用户名: 密码: 验证码:
自适应张弦梁结构的控制理论与设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在智能张力结构和张弦梁结构的发展和应用基础上,提出一类具有广泛工程应用前景的智能张力结构:自适应张弦梁结构(ABSS),即在张弦梁结构的基础上,用可调伸缩杆替换原结构中的竖向撑杆或拉索作为作动器,并附加测试结构工作状态的传感器和分析处理测试信息的控制器形成的智能结构。为保证该类结构的正常工作,本文综合运用随机搜索、线性力法、非线性有限元法和模糊决策等理论与数值方法,针对该类结构控制理论、静力性能、优化设计以及传感器优化布置等四个方面中存在的共性科学问题及关键技术挑战展开深入研究和探讨。
     采用结构力法,推导了自适应张弦梁结构的理论控制模型,给出结构在恒荷载作用下的几何构形控制方程,以及在均布活荷载和风荷载作用下的工作状态控制方程。采用有限单元法,推导了考虑作动器耦合效应的结构有限元方程,并通过灵敏度分析法建立了结构几何构形和工作状态线性控制的优化模型,采用模拟退火算法搜索得到线性控制的最优解,在此基础上,引入一个非线性有限元计算重新评估控制效果并加以修正的迭代过程,实现自适应张弦梁结构的单目标非线性优化控制。
     根据决策者对内力、位移以及能耗等控制目标的偏好要求,建立了考虑目标优先级要求的自适应张弦梁结构多目标控制模型。采用模糊决策的理论,用满意度和满意度序来描述控制模型中目标的优化程度和目标之间的优先级,来辅助决策者在相同的量纲上评估结构的控制目标。根据分层交互优化的思路,通过基于目标满意度序和目标加法模型的交互式模糊优化算法来辅助决策者进行先验偏好信息和局部偏好信息的确定和引入,实现自适应张弦梁结构的多目标控制。
     自适应张弦梁结构根据作动器的布置方式可划分为撑杆式和拉索式,且考虑拉索式自适应张弦梁结构中拉索的可连续或不连续。研究两类结构在均布荷载和非均布荷载作用下的静力性能,发现撑杆式自适应张弦梁结构的调控效果和调控效率均最优。以撑杆式自适应张弦梁结构为研究对象,分析结构静力性能随几何构形参数、截面特性参数和作动器参数等参数的变化规律,并以此为设计依据,提出基于结构性能的优化设计方法,对结构进行设计。
     以自适应张弦梁结构的调控性能最大为优化目标,建立考虑结构可控性的作动器优化布置模型,并通过序列法和随机搜索算法求解获得作动器的最优布置方案。通过分析作动器优化布置模型的计算复杂度,建立学习策略为结构非线性控制算法选择合适的初始解,以减小算法的迭代次数来提高算法的运算效率;根据计算机多核运算的思路,采用操作并行和试验并行策略对模拟退火算进行改进,加快了搜索算法的搜索速度。
     本文的研究工作完善和推进了自适应张弦梁结构控制理论和优化设计理论的发展,为该类结构的工程应用提供了理论基础和技术支持,同时本文的研究是基于自适应张弦梁结构,但又不依赖于该结构,研究成果也适用于其他类型智能张力结构。
Based on the progress and applications of smart tensile structure and beam string structure (BBS), the adaptive BSS (ABBS) is put forward as a type of widely used smart tensile structure. Based on BBS, ABBS is a smart structure which replaces the vertical poles or cables of the original structure with adjustable bars used as actuators, and adding additional sensors testing the status of the structure and controllers processing test information. In order to guarantee the normal working condition of the structure, the thesis has carried an intensive research and investigation towards the common scientific problems and key technical challenges of control theory, static performance, optimization design and optimal arrangement of sensors with theory and numerical methods such as stochastic search algorithm, linear force method, nonlinear finite element method and fuzzy decision.
     With the force method, the theory control model of ABSS, the geometric configuration equations under dead loads and the working-status control equations under uniform live load and wind load have been put forward. With the finite element method, finite element equation of the structure with consideration of actuator coupling effect is deduced. An optimized model of geometry configuration and working-status linear control is established with the analysis of sensitivity and achieve the optimal solution of the linear control using simulated annealing algorithms. The nonlinear finite element method is introduced to reevaluate the control effect and modify the iterative process in order to achieve the single-objective nonlinear optimization control of ABSS.
     A multi-objective control model of ABSS considering the priority of the objectives s is developed. The objectives include internal force, displacement and energy consumption. Using fuzzy decision theory, the satisfaction degree and the order of satisfaction degree are introduced to describe the priority of the objectives. The two parameters can help to evaluate the control objectives of the structure in the same dimension. According to hierarchical interactive optimization, the interactive fuzzy optimization algorithm based on the satisfaction degree order and the additive model of the objectives is proposed to aid the decision-maker to decide and introduce the priori and local preference information and finally achieve the multi-objective control of ABBS.
     According to the arrangement of actuators, ABSS be divided into bar type and cable type and the bar type can be continuous and discontinuous. The control effect and control efficiency of the bar type is found to be best with the study of the static performance of the two types of structures under uniform load non-uniform load. The changing law of the static performance with parameters such as geometric configuration parameters, section characteristic parameters and actuator parameters is analyzed. The optimization design method based on the structure performance is put forward with the above work.
     To optimize objective as the best controllability performance, an optimal arrangement model of actuators is set up in consideration of the controllability of the structure. The model is solved with the sequence method and random search algorithm. The appropriate initial solution is chosen with the learning strategy and the analysis of the computational complexity of the optimal arrangement model. The initial solution can reduce the number of iterations and improve the efficiency of algorithm. Some improvements to accelerate the speed of search algorithm are proposed according to the idea of multi-core computer operation for improving the parallel operating of simulated annealing algorithm and test paralleling strategy.
     The study has advanced the development of the control theory of ABSS and the theory of optimization design, and has provided theoretical basis and technical support for the engineering application of this kind of structure. Meanwhile, the study can also be applied to other types of smart tensile structures though it is based on ABBS.
引文
[1]Korkmaz S. A review of active structural control:challenges for engineering informatics[J]. Computers & Structures,2011,89(23):2113-2132.
    [2]钱若军,杨联萍.张力结构的分析·设计·施工[M].南京:东南大学出版社,2003.
    [3]蒋雄,侯攀.基于桥梁健康监测系统下应变传感器的选型[J].黑龙江交通科技,2012,223(09):94-95.
    [4]Shen Y, Yang P, Zhang P, Luo Y, Mei Y, Cheng H, et al. Development of a Multitype Wireless Sensor Network for the Large-Scale Structure of the National Stadium in China[J]. International Journal of Distributed Sensor Networks,2013,2013.
    [5]罗尧治,梅宇佳,沈雁彬,杨鹏程,金砺,张鹏飞.国家体育场钢结构温度与应力实测及分析[J].建筑结构学报,2013,34(11):24-32.
    [6]梅宇佳,罗尧治,沈雁彬.国家体育场钢结构雪荷载效应实测及分析[J].低温建筑技术,20,13,1 82(08):47-50.
    [7]昌学年,姚毅,闫玲.位移传感器的发展及研究[J].计量与测试技术,2009,36(09):42-44.
    [8]刘焱,王烨.位移传感器的技术发展现状与发展趋势[J].自动化技术与应用,2013,32(06):76-80.
    [9]罗尧治,沈雁彬,王洽亲,程华强.国家体育场建筑健康监测技术应用[C].第十三届空间结构学术会议论文集;深圳2010:828-833.
    [10]罗尧治,朱铁城,程华强,童若飞,刘钝.索结构索力无线测试系统及应用[J].施工技术,2013,42(14):33-37.
    [11]童若飞.空间结构模态识别与实测方法研究[D].浙江大学,2011.
    [12]洪江波.大跨度空间结构风场实测系统验证与应用[D].浙江大学,2012.
    [13]孙斌.基于无线传感系统的大跨度空间结构风效应实测研究[D].浙江大学,2013.
    [14]潘继.结构作动器/传感器的优化配置及其主动控制研究[D].上海交通大学,2008.
    [15]张治君,徐明龙,邵闯.压电作动器在柔性环形天线结构振动主动控制中的应用[J].强度与环境, 2013,40(02):21-27.
    [16]Fest E, Shea K, Smith IF. Active tensegrity structure[J]. Journal of Structural Engineering,2004,130(10):1454-1465.
    [17]Averseng J, Dube J-F, Crosnier B, Motro R, editors. Active control of a tensegrity plane grid[C]. Decision and Control,2005 and 2005 European Control Conference CDC-ECC'05 44th IEEE Conference on; 2005:IEEE; Year:Published.
    [18]Chan WL, Arbelaez D, Bossens F, Skelton RE, editors. Active vibration control of a three-stage tensegrity structure[C]. Smart Structures and Materials; 2004: International Society for Optics and Photonics; Year:Published.
    [19]Bronfeld A. Shape change algorithm for a tensegrity device[D]. Tel Aviv University,2010.
    [20]Noak T, Ruth J, Miiller U, editors. Adaptive hybrid structures[C]. Proceedings of the international conference on adaptable building structures, Adaptables; 2006 Year: Published.
    [21]冯新,李国强,周晶.土木工程结构健康诊断中的统计识别方法综述[J].地震工程与工程振动,2005,25(02):105-113.
    [22]张毅刚.系统识别及其在建筑结构工程中的应用展望[J].建筑结构,1998,5:56-60.
    [23]Smith IF, Saitta S, editors. Multiple-model updating to improve knowledge of structural system behavior[C].17th Analysis and Computation Specialty Conference, ASCE; 2006 Year:Published.
    [24]Domer B, Fest E, Lalit V, Smith IF. Combining dynamic relaxation method with artificial neural networks to enhance simulation of tensegrity structures [J]. Journal of Structural Engineering,2003,129(5):672-681.
    [25]You Z. Displacement control of prestressed structures[J]. Computer methods in applied mechanics and engineering,1997,144(l):51-59.
    [26]肖南,肖新,董石麟.张力结构形状调整优化分析[J].浙江大学学报:工学版,2009,43(8):1513-1519.
    [27]徐伟炜,吕志涛,丁汉山.智能预应力梁的变位控制理论及方法[J].公路交通科技,2006,23(12):67-71.
    [28]徐伟炜,吕志涛,丁汉山.基于开关控制的智能预应力结构模型试验[J].工程力学,2011,28(05):105-110.
    [29]Djouadi S, Motro R, Pons J, Crosnier B. Active control of tensegrity systems[J]. Journal of Aerospace Engineering,1998, 11)2):37-44.
    [30]Raja MG, Narayanan S. Active control of tensegrity structures under random excitation[J]. Smart materials and structures,2007,16(3):809.
    [31]许贤,罗尧治,沈雁彬.张拉整体结构的非线性主动控制[J].浙江大学学报(工学版),2010,44(1 0):025.
    [32]许贤,罗尧治,沈雁彬.张力结构的动态控制研究[J].工程力学,201 1,28(5):186-193.
    [33]Sobek W, Teuffel P, editors. Adaptive systems in architecture and structural engineering[C]. SPIE's 8th Annual International Symposium on Smart Structures and Materials; 2001:International Society for Optics and Photonics; Year:Published.
    [34]肖南,黄玉香,董石麟,肖新.张力结构位移限制下的形状调整强度优化分柝[J].浙江大学学报:工学版,2010,44(1):166-173.
    [35]Adam B, Smith IF. Tensegrity active control:Multiobjective approach[J]. Journal of Computing in Civil Engineering,2007,21(1):3-10.
    [36]Xu X, Luo Y. Multi-objective shape control of prestressed structures with genetic algorithms [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,2008,222(8):1139-1147.
    [37]Du J, Bao H, Yang D, Wang Y, Cui C. Initial equilibrium configuration determination and shape adjustment of cable network structures[J]. Mechanics Based Design of Structures and Machines,2012,40(3):277-291.
    [38]Koza JR. Genetic programming[J].1992.
    [39]Kirkpatrick S, Vecchi M. Optimization by simmulated annealing[J]. science, 1983,220(4598):671-680.
    [40]Shea K, Fest E, Smith IF. Developing intelligent tensegrity structures with stochastic search[J]. Advanced engineering informatics,2002,16(1):21-40.
    [41]许贤.张拉整体结构的形态理论与控制方法研究[D].浙江大学,2009.
    [42]Raphael B, Smith I. A probabilistic search algorithm for finding optimally directed solutions[J]. Proceedings of Construction Information Technology, Icelandic Building Research Institute, Reykjavik,2000:708-721.
    [43]Korkmaz S, Ali NBH, Smith IF, editors. Self-repair of a tensegrity pedestrian bridge through grouped actuation[C]. Proceedings of the international conference on computing in civil and building engineering, Nottingham, UK; 2010 Year:Published.
    [44]Domer B, Smith IF. An active structure that learns[J]. Journal of Computing in Civil Engineering,2005,19(1):16-24.
    [45]孙哲丰,郑世珏.基于MPI的模拟退火算法并行性研究[J].微计算机信息,201 0,26(24):176-177.
    [46]高家全,何桂霞.并行遗传算法研究综述[J].浙江工业大学学报,2007,35(01):56-59.
    [47]董石麟.预应力大跨度空间钢结构的应用与展望[J].空间结构,2001,7(04):3-14.
    [48]罗尧治,沈雁彬.索穹顶结构初始状态确定与成形过程分析[J].浙江大学学报(工学版),2004,38(10):84-90.
    [49]曲晓宁,罗尧治,郑君华.基于改进遗传算法的预应力钢结构索张拉优化分析[J].工程力学,2009,(09):131-137.
    [50]吴杰,杨永华.基于混合变量的预张力结构优化设计研究[J].结构工程师,2008,24(03):50-54.
    [51]Robert-Nicoud Y, Raphael B, Smith I. Configuration of measurement systems using Shannon's entropy function[J]. Computers & structures,2005,83(8):599-612.
    [52]Kripakaran P, Smith IF. Configuring and enhancing measurement systems for damage identification[J]. Advanced Engineering Informatics,2009,23(4):424-432.
    [53]Goulet J-A, Kripakaran P, Smith IF. Considering sensor characteristics during measurement-system design for structural system identification[J]. Proceedings of Computing in Civil Engineering, Austin,2009:74-82.
    [54]Zhang J, Ohsaki M. Force identification of prestressed pin-jointed structures[J]. Computers & Structures,2011,89(23):2361-2368.
    [55]Lim T. Actuator/sensor placement for modal parameter identification of flexible structures[J]. International Journal of Analytical and Experimental Modal Analysis,1993, 8:1-13.
    [56]de Jager B, Skelton RE. Input-output selection for planar tensegrity models[J]. Control Systems Technology, IEEE Transactions on,2005,13(5):778-785.
    [57]Korkmaz S, Bel Hadj Ali N, Smith IF. Determining control strategies for damage tolerance of an active tensegrity structure [J]. Engineering Structures,2011, 33(6>:1930-1939.
    [58]Demetriou MA, editor A numerical algorithm for the optimal placement of actuators and sensors for flexible structures[C]. American Control Conference,2000 Proceedings of the 2000; 2000:IEEE; Year:Published.
    [59]Tolson RH, Huang J-K. Integrated control of thermally distorted large space antennas[J]. Journal of guidance, control, and dynamics,1992,15(3):605-614.
    [60]Robert-Nicoud Y, Raphael B, Smith I. Configuration of measurement systems using Shannon's entropy function[J]. Computers and Structures,2005,83(8-9):599-612.
    [61]刘福强,张令弥.遗传算法在主动构件优化配置中.的应用[J].振动与冲击,1999,18(4):16-20.
    [62]Abdullah MM, Richardson A, Hanif J. Placement of sensors/actuators on civil structures using genetic algorithms[J]. Earthquake engineering & structural dynamics, 2001,30(8):1167-1184.
    [63]Liu W, Gao W-c, Sun Y, Xu M-j. Optimal sensor placement for spatial lattice structure based on genetic algorithms[J]. Journal of Sound and Vibration,2008, 317(1):175-189.
    [64]Saitoh M, editor Hybrid form-resistance structure[C]. Shell, Membrane and Space Frames, Proceedings of I ASS Symposium, Osaka; 1986 Year:Published.
    [65]汪大绥,张富林.上海浦东国际机场(一期工程)航站楼钢结构研究与设计[J].建筑结构学报,1999,20(2):2-8.
    [66]孙文波.广州国际会展中心大跨度张弦梁的设计探讨[J].建筑结构,2002,32(2):54-56.
    [67]罗尧治,余佳亮.北京北站站台大跨度张弦桁架雨棚设计研究[J].中国铁道科学,2013,34(01):35-42.
    [68]罗尧治,余佳亮.北京北站张弦桁架结构性能研究及工程优化[J].工业建筑,2012,42(11):115-120.
    [69]徐伟炜,吕志涛,丁汉山.智能预应力梁的变位控制理论及方法[J].公路交通科技,2007,23(12):67-71.
    [70]Xu X, Luo Y. Non-linear displacement control of prestressed cable structures[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering,2009,22.3(7):1001-1007.
    [71]Sobieszczanski-Sobieski J. A linear decomposition method for large optimization problems. Blueprint for development J].1982.
    [72]Sobieszczanski-Sobieski J, Haftka RT. Multidisciplinary aerospace design optimization:survey of recent developments[J]. Structural optimization,1997,14(1):1-23.
    [73]Allaire G, Jouve F, Toader A-M. Structural optimization using sensitivity analysis and a level-set method[J]. Journal of computational physics,2004, 194(1):363-393.
    [74]Kirsch U. Efficient, accurate reanalysis for structural optimization[J]. AIAA journal,1999,37(12):1663-1669.
    [75]Roy R, Hinduja S, Teti R. Recent advances in engineering design optimisation: Challenges and future trends[J]. CIRP Annals-Manufacturing Technology,2008, 57(2):697-715.
    [76]Frangopol DM, Maute K. Life-cycle reliability-based optimization of civil and aerospace structures[J]. Computers & Structures,2003,81(7):397-410.
    [77]Jilla CD, Miller DW. Multi-objective, multidisciplinary design optimization methodology for distributed satellite systems[J]. Journal of Spacecraft and Rockets,2004, 41(1):39-50.
    [78]陈建军,马洪波,戴君,崔明涛.结构可靠性优化中的灵敏度分析[J].应用 力学学报,2002,19(1):14-17.
    [79]高博青,岑迪钦,吴慧.刚性索穹顶的静力性能与可靠性灵敏度分析[J].深圳大学学报(理工版),2013,30(3):325-330.
    [80]简洪平.采用序列二次规划法进行空间网架结构优化设计中的关键问题[J].有色冶金设计与研究,200.2,23(4):77-79.
    [81]雷霄雯,杨刚,史金星,李晓莉.钢桁架拱桥的结构优化分析[J].大连海事大学学报,2009,35(3):75-79.
    [82]王栋,李晶.空间桁架结构动力学形状优化设计[J].工程力学,2007,24(4):129-134.
    [83]杨春,杨玉泉.索结构张力不确定度估计方法[J].振动与冲击,2012,31(4):105-109.
    [84]龙驭球,包世华.结构力学[M].北京:人民教育出版社,1981.
    [85]Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E. Simulated annealing[J]. Journal of Chemical Physics,1953,21:1087-1092.
    [86]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [87]Hwang CL, Masud ASM. Multiple objective decision making-methods and applications[M]:Springer,1979.
    [88]胡超芳.基于决策者满意度的多目标模糊优化算法研究[D].上海交通大学,2007.
    [89]Osyczka A, Davies B. Multicriterion optimization in engineering with FORTRAN programs,1984[J]. Ellis Harward Lim Publ, Chichester.
    [90]Leung Y. Hierarchical programming with fuzzy objectives and constraints[M]: Springer,1987.
    [91]徐玖平,李军.多目标决策的理论与方法[M].北京:清华大学出版社有限公司,2005.
    [92]Chen L-H, Tsai F-C. Fuzzy goal programming with different importance and priorities[J]. European Journal of Operational Research,2001,133(3):548-556.
    [93]Sakawa M, Yano H, Yumine T. An interactive fuzzy satisficing method for multiobjective linear-programming problems and its application[J]. Systems, Man and Cybernetics, IEEE Transactions on,1987,17(4):654-661.
    [94]Sakawa M, Kato K, Nishizaki I. An interactive fuzzy satisficing method for multiobjective stochastic linear programming problems through an expectation model[J]. European journal of operational research,2003,145(3):665-672.
    [95]Sakawa M, Yano H. An interactive fuzzy satisficing method for multiobjective linear fractional programming problems[J]. Fuzzy Sets and Systems,1988,28(2):129-144.
    [96]Mohan C, Nguyen H. Reference direction interactive method for solving multiobjective fuzzy programming problems[J]. European Journal of Operational Research,1998,107(3):599-613.
    [97]Saitta S, Raphael B, Smith IF. A comprehensive validity index for clustering[J]. Intelligent Data Analysis,2008,12(6):529-548.
    [98]Zadeh LA. Fuzzy sets[J]. Information and control,1965,8(3):338-353.
    [99]Stanley Lee E, Li RJ. Fuzzy multiple objective programming and compromise programming with Pareto optimum[J]. Fuzzy sets and systems,1993,53(3):275-288.
    [100]Zimmermann H. Fuzzy Set Theory and Its Applications.1985[J]. Kluweer-Ninjhof Publishers, Boston.
    [101]Jimenez M, Arenas M, Bilbao A, Rodriguez Uria M. Approximate resolution of an imprecise goal programming model with nonlinear membership functions[J]. Fuzzy sets and systems,2005,150(1):129-145.
    [102]Jana C, Chattopadhyay R. Block level energy planning for domestic lighting—a multi-objective fuzzy linear programming approach[J]. Energy,2004, 29(11):1819-1829.
    [103]Huang H-Z, Gu Y-K, Du X. An interactive fuzzy multi-objective optimization method for engineering design[J]. Engineering Applications of Artificial Intelligence, 2006,19(5):451-460.
    [104]Amid A, Ghodsypour S, O'brien C. Fuzzy multiobjective linear model for supplier selection in a supply chain[J]. International Journal of Production Economics, 2006,104(2):394-407.
    [105]Hannan EL. Linear programming with multiple fuzzy goals[J]. Fuzzy sets and systems,1981,6(3):235-248.
    [106]Li S, Yang Y, Teng C. Fuzzy goal programming with multiple priorities via generalized varying-domain optimization method[J]. Fuzzy Systems, IEEE Transactions on,2004,12(5):596-605.
    [107]Li S, Hu C. Two-step interactive satisfactory method for fuzzy multiple objective optimization with preemptive priorities[J]. Fuzzy Systems, IEEE Transactions on,2007,15(3):417-425.
    [108]Tiwari R, Dharmar S, Rao J. Fuzzy goal programming—an additive model[J]. Fuzzy sets and systems,1987,24(1):27-34.
    [109]沈雁彬,郑君华,罗尧治.北京北站张弦桁架结构模型试验研究[J].建筑结构学报,2010,31(11):51-56.
    [110]余佳亮.无站台柱张弦桁架雨棚结构性能分析与倒塌模拟研究[D].浙江大学,2012.
    [111]余佳亮,罗尧治.火车站站台张弦桁架雨棚结构抗风分析与研究[J].空间结构,2013,19(04):25-33.
    [112]陈荣毅,董石麟,孙文波.大跨度预应力张弦桁架结构的设计与分析[J].空间结构,2003,9(01):45-47.
    [113]白正仙,刘锡良,李义生.单榀张弦梁结构各因数的影响分析[J].钢结构,2001,52(03):42-46.
    [114]薛伟辰,刘晟,苏旭霖,陆平.上海源深体育馆预应力张弦梁优化设计与试验研究[J].建筑结构学报,2008,29(01):16-23.
    [115]赵宪忠,陈建兴,陈以一.张弦梁结构张拉过程中的结构性能试验研究[J].建筑结构学报,2007,28(04):1-7+50.
    [116]Korkmaz S, Ali NBH, Smith IF. Configuration of control system for damage tolerance of a tensegrity bridge [J]. Advanced Engineering Informatics,2012, 26(1):145-155.
    [117]Ingber L. Very fast simulated re-annealing[J]. Mathematical and computer modelling,1989,12(8):967-973.
    [118]张霖斌,姚振兴,纪晨,张中杰.快速模拟退火算法及应用[J].石油地球 物理勘探,1997,(05):654-660+750.
    [119]AARTS/KORST. Simulated annealing and boltzmann machines. A stochastic approach to combinatorial optimization and neural computing[M]:John Wiley.,1990.
    [120]杜庆良.蛋白质结构预测的并行模拟退火算法研究[D].福建农林大学,2013.
    [121]Lee R, Ding X, Chen F, Lu Q, Zhang X. MCC-DB:minimizing cache conflicts in multi-core processors for databases[J]. Proceedings of the VLDB Endowment, 2009,2(1):373-384.
    [122]康立山,谢云,尤矢勇.非数值并行算法:模拟退火算法.第一册[M].北京:科学出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700