. High-Temperature Strength of liquid-Phase-Sintered SiC with AlN and RE22O33 (RE = Y,YB) [J]. Journal of the American Ceramic Society, 2002, 85 (4): 1007-1009.
    [33] Yoshikawa A., Hasegawa K., Lee J H., et al. Phase Identification of Al_2O_3 /RE3Al5O12 and Al_2O_3 /REAlO3( RE = Sm-Lu, Y) Eutectics [J]. Journal of Crystal Growth, 2000, 218(1): 67-69.
    [34] Mitsuoka T., Yamamoto H., Satoshi L., et al. Improvement in High-temperature Properties of Al_2O_3 Ceramics by Microstructure and Grain Boundary Control [J]. Key Engineering Materials, 2003, (24)7: 349-350.
    [35]孙晓刚,余扬帆,刘勇.稀土改性碳纳米管宽带吸波材料[J].机械工程材料, 2006, 30(1): 66-68.
    [36]孙元宝,韩涛,彭著良,等.影响红外反射涂层降温性能的因素[J].红外技术, 2004, 7: 73-75.
    [37] Gregg S J., Sing K S W. Adsorption surface and porosity [M]. New York: Academic Press, 1982, P42-44.
    [38]韦亚南,杨修春,孙海阔.有序多孔材料的研究进展[J].材料导报, 2006, 20(4): 10-13.
    [39] Kresge C T., Leonowicz M E., Roth W J., et al. Ordered mesoporous molecular-sieves synthesized by a liquid crystal template mechanism[J]. Nature, 1992, 359(6397): 710-712
    [40] Beck J S., Vartuli J C., Roth W J., et al. A new family of mesoporous molecular-sieves preparation with liquid crystal template[J]. Journal of The Amercian Chemical Society, 1992, 114(97): 10834-10843.
    [41] Zhao D Y., Feng J L., Huo Q S., et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350): 548-552.
    [42] Wang X G., Cheng S F. Direct synthesis and catalytic reactivity of highly ordered large-pore methylaminopropry-functionalized SBA-15 materials[J]. Australian Journal of Chemistry, 2005, 58(7): 507-510.
    [43] Brandhuber D., Peterlik H., Huesing N. Simultaneous drying and chemical modification of hierarchically organized silica monoliths with organofunctional silanes[J]. Journal of Materials Chemistry, 2005, 15: 3896-3902.
    [44] Choi M., Ryoo R. Ordered nanoporous polymer–carbon composites[J]. Nature Materials, 2003, 2: 473-476.
    [45] Huang M.H., Choudrey A., Yang P. Ag nanowire formation within mesoporous silica[J]. Chemistry Communnications, 2000: 1063-1064.
    [46] Horcajada P., Ramila A., Pariente J.P., et al. Influence of pore size of MCM-41 matrices on drug rate[J]. Microporous and Mesoporous Materials, 2004, 68(1-3): 105-109.
    [47] Anwander R., Nagl I., Widenmeyer M. Surface characterization and functionalizaion of MCM-41 silicas via silazane silylation[J]. The Journal of Physical Chemistry B, 2000, 104(15): 3532-3544.
    [48] Luckarift H.R., Spain J.C., Naik R.R., et al, Enzyme immobilization in biomimetic silica support[J]. Nature Biotechnology, 2004, 22: 211-213.
    [49] Ryoo R., Joo S H., Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. Journal of Physical Chemistry B, 1999, 103 (37): 7743–7746.
    [50] Lei Z B., An L Z., Dang L Q., et al. Highly dispersed platinum supported on nitrogen-containing ordered mesoporous carbon for methanol electrochemical oxidation[J]. Microporous and Mesoporous Materials, 2009, 119(1-3): 30-38.
    [51] Zawadzki M. Microwave-assisted synthesis and characterization of ultrafine neodymium oxide particles [J]. Journal of Alloys and Compounds, 2008, 451(1-2): 297-300.
    [52] Guo S., Wu Z B., Wang H Q., et al. Synthesis of mesoporous TiO_2 nanorods via a mild template-free sonochemical route and their photo-catalytic performances[J]. Catalysis Communications, 2009, 10: 1766-1770.
    [53] Wang D S., Xie T., Peng Q., et al. Ag, Ag2S and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures[J]. Journal of The American Chemical Society, 2008, 130(12): 4016-4022.
    [54] Zhao D Y., Huo Q S., Feng J L., et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. Journal of The American Chemical Society, 1998, 120: 6024-6029.
    [55] Brezesinski T., Groenewolt M., Pinna N., et al. Surfactant-mediated generation of iso-oriented dense and mesoporous crystalline metal-oxide layers[J]. Advanced Materials,2006, 18 (14): 1827-1831.
    [56] Shibata H., Mihara H., Mukai T., et al. Preparation and formation mechanism of mesoporous titania particles having crystalline wall[J]. Chemistry of Materials, 2006, 18: 2256-2260.
    [57] Pinnavaia T J., Zhang W Z. Porous aluminum oxide materials prepared by non-ionic surfactant assembly route[P]. US 6027706, 2000-02-22.
    [58] Yang P D., Zhao D Y., Margolese D I., et al. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework[J]. Chemistry of Materials, 1999, 11 (10): 2813-2826.
    [59] Yang P D., Zhao D Y., David I M., et al. Generalized syntheses of large-pore mesoporous metal oxides with semi-crystalline frameworks[J]. Nature, 1998, 396: 152-155.
    [60] Ferdi S. Non-siliceous mesostructured and mesoporous materials[J]. Chemistry of Materials, 2001,13 (10): 3184-3795.
    [61]刘秀伍,李静雯,周理,等.介孔分子筛的合成与应用研究进展[J].材料导报, 2006, 20(2): 86-90.
    [62] Yu J C., Zhang L Z., Yu J G. Rapid synthesis of mesoporous TiO_2 with high photocatalytic activity by ultrasound induced agglomeration[J]. New Journal of Chemistry, 2002, 26(4): 416-420.
    [63] Srivastava D.N., Chappel S., Palchik O., et al. Sonochemical synthesis of mesoporous tin oxide [J] . Langmuir, 2002, 18 (10): 4160-4164.
    [64] Liu P., Lee SH., Tracy CE., et al. Preparation and lithium insertion properties of mesoporous vanadium oxide[J]. Advanced Materials, 2002, 14(1): 27-30.
    [65] Banerjee S., Santhanam A., Dhathathreyan A., et al. Synthesis of ordered hexagonal mesostructured nickel oxide [J]. Langmuir, 2003, 19(13): 5522-5525.
    [66]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社, 2002, P558-562.
    [67]刘晓蕾,刘孝波.溶胶-凝胶法制备有机/无机杂化材料研究进展[J].高分子材料科学与工程, 2004, 20 (2): 28-31.
    [68] Gesser H D., Goswami P C. Aerogels and related porous materials[J]. Chemical Review 1989, 89(4): 765-788.
    [69] Patarin J., Lebeau B., Zana R. Recent advances in the formation mechanisms of organized mesoporous materials[J]. Current Opinion in Colloid and Interface Science, 2002, 7(1-2): 107-115.
    [70] Tanev P. T., Pinnavaia T J. A neural templating route to mesoporous molecular sieves[J]. Science, 1995, 267(5199): 865-867.
    [71] Biz S., Occeli M.L. Synthesis and characterization of mesostructured materials[J]. Catalysis Reviews-Science and Engineering. 1998, 40(3) : 329-407.
    [72] Antonietti M., Berton B., G?ltner C., et al. Synthesis of mesoporous silica with large pores and bimodal pore size distribution by templating of polymer latices[J]. Advanced Materials, 1998, 10: 154-159.
    [73] Hamley I W. The Physics of Block Copolymers[M]. New York: Oxford University Press, 1998, P124
    [74] Wan Y., Zhao D. On the controllable soft-templating approach to mesoporous silicates[J]. Chemical Reviews, 2007, 107 (7): 2821-2860.
    [75] Sel O., Kuang D., Thommes M., et al. Principles of hierarchical meso-and macropore architectures by liquid crystalline and polymer colloid templating[J]. Langmuir, 2006, 22 (5): 2311-2322.
    [76] Dickinson C., Zhou W Z., Hodgkins R. P., et al. Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica[J]. Chemsitry of Materials, 2006, 18 (13): 3088-3095.
    [77] Yang H F, Zhao D Y. Synthesis of replica mesostructures by the nanocasting strategy[J]. Journal of Materials Chemistry, 2005, 15 (12): 1217-1231.
    [78] Kumar M S., Hammer N., Ronning M., et al. The nature of active chromium species in Cr-catalysts for dehydrogenation of propane: New insights by a comprehensive spectroscopic study[J]. Journal of Catalysis. 2009, 261 (1): 116-128.
    [79] Kleitz F., Choi S H., Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes[J]. Chemical Communications, 2003, 2136-2137.
    [80] Yue W B., Zhou W Z. Synthesis of porous single crystals of metal oxides via a solid?liquid route[J]. Chemistry of Materials, 2007, 19 (9): 2359-2363.
    [81] Scott B J. Wirnsberger G., Stucky G. D. Mesoporous and mesostructured materials for optical applications[J]. Chemistry of Materials, 2001, 13: 3140-3150.
    [82] Corma A,Atienzar P,Gareia H, Chane C J Y. Hierarehieally mesostruetured doped CeO_2 with potential for solar-cell use[J]. Nature Materials, 2004, 3(6): 394-397.
    [83] Ba J., Polleux J., Antonietti M., et al. Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures[J]. Advanced Materials, 2005, 17(20): 2509-2512.
    [84]林和成.金属铈的生产及应用[J],中国有色冶金, 2005, 3: 31-34.
    [85] Lyons D M., Ryan K M., Morris M A. Preparation of ordered mesoporous ceria with enhanced thermal stability[J], Journal of Materials Chemistry, 2002, 12: 1207-1212.
    [86]李梅,柳召刚,胡艳宏,等.铈基稀土氧化物粉体的制备及应用[J],中国稀土学报, 2003, 21(12): 16-20.
    [87] A.A.Soler-Illia G J., Crepaldi E L., Grosso D. Block copolymer-templated mesoporous oxides[J]. Current Opinion in Colloid and Interface Science, 2003, 8: 109–126.
    [88] Terribile D., Trovarelli A., Llorca J., et al. The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route[J]. Journal of Catalysis, 1998 , 178: 299-307.
    [89] Inagaki S., Fukusima Y., Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate[J]. Journal of the Chemical Society, Chemical Communications, 1993, (8): 680-682.
    [90] Lin W Y., Cai Q., Pang W Q., et al. New mineralization agents for the synthesis of MCM-41[J]. Microporous and Mesoporous Materials, 1999, 33: 187-196.
    [91] Stucky G D., Huo Q., Firouzi A., et al. Directed synthesis of organic/inorganic composite structures[J]. Studies in Surface Science and Catalysis, 1997, 105: 3-28.
    [92]吴美玲,刘源,高欣宇.氧化铈介孔材料的研究进展[J].世界科技研究与发展, 2006,28(4): 46-51.
    [93] Selvan R K., Gedanken A., Anilkumar P., et al. Synthesis and characterization of rare earth orthovanadate (RVO4: R=La, Ce, Nd, Sm, Eu & Gd) nanorods/nanocrystals/nanospindles by a facile sonochemical method and their Catalytic properties[J]. Journal of Cluster Science, 2009, 20: 291–305.
    [94] Li J S., Hao Y X., Li H J. Direct synthesis of CeO_2/SiO2 mesostructured composite materials via sol–gel process[J].Microporous and Mesoporous Materials, 2009(120): 421-425.
    [95] Mitchell S L., Guzman J. Synthesis and characterization of nanocrystalline and mesostructured CeO_2: Influence of the amino acid template[J]. Materials Chemistry and Physics, 2009, 114: 462–466.
    [96]龙志奇,崔梅生,朱兆武.铈锆复合氧化物的研究、应用与展望[J].稀有金属快报, 2007, 26(1): 40-44.
    [97] Trovarellik A. Catalytic properties of ceria and CeO_2 containing materials[J]. Catalysis Reviews-Science and Engineering, 1996, 38(4): 439-441.
    [98] Hori C E., Permana H., Ng K Y., et al. Thermal stability of oxygen storage properties in a mixed CeO_2-ZrO_2 system [J]. Applied Catalysis B: Environmental, 1999, 16(2): 105-117.
    [99]王振华,陆世鑫,贾积晓,等.铈锆复合氧化物催化剂的储放氧能力和高温稳定性[J]稀土, 2000, 21 (5) : 641-642.
    [100] Pavasupree S., Suzuki Y., Pivsa-Art S., et al. Preparation and characterization of mesoporousTiO_2-CeO_2 nanopowdersrespond to visible wavelength [J]. Journal of Solid State Chemistry, 2005, 178(1): 128-134.
    [101] Kapoor M P., Raj An., Matsumura Y., et al. Methanol decomposition over palladium supported mesoporous CeO_2-ZrO_2 mixed oxides[J]. Microporous and Mesoporous Materials, 2001, 44-45: 565-572.
    [102] Yamada T., Zhou H S., Uchida H., et al. Application of a cubic-like mesoporous silica film to a surface photovoltage gas sensing system[J]. Microporous and Mesoporous Materials, 2002, 54(3): 269-270.
    [103] Bach U., Lupo D., Comte P., et al. Solid-state dye-sensitized mesoporous TiO_2 solar cells with high photon-to-electron conversion efficiencies[J]. Nature, 1998, 395: 583-585.
    [104]苗小郁,李健生,王连军.介孔材料在环境科学中的应用进展[J].化工进展, 2005, 24 (9): 998-1001.
    [105] Brunel D. Functionalized micelle-templated silicas(MTS) and their use as catalyst for fine chemicals[J]. Microporous and Mesoporous Materials.1999, 27 (2-3): 329-344.
    [106] Ryoo R., Ko C H., Kim J M., et al. Preparation of nanosize Pt cluster using ion exchange of Pt(NH3)42+ inside mesoporous channel of MCM-41[J]. Catalysis.Letters, 1996,37(1-2): 29-33.
    [107] Badiei A R., Bonneviot L. Modification of Mesoporous Silica by Direct Template Ion Exchange Using Cobalt Complexes[J]. Inorganic.Chemistry, 1998, 37(16): 4142-4145.
    [108]黄堂娟.金属杂化介孔材料的合成与性能研究[D].北京化工大学硕士学位论文, 2009.
    [109] Deere J., Magner E., Wall J G., et al. Adsorption and activity of proteins onto mesoporous silica[J]. Catalysis letters, 2003, 85(1-2): 19-23.
    [110] Yiu H H P., Wright P A. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces[J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 15(1-3): 81-92.
    [111] Vallet-Regi M., Ramila A., Del Real R P., et al. A new property of MCM-41: drug delivery system[J]. Chemistry of Materials, 2001, 13: 308-311.
    [112]刘丰祎,符连社,王俊.有机-无机杂化中孔材料研究进展[J].化学通报, 2002, 10: 657-662.
    [113] Lim M H., Blanford C F., Stein A. Synthesis of ordered microporous silicates with organosulfur surface groups and their applications as solid acid catalysts[J]. Journal of American Chemical Society, 1997, 119: 4090-4091.
    [114] Hobson S T., Shea K J. Bridged bisimide polysilses quioxane xerogels: New hybrid organic - inorganic materials[J]. Chemistry of Materials, 1997, 9: 616-623.
    [115]李旭华,袁荞龙,王得宁.杂化材料的制备、性能及应用[J].功能高分子学报, 2000, 13(6): 211-213.
    [116]王相田,胡黎明,顾达,等.扫描电化学显微技术[J] .化学通报, 1995, 3: 13-17.
    [117]鲁德平,熊传溪.以超微细Al_2O_3作种子乙酸乙烯酯的乳液聚合的研究[J].高分子材料科学与工程, 1995 , 11 (6) : 49 - 52.
    [118] Yano K., Usuki A., Okada A., et al. Synthesis and properties of polyimide-clay hybrid[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31(10): 2493-2498.
    [119] Ruiz-Hitzky E. Conducting polymers intercalated in layered solids[J]. Advanced Materials, 1993, 5 (5): 334-340.
    [120] GianneEs E P. Polymer layered silicate nanocomposites[J]. Advanced Materials, 1996, 8 (1): 29-35.
    [121]章永化,龚克成.聚合物/层状无机物纳米复合材料的研究进展[J].材料导报, 1998, 12 (2): 61-63.
    [122] Vaia R A., Ishii H., Giannelis E P., et al. Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates[J]. Chemistry of Materials, 1993, 5(12): 1694-1696.
    [123] Boukerma K., Piquemal J Y., Chehimi M M. Synthesis and interfacial properties of montmorillonite/polypyrrole nanocomposites[J]. Polymer, 2006, 47(2): 569-576.
    [124] Kickelbick G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale[J]. Progess in Polymer Science, 2003, 28: 83-114.
    [125] Aksay I A., Trau M., Manne S., et al. Biomimetic pathways for assembling inorganic thin films[J]. Science, 1996, 273: 892-897.
    [126] Manne S., Aksay I. A. Thin films and nanolaminates incorporating organic/inorganic interfaces[J]. Current Opinion in Solid State and Materials Science, 1997, 2(3): 358-364.
    [1] Stein A. Advances in microporous to mesoporous solids-highlights of recent progress[J]. Advanced Materials, 2003, 15 (10): 763-775.
    [2]吴晓森,张学骜,吴文捷.无机有序多孔材料研究进展[J].材料导报, 2005(6): 8-11.
    [3]王丽萍,洪广言.无机-有机纳米复合材料[J].功能材料, 1998, 29 (4): 343-347.
    [4] Inagaki Sh., Guan Sh., Ohsuna T., et al. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure[J]. Nature, 2002, 416: 304-307.
    [5] Ghom S A, Zamani C., Nazarpour S., et al. Oxygen sensing with mesoporous ceria–zirconia solid solutions[J]. Sensors and Actuators B: Chemical, 2009 (140): 216-221.
    [6] Trovarelli A., Boaro M., Rocchini E., et al. Some recent developments in the characterization of ceria-based catalysts[J]. Journal of Alloys and Compounds, 2001 (323–324): 584–591.
    [7] Alexandridis P., Holzwarthf J F., Hatton T A. Micellization of poly(ethy1ene oxide)-poly(propy1ene oxide)-poly(ethy1ene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association[J]. Macromolecules, 1994, 27: 2414-2425.
    [8] Holmqvist P., Alexandridis P., Lindman B. Phase behavior and structure of ternaryamphiphilic block copolymer-alkanol-water systems:comparison of poly (ethylene oxide)/poly (propylene oxide) topoly (ethylene oxide)/poly (tetrahydro-furan) copolymers[J]. Langmuir, 1997, 13: 2471-2479.
    [9] Yu C., Tian B., Fan J., et al. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts[J]. Journal of American Chemical Society, 2002, 124: 4556-4557.
    [10] LHM da Silva, MCH da Silva., Mesquita A.F., et al.Equilibrium phase behavior of triblock copolymer-salt-water two-phase systems at different temperatures and PH[J].Journal of.Chemical and Engineering Data, 2005, 50(4): 1457-1461.
    [11] Yuan Q., Duan H H., Li L L., et al Controlled synthesis and assembly of ceria-based nanomaterials[J]. Journal of Colloid and Interface Science, 2009, 335: 151-167.
    [12] Oliver S., Kuperman A., Coombs N., et al. Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons[J]. Nature, 378: 47-50.
    [13] Yada M., Machida M., Kijima T. Synthesis and deorganization of an aluminium-based dodecyl sulfate mesophase with a hexagonal structure[J]. Chemical Communications, 1996, 769-770.
    [14]索也兵.溶胶-凝胶法制备纳米有序结构稀土氧化物[D].北京工业大学硕士学位论文, 2005.
    [15] Terribile D., Trovarelli A., Llorca J., et al. The preparation of high surface area CeO_2-ZrO_2 mixed oxides by a surfactant-assisted approach[J]. Catalysis Today, 1998, 43: 79-88.
    [16] Damyanova S., Pawelec B., Arishtirova K., et al. Study of the surface and redox properties of ceria–zirconia oxides[J]. Applied Catalysis A: General, 2008, 337: 86-96.
    [17] Kruk M., Jaroniec M., Ko CH., et al. Characterization of the porous structure of SBA-15[J]. Chemistry of Materials, 2000, 12: 1961-1968.
    [18] Wang S L., Liu J Y., Jia J T., et al. Preparation of ceria with large particle size and high appearance density[J]. Journal of Rare Earth, 2008, 26(1): 127-130.
    [19] Monte R D., Kaspar J. Nanostructured CeO_2-ZrO_2 mixed oxides[J]. Cheminform. 2005, 36(26): 633-648.
    [20] Chen H R, Shi J L, Chen T D., et al. Preparation and characteristics of the ordered porouszirconia containing cerium[J]. Materials Letters, 2002, 54: 200-204.
    [1] Park S S., Ha C S. Organic-inorganic hybrid meseporous silicas: Functionalization, pore size, and morphology control[J]. The Chemical Record, 2006, 6: 32-42.
    [2] Prakash A S., Shivakumara C., Hegde M S. Single step preparation of CeO_2/CeAlO_3/gamma-Al_2O_3 by solution combustion method: Phase evolution, thermal stability and surface modification[J]. Materials Science and Engineering B-Solid, 2007, 139: 55-61.
    [3] Moscofian A.S.O., Silva C.R., Airoldi C. Stability of layered aluminum and magnesium organosilicates[J]. Microporous and Mesoporous Materials, 2008, 107: 113-120.
    [4] Yuan S Y., Rui H., Tao W. Study on polystyrene blends of nano CaCO3 and SBS[J].China Synthetic Rubber Industry, 2003, 26(2): 116.
    [5] Hussain M., Nakahira A., Nishijima S., et al. Effects of coupling agents on the mechanical properties improvement of the TiO_2 reinforced epoxy system[J]. Materials Letters, 1996, 26(6): 299-303.
    [6] Hong R Y., Zhang M Q., Shi J., et al. Graft polymerization onto inorganic nanoparticles and its effect on tribological performance improvement of polymer composites [J]. Tribology International, 2003, 36: 697-707
    [7] Posthumus W., Magusin P C M M., Brokken-Zijp J C M., et al. Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane[J]. Journal of Colloid and Interface Science, 2004, 269(1): 109–116.
    [8] Wang Y., Lee W C. Interfacial interaction in calcium carbonate-polypropylene composites 1: surface characterization and treatment of calcium carbonate: A comparative study polymer composites[J]. Composite, 2003, 24(1): 119-131.
    [9] Ellis T S., D'Angelo J S. Thermal and mechanical properties of polypropylene nanocomposites[J]. Journal of Applied Polymer Science, 2003, 90(6):1639-1647.
    [10]王贵恒.高分子材料成型加工原理[M].北京:化学工业出版社, 1991,P13-25.
    [11]李晓娥,邓红,樊安,等.纳米TiO_2粉体的表面有机处理研究[J].西北大学学报(自然科学版), 2002 , 32 (5): 523-525.
    [12] Lee S Y., Harris M T., Surface modification of magnetic nanoparticles capped by oleic acids : Characterization and colloidal stability in polar solvents [J]. Journal of Colloid and Interface Science, 2006, 293: 401-402.
    [13]张建强,冯辉霞,赵霞,等. KH570对二硫化钼粉体表面的改性研究[J].化学试剂, 2009, 31 (1) : 5-8.
    [14]张心亚,沈慧芳,黄洪,等.纳米粒子材料的表面改性及其应用研究进展[J].材料工程, 2005, 10: 58-62.
    [15] Hong R Y., Qian J Z., Cao J X. Synthesis and characterization of PMMA grafted ZnO nanoparticles[J]. Powder Technology, 2006, 163(3): 160-168.
    [16] Tsubokawa N., Ishida H., Graft polymerization of methyl methacrylate from silica initiated by peroxide groups introduced onto the surface[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1992, 30: 2241-2246.
    [1] Okamoto M., Morita S., Taguchi H., et al. Synthesis and structure of smectic clay/poly (methylmethacrylate)and clay/polystyrene nanocomposites via in situ interalative polymerization[J]. Polymer, 2000, 41: 3887-3890.
    [2] Kadar F., Szazdi L., Fekete E., et al. Surface characteristics of layered silicates: Influence on the properties of clay/polymer nanocomposites[J].Langmuir,2006, 22(86):7848-7854.
    [3]卢振潇,陈建定,吴秋芳.纳米碳酸钙/聚苯乙烯复合粒子的制备与表征[J].华东理工大学学报(自然科学版), 2007,33(6): 811-815.
    [4] Yang Y., Kong X Z., Kan C Y., et al. Encapsulation of calcium carbonate by styrene polymerization[J]. Polymer Advanced Technologies, 1999, 10: 54-59.
    [5] Nagata K., Kodama S., Kawasaki H., et al. Influence of polarity of polymer on inorganic particle dispersion in dielectric particle/polymer composite systems[J]. Journal of Applied Polymer Science, 1995, 56: 1313–1321.
    [6]孙晶,董相廷,李昌力,等. CeO_2纳米粒子的油酸包覆研究[J].长春光学精密机械学院学报, 2001,12: 23-24.
    [7] Lebovitz A H., Khait K., Torkelson J M. Sub-micron dispersed-phase particle size inpolymer blends: overcoming the Taylor limit via solid-state shear pulverization[J]. Polymer, 2003,44: 199-206.
    [8]彭静,乔金梁,魏根栓.橡胶增韧塑料机理[J].高分子通报, 2001, 5: 13-24.
    [9]门艳茹,杨贤金,朱胜利,等.纳米TiO_2改性及其掺杂聚苯乙烯性能的研究[J].功能材料, 2005,12: 1927-1930.
    [10] Nair P. S., Radhakrishnan T., Revaprasadu N., et al. Characterization of polystyrene filled with HgS nanoparticles[J]. Materials Letters, 2004, 58 (3-4): 361-364.
    [11] Erdem B., Sudol E D., Dimonie V L., et al. Encapsulation of Inorgannic particles via miniemulsion polymerization (Ⅱ) preparation and characterization of styrene miniemulsion droplets containing TiO_2 particles[J].Journal of Polymer Science Part A, 2000, 38: 4431-4440.
    [12] Mitchell S L., Guzman J. Synthesis and characterization of nanocrystalline and mesostructured CeO_2: Influence of the amino acid template[J]. Materials Chemistry and Physics, 2009, 114: 462-466.
    [13] Tsoncheva T., Ivanova L., Paneva D., et al. Cobalt and iron oxide modified mesoporous zirconia: preparation, characterization and catalytic behaviour in methanol conversion [J]. Microporous and Mesoporous Materials, 2009, 120: 389-396.
    [14] Weinberger M., Fr?schl T., Puchegger S. Organosilica monoliths with multiscale porosity: detailed investigation of the influence of the surfactant on structure formation[J]. Silicon, 2009, 1: 19-28.
    [1]柯昌美,汪厚植,段辉,等.环氧树脂基纳米复合材料的研究进展[J].武汉科技大学学报:自然科学版, 2003, 6: 120-121.
    [2]李仙会,胡晓丹,陈瑞珠.环氧树脂改性研究进展[J].热固性树脂, 2003, 18 (3) : 27.
    [3] Ratna D., Samui A. B., Chakraborty B. C. Flexibility improvement of epoxy resin by chemical modification[J]. Polymer International, 2004, 53:1882-1887.
    [4] Frohlich J., Thomann R., Miilhaupt R. Toughened epoxy hybrid nanocomposites containing both an organophilic layered silicate filler and a compatibilized liquid rubber[J]. Macromolecules, 2003, 36: 7205-7211.
    [5] Nishat N., Ahmad S., Ahamad T. Synthesis, characterization, and antimicrobial studies ofnewly developed metal-chelated epoxy resins[J]. Journal of Applied Polymer Science, 2006, 101: 1347-1355.
    [6] Ochi M., Takahashi R., Terauchi A. Phase structure and mechanical and adhesion properties of epoxy/silica hybrids[J]. Polymer, 2001, 42(12): 5151-5158.
    [7]董元彩,孟卫,魏欣,等.环氧树脂/二氧化钛纳米复合材料的制备及性能[J].塑料工业, 1999, 27(6): 37-38.
    [8]郑亚萍,宁荣昌.环氧树脂/纳米α-Al_2O_3复合材料性能的研究[J].塑料工业, 2002, 30(1): 28-29.
    [9] Butzloff P., D'Souza N A., Golden T D., et al. Epoxy+ montmorillonite nanocomposite: Effect of composition on reaction kinetics[J]. Polymer Engineering and Science, 2001, 41(10): 1794-1802.
    [10] Ni Y., Zheng S X., Nie K M. Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes[J]. Polymer, 2004, 45(16): 5557-5568.
    [11] Yu H J., Wang L., Shi Q., et al. Preparation of epoxy resin/CaCO_3 nanocomposites and performance of resultant powder coatings[J]. Journal of Applied Polymer Science, 2006, 101: 2656-2660.
    [12] Shin S M., Shin D K., Lee D C. Toughening of epoxy resins with aromatic polyesters[J]. Journal of Applied Polymer Science, 2000, 78: 2464-2473.
    [13] Wu S H. Control of intrinsic brittleness and toughness of polymers and blends by chemical structure[J]. Polymer International, 1992, 29(3): 229-247.
    [14]齐共金,张长瑞,曹英斌,等.逾渗模型在计算材料学中的研究进展[J].材料科学与工程学报, 2004, 22(1): 124-127.
    [15] Liang J Z., Li R K Y. Brittle-ductile transition in polypropylene filled with glass beads [J]. 1999, 40(11): 3191-3195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700