用户名: 密码: 验证码:
胺化木质素的合成及固化环氧树脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质素是地球上一种储量十分丰富的可再生资源,产量大,再生速度快,可生物降解。合理开发和利用木质素,将其作为化工原料来代替日渐枯竭的石油资源,对人类社会的可持续发展具有十分重要的意义。碱木质素中含有大量酚羟基、醇羟基和羧基等多种基团,具有一定反应活性,可以代替有机化工原料应用于高分子材料合成领域。近年来,利用碱木质素改性制备高分子材料已引起了人们的兴趣。
     本课题首先对碱木质素进行降解提纯以提高木质素的反应活性;并以愈创木酚作为模型化合物对木质素改性的可能性进行了实验与理论研究;在此基础上,对碱木质素进行了环氧后胺化改性;并将合成的胺化木质素应用于环氧树脂的固化,对胺化木质素交联后的环氧树脂与未加入木质素的环氧树脂性能进行了对比研究。其中,将碱木质素采用环氧-胺化两步法改性并将其应用于固化环氧树脂是本文的一大创新点,主要研究内容与结果如下:
     一、碱木质素改性前的降解提纯以及结构性质确定:采用FTIR、UV、GPC和TGA等手段对实验所用碱木质素的结构和性质进行测试;使用钙镁复合固体碱降解碱木质素,并讨论了降解条件对降解后碱木质素分子量的影响;采用析出沉淀法对降解后碱木质素进行精制提纯。结果显示,实验用碱木质素分子结构中含有大量的羟基,醇羟基含量高于酚羟基的含量;经过降解和提纯处理后的碱木质素纯度有较大提高,总木质素含量由83.98%提高到97.04%,相对分子质量降低至1000以下,主要活性官能团总羟基、酚羟基和醇羟基由原来的6.88%、3.061%和3.819%转变为9.62%,3.524%,6.096%,酚羟基含量提高;降解提纯后的碱木质素仍然具有良好的热降解稳定性。
     二、木质素模型化合物的胺化改性:以愈创木酚作为木质素模型化合物,采用环氧-胺化两步法制备了带有活泼胺基的愈创木酚衍生物。通过FTIR、GC-MS以及NMR等手段对木质素模型化合物改性前后的分子结构进行测试,确定了目标产物的生成。对环氧、胺化反应机理的研究归纳以及模型化合物的成功改性表明,通过环氧-胺化两步法在木质素分子中引入活泼胺基是可行的。
     三、木质素胺化改性产物的合成:采用环氧-胺化两步法制备了带有活泼胺基的木质素衍生物,并探讨了反应条件对结果的影响,这是本文创新点之一。在环氧化步骤中,综合考虑产物的环氧值与转化率,得出反应适宜条件为:木质素中的羟基与环氧氯丙烷物质的量比为1:1.1,碱剂浓度12%,反应温度50℃,反应时间8h。胺化反应适宜条件为:环氧木质素中的环氧基与二胺化合物物质的量比是1:8,反应温度80℃,反应时间4h。胺化木质素的胺基显色反应为蓝紫色,为正反应,说明胺化木质素中含有大量一级胺基;FTIR和XPS测试结果确定了胺化木质素的生成;木质素胺化前后的元素分析结果显示,胺化木质素中引入了含量较高的氮元素;另外,热重分析结果显示,胺化木质素的最大降解速率发生在300℃以后,具有良好的热降解稳定性。
     四、胺化木质素固化双酚A型环氧树脂:将合成的胺化木质素作为固化剂固化双酚A型环氧树脂,也为本文创新之处。优化了固化工艺条件,分析了胺化木质素固化双酚A型环氧树脂的固化反应动力学,并且研究了胺化木质素的引入对不同粘度的两类双酚A型环氧树脂热性能、机械性能以及耐水性的影响。红外光谱显示,环氧树脂的环氧峰随固化反应时间的延长而降低并最终消失,证实了含有活泼胺基的胺化木质素可以与环氧基团发生反应;采用DSC非等温法对胺化木质素固化环氧树脂的固化动力学进行了研究,结果显示胺化木质素固化双酚A型环氧树脂的反应为中温固化的复杂反应,并选择100℃,180min作为双酚A型环氧树脂的恒温固化工艺条件。DMA测试了环氧树脂的玻璃化温度(Tg)和热转变温度(Td),TGA测试了材料的热降解过程,结果都显示胺化木质素的加入增强了环氧树脂的耐热稳定性;材料的机械强度随刚性分子-胺化木质素的加入而逐渐增加;吸水性测试结果显示,完全由W93固化的环氧树脂E51在720h后的吸水率为1.561%(加入稀释剂后的GCC135为1.973%),而被含50%胺化木质素的混合固化剂固化的环氧树脂E51则达到2.740%(加入稀释剂后的GCC135为2.584%),说明胺化木质素的加入使得环氧树脂材料耐水性略有降低,但影响不大。
     五、胺化木质素固化双酚F型环氧树脂:分析了将合成的胺化木质素作为双酚F型环氧树脂的固化剂使用的可能性,优化了工艺条件,探讨了固化反应动力学,并且研究了胺化木质素的引入对环氧树脂热性能、机械性能以及耐水性的影响。FTIR结果显示,由胺化木质素固化后的环氧树脂在910cm-1处的环氧峰完全消失并且出现了C-N峰,证实了含有活泼胺基的胺化木质素可以与环氧基团发生反应;采用DSC非等温法研究了胺化木质素固化双酚F型环氧树脂的固化动力学,选定90℃,90min作为双酚F型环氧树脂的恒温固化工艺条件。在此工艺下形成的环氧树脂,当胺化木质素含量少于60%时为均一透明的薄膜,SEM测试结果也显示胺化木质素与环氧树脂有良好的相容性。DMA测试环氧树脂的玻璃化温度(Tg)和热转变温度(Td),结果显示当胺化木质素在混合固化剂中含量增加到50%时,双酚F型环氧树脂的玻璃化温度上升了26℃,热转变温度提高了20℃。TGA实验结果显示胺化木质素固化的环氧树脂在300℃以前的质量损失仅为3.57%,而由W93固化的双酚F型环氧树脂则达到7.79%。拉伸强度测试结果表明,含50%胺化木质素的混合固化剂固化的双酚F型环氧树脂拉伸强度比未加木质素的环氧树脂增加了65MPa;双酚F型环氧树脂的耐水性能受胺化木质素的影响不大,完全由W93固化的双酚F型环氧树脂在720h后的吸水率为0.996%,而由含50%胺化木质素的混合固化剂固化的为1.319%。
Second to cellulose, lignin is one of the most abundant renewable resources produced by plants. The application of this environmentally friendly biodegradable lignin resource of being as substitutes of dwindling petroleum oil based materials is an important aspect of sustainable development. Numerous reactive hydroxyl groups including both phenolic and aliphatic hydroxyl groups and carboxyl groups exist in lignin molecular. These structural features make lignin a potential source of preparing network materials. Synthesis of various functional derivatives from lignin has attracted increased attentions from researchers in recent years. In this paper, aminated derivatives of lignin containing a great quantity of primary amine and secondary amine groups were synthesized by a new two-step method after degradation and purification of lignin and feasibility study of amination reaction with a lignin model compound.With the existence of amino groups in the modified lignin, it was served as a curing agent of epoxy resins instead of a filler of the polymer materials. The main contents and conclusions of this paper are listed as follows:
     1Degradation, purification and characterization of alkaline lignin:Solid base catalysts MgO/CaO were used to catalyze degradation of lignin. Molecular Weight (MW) of the degradation products were reduced to below1000. An acid-precipitation method was used to remove the residual cellulose, inorganic salt, sugar and other impurities in original lignin material. After degradation and purification of the lignin, the purity of the lignin improved from83.98%to97.04%, total hydroxyl, alcoholic hydroxyl groups and phenolic hydroxyl increased from6.88%,3.061%and3.819%to9.62%,3.524%,6.096%respectively. Thermogravimetric analysis (TGA) result showed good thermal stability of the purified lignin.
     2Amination modification of a lignin model compound:guaiacol (GGA) was served as the model of alkali lignin. Aminated derivative of GGA was prepared from guaiacol, epichlorohydrin and diamine by a two-step epoxidation-amination method. The chemical structure of guaiacol and its derivatives were characterized by FTIR, GC-MS, and NMR. The results indicated that the target product was synthesized successfully. The investigation of amination reaction kinetics of the epoxidation compound with amine compound confirmed that introducing amine group into lignin molecules by this two-step method is feasible.
     3Synthesis of aminated lignin derivative:the aminated lignin possessing primary amine and secondary amine groups was synthesized through a two-step process, and the effects of reaction conditions on the target product have been discussed. At the first stage, epoxidation reaction of lignin was significantly affected by the alkaline condition and the dropping speed of epichlorohydrin. The proper synthesis conditions of epoxy lignin were achieved at50℃,8h, and with a ratio of hydroxy group to epichlorohydrin at1:1.1and NaOH concentration at12%. At the amination step, the proper reaction conditions were:80℃,4h, and with a ratio of epoxy group to amine group at1:8. In the qualitative amine color test, aminated lignin samples with different content of amine groups showed blue and blue-purple colors, visually proved the introduction of primary amine groups. The results of FTIR, XPS and the element analysis also confirmed that amine groups have been introduced into the structure of lignin and the amount of the incorporated amino groups was significant. The TGA revealed good thermal-mechanical performance of the products.
     4Curing the bisphenol A epoxy resin with aminated lignin:the aminated lignin was used as a curing agent of bisphenol A epoxy resin with different viscosity, the crosslinking reaction kinetics of the aminated lignin reacted with epoxy resin were investigated by using a non-isothermal method. The thermal stability, mechanical properties and water absorption of the epoxy resins cured by the aminated lignin were researched. The FTIR results proved the reactivity of the aminated lignin with the epoxy resin. The result of crosslinking reaction kinetics showed that the curing reaction was a complex curing reaction. The proper curing conditions were:100℃,180min. Both appearance features and scanning electron microscopy (SEM) images indicated that the aminated lignin had good compatibility with epoxy resins. In addition, the glass transition temperature (Tg), thermal deformation temperature (Td) and the thermo gravimetric analysis (TGA) results revealed that the epoxy resin had better thermal stability compared with ones cured by a common hardener. The mechanical properties of the epoxy resin cured by the aminated lignin were improved with the increase of content of the lignin due to the introduction of rigid molecule. The water absorption of epoxy resin E51contained the aminated lignin was2.740%(GCC135:2.584%) comparing with1.561%(GCC135:1.973%) without lignin, indicating that the addition of lignin slightly reduced the water resistance of the epoxy resin..
     5Curing the bisphenol F epoxy resin with aminated lignin:the possibility of using the aminated lignin prepared in this laboratory as a crosslinker of epoxy resin was explored. FTIR spectra confirmed that the synthesized aminated lignin could react with epoxy groups and serve as a hardener. Transparent and homogeneous epoxy resin films could be formed with less than60% of the aminated lignin in the hardener mixture after the resins were cured at following procedures:90℃,90min. Tg and Td of the epoxy resin cured by the aminated lignn individually increased26℃,20℃compared with the one without lignin. The Tg value of the epoxy resin was improved with the increase of post-cured temperature, time and the addition of the aminated lignin. The aminated lignin had a positive effect at the initial degradation stage of the epoxy resin. The mass loss of the epoxy resin cured by the aminated lignin before300℃was small around only3.57%while that of the one without the aminated lignin in the hardener system was7.79%. The results revealed that the thermal behavior of the epoxy resins was improved because of the introduction of the aminated lignin. Similar to bisphenol A epoxy resin, the mechanical properties of the bisphenol F epoxy resin cured by the aminated lignin were also improved with the increase of content of the lignin. The water absorption of bisphenol F epoxy resin cured by the aminated lignin was1.319%comparing with0.996%without lignin.
     The results showed that the aminated lignin containing a great quantity of primary amine and secondary amine groups could serve as a curing agent of epoxy resins.
引文
[l]王研,陈咏梅,万平玉,韩雁明,秦特夫.CaO/MgO复合固体碱催化剂催化降解木质素的研究[J].林产化学与工业,2012,32(3):81-87.
    [2]邬义明.植物纤维化学[M].轻工业出版社,1991,1.
    [3]杨龙寿,张锦云.木质素资源的开发利用[J].化工进展,1994,(1):47-49.
    [4]蒋挺大,木质素[M].化学工业出版社,2001,6.
    [5]刘全校.碱法制浆黑液中木素综合利用的研究[D].天津科技大学博士论文,2001.
    [6]刘磊.改性造纸黑液在农药WG和WP中的应用性能研究[D].华南理工大学硕士论文,2012.
    [7]吕晓静,杨军,王迪珍,罗东山.木质素的高附加值应用新进展[J].化工进展,2001,(5):10-14.
    [8]来源于网络资料,地址http://www.mhaotw.com/cpj s/xinchanpin/1/32.htm
    [9]Glasser, W. G., Glasser, H. R.. Simulation of reactions with lignin by computer (Simrel). Ⅱ. a model for softwood lignin [J]. Holzforschung,1974,28(1):5-11.
    [10]Glasser, W. G., Glasser, H. R.. The evaluation of lignins chemical structure by experimental and computer simulation techniques[J]. Paperi ja Puu,1981,63:71-81.
    [11]谌凡更.棉秆碱木素特性的研究[J].1994,9(2):59-62.
    [12]魏兰.以木质素为原料合成环氧树脂的研究[D].天津科技大学硕士学位论文,2004.
    [13]Lei, Zh. F., Lu, Y.S.. Proceeding of 34 IUPAC congress [M]. Chinese chemical society. Beijing.1993,226.
    [14]丁泽杨,汤宗兰.聚合物化学[M].成都科技出版社,1990.
    [15]冯攀,谌凡更.木质素在环氧树脂合成中的应用进展[J].纤维素科学与技术,2010,18(2):54-59.
    [16]龚蔚,蒲万芬,金发扬,彭陶钧.木质素的化学改性方法及其在油田中的运用[J].日用化学工业,2008,38(2):117-121.
    [17]刘晓秋.木质素的改性及应用研究[D].长春理工大学硕士论文,2008.
    [18]梁洁.杨木乙醇木素的改性与应用[D].大连工业大学硕士论文,2009.
    [19]周建,罗学刚,林晓艳.淀粉和木质素可降解发泡材料研究进展及展望[J].化工进展,2006,25(8):923-927.
    [20]Lora, J. H., Glasser, W. G.. Recent industrial applications of lignin:a sustainable alternative to nonrenewable materials [J]. Journal of polymers and the environment, 2001,10, (1/2):39-18.
    [21]穆怀珍,刘晨,郑涛,黄衍初.木质素的化学改性方法及其应用[J].农业环境科学学报,2006,25(1):14-18.
    [22]岳萱,乔卫红,申凯华,李宗石.曼尼希反应与木质素的改性[J].精细化工,2001,18(11):670-673.
    [23]李建法,宋湛谦.木质素磺酸盐及其接枝产物作沙土稳定剂的研究[J].林产化学与工业,2002,22(1):18-21.
    [24]Malutan, T., Nicu, R., and Popa, V. I.. Lignin modification by epoxidation[J]. Bioresources,2008,3(4):1371-1376.
    [25]张致发,邓国华,叶跃华.木质素磺酸盐和丙烯酸电化学接枝共聚反应的研究[J].纤维素科学与技术,1998,6(1):55-62.
    [26]彭志远,谌凡更.木质素-聚氨酯水凝胶的合成及其性能[J].功能高分子学报,2010,23(4):405-408.
    [27]刘千钧,詹怀宇,刘明华.木质素磺酸镁接枝丙烯酰胺的影响因素[J].化学研究与应用,2003,15(5):737-739.
    [28]穆怀珍,黄衍初,杨问波,陈倩.碱法蔗渣制浆黑液木质素磺化反应研究[J].环境化学,2003,22(4):377-379.
    [29]Glasser, W. G.. Engineering plastics from lignin characterization of hydroxyalkyl lignin derivatives[J]. Journal of applied polymer science,1984,29(4): 1111-1123.
    [30]刘欣,周永红,刘红军,胡立红,张猛.木质素聚醚非离子表面活性剂的合成与性能研究[J].林产化学与工业,2009,29(2):41-45.
    [31]胡忠宇.木质素衍生物制备环氧树脂的研究[D].东北电力大学学士论文,2011.
    [32]谌凡更,李忠正.麦草碱木质素与环氧乙烷的共聚的研究[J].纤维素科学与技术,1998,6(1):48-54.
    [33]魏兰,刘忠.木质素利用新技术[J].黑龙江造纸,2003,(1):19-20.
    [34]张占业,穆环珍,张春萍,黄衍初,刘晨.两性木质素接枝共聚物的聚合反应与离子化改性[J].环境化学,2007,26(5):654-657.
    [35]Jiang, Z. H., Argyropoulos, D. S.. Coupling 31P NMR with the mannich reaction toward the quantitative analysis of lignin[J]. Canadian Journal Chemistry,1998,76 (5):612-622.
    [36]崔凯,周玉杰,张建安,程可可,刘宏娟,戴玲妹,刘德华,王永刚.木质素改性制备驱油剂的研究进展[J].现代化工,2008,28(2):252-261.
    [37]刘祖广,陈朝晖,王迪珍.木质素的Mannich反应研究进展[J].中国造纸学报,2007,(1):104-108.
    [38]Du, X. Y., Li J.B., Lindstrom, M.E.. Modification of lignin structure by amine group introduction[M]. Proceedings of the 16th ISWFPC,298-303.
    [39]周益同,张小丽,高源,张力平.曼尼希反应合成碱木质素胺基多元醇的研究[J].现代化工,2011,31(1):260-263.
    [40]Matsushita, Y., Yasuda, S.. Reactivity of a Condensed-type lignin model compound in the mannich reaction and preparation of cationic surfactant from sulfuric acid lignin[J]. Journal of Wood Science,2003,49:166-171.
    [41]Matsushita, Y., Yasuda, S.. Preparation of anion-exchange resins from pine sulfuric acid lignin, one of the acid hydrolysis lignins[J]. Journal of Wood Science, 2003,49:423-429.
    [42]Mikawa, H., Sato, K., Takasaki, C., Ebisawa, K.. Studies on the cooking mechanism of wood. (XV) Mannich Reaction in lignin model compounds and the estimation of the amount of the Simple Guaiacy Nucleus in Thiolignin[J]. Bulletin of Chemical Society of Japan,1956,29(2):259-265.
    [43]Schilling, P., Brown, P. E.. Cationic and anionic lignin amines[P]. US,4775 744. 1988-10-04.
    [44]Fang, R., Cheng, X., Xu, X.. Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater[J]. Bioresource Technology,2010,101(19):7323-7329.
    [45]Dilling, P., Samaranayake, G. S., Waldrop, A. L.. Amine modified sulfonated lignin for disperse dye[P]. US:5972 047,1999-10-26.
    [46]Jiao, Y.H., Qiao, W.H., Li, Z.SH., CHEN, L.B.. A study on the modified lignosulfonate from lignin[J]. Energy Sources,2004,26(4):409-414.
    [47]Matsushita,Y., Iwatsuki, A., Yasuda, S.. Application of cationic polymer prepared from sulfuric acid lignin as a retention aid for usual rosin sizes to neutral papermaking[J]. Journal of Wood Science,2004,50(6):540-544.
    [48]张万烽,林青,林建,陆姗.木质素的TETA胺化改性[J].化工时刊,2006,20(3):13-15.
    [49]姚光裕,张大成.制备木质素基沥青乳化剂[J].纸和造纸,1993,(3):57-59.
    [50]刘祖广,陈朝晖,王迪珍.高级脂肪胺/甲醛改性木质素季铵盐的制备及表面活性[J].化工学报,2006,25(3):143-145.
    [51]Dalimova, G.N., Malikova, M.KH.. Amination of hydrolyzed lignin of cotton-seed husks[J]. chemistry of natural compounds,2004,40(2):168-171.
    [52]Chopabaeva, N. N.. Modified lignin with ion-exchange properties[J]. Chemistry of Natural Compounds,2007,43(5):598-602.
    [53]Dilling, P., Samaranayake, G. S.. Mixtures of amine modified lignin with sulfonated lignin for disperse dye[P]. US:5 989 299,1999-11-23.
    [54]Dilling, P., Huguenin, S.B.. High activity sulfonated lignin dye disperse[P]. US: 5980589,1999-11-09.
    [55]McKague, A.B.. Flocculating agents derived from kraft lignin[J]. Journal of Applied Chemistry and Biotechnology,1974,24(10):607-615.
    [56]Rachor, D. G., Ludwig, C. H.. Lignin composition and process for its prepration [P]. US,3 912 706.1975-10-14.
    [57]Hoftiezer, H. W., Watts,D. J., Takahashi, A.. Cationic reaction product of kraft lignin with aldehyde and polyamine[P]. US:4 455 257,1984-06-19.
    [58]周艳,罗娅君,胡晓黎.胺化木质素对水中硝基苯吸附性能的研究[J]化学研究与应用,2011,23(9):1182-1186.
    [59]潘学军,谢来苏,隆言泉.氨基酸型木质素螯和树脂的制备[J].纤维素科学与技术,1995,3(3):25-31.
    [60]焦艳华.改性木质素磺酸盐的合成及其在三次采油中的应用研究[D].大连理工大学博士学位论文,2005.
    [61]谌凡更,欧义芳,李忠正.木质素胺的合成及表面活性的研究[J].林产化学与工业,1998,18(3):29-34.
    [62]刘祖广,陈朝晖,王迪珍.二乙烯三胺/甲醛改性木质素胺的制备及应用性能[J].中国造纸学报,2005,20(2):75-79.
    [63]Lin, S. Y.. Reaction product of lignosulfonate and unsaturated fatty amine[P].US:4562236,1985-12-31.
    [64]刘祖广,王迪珍.木质素的曼尼希反应改性[J].纸和造纸,2005,4:53-56.
    [65]陈朝晖.木质素对卤化丁基橡胶交联与补强研究[D].华南理工大学博士论文,2003.
    [66]王婧,赵殊,吴宁,黄竹君.胺化改性木质素合成聚氨酯胶粘剂的研[J].2012,21(1):32-36.
    [67]Giguere, J., Landry, J. G.. Aminolignosulfonate-formaldehyde reaction products and process of preparation [P]. US:3784493.1974-01-08.
    [68]Wiest, E. G., Balon, W. J.. Reaction of unsulfonated lignin, formaldehyde and secondary amines and product [P]. US:2 709 606,1955-05-31.
    [69]Ball, J. C.. Inhibition of corrosion of iron in acids[P]. US:2 863 780, 1958-12-09.
    [70]Neubert, T. C. Lignin amine carboxylated conjugated diene tire cord adhesives[P].US:4204984,1980-05-27.
    [71]孙文章,蔡再生.自制含硅环氧树脂用于羊毛针织物防毡缩整理[J].毛纺科技,2002,(4):1-19.
    [72]Nonaka, Y., Tomida, B., Hatano, H.. Synthesis of lignin/epoxy resin in aqueous systems and their properties[J]. Holzforschung,1997,51(2):183-187.
    [73]Feldman, D., Banu, D., Luchian, C., Wang, J.. Epoxy-lignin polyblends: correlation between polymer interaction and curing temperature[J]. Jounral of Applied Polymer Science,1991,42(5):1307-1318.
    [74]Feldman, D., Banu, D., Natansohn, A., Wang, J.. Structure-properties relations of thermally cured epoxy-lignin polyblends[J]. Jounral of Applied Polymer Science, 1991,42(6):1537-1550.
    [75]林玮,程贤甦.高沸醇木质素环氧树脂的合成与性能研究[J].纤维素科学与技术,2007,15(2):8-12.
    [76]程贤甦,陈为健,方华书.高沸醇木质素环氧树脂的制备方法[P].中国,200410061295.
    [77]程贤甦.酶解木质素环氧树脂的原料配方及其制备方法[P].中国,200610069529.
    [78]Nakamura, Y., Sawada, T., Kuno, K., Nakamoto, Y.. Resinification of woody lignin and its characteristic on safety and biodegradation[J]. Journal of Chemical Engineering of Japan,2001,34(10):1309-1312.
    [79]胡春平,方桂珍,王献玲,等.麦草碱木质素基环氧树脂的合成[J].东北林业大学学报,2007,35(4):53-55.
    [80]Glasser, W.G., Sarkanen, S.. Lignin:properties and materials, in volume 397 of ACS Symposium Series [M]. Washington DC ACS,1989,488-495.
    [81]赵斌元,李恒德,胡克鳌,吴人洁.木质素基环氧树脂合成及表征[J].纤维素科学与技术,2000,8(4):19-26.
    [82]赵斌元,胡克鳌,范永忠,竺品芳,吴人洁.木质素磺酸及其衍生物红外光谱研究[J].分析化学,2000,28(6):716-719.
    [83]Zhao B.Y., Fan Y. ZH., Hu, K., Wu, R. J.. Development of lignin epoxide-a potential matrix of resin matrix composite[J]. Journal of Wuhan University of Technology-Material Science Edition,2000,15(3):6-12.
    [84]Mansouri, N. E. El, Yuan, Q. L., Huang, F. R.. Synthesis and characterization of kraft lignin based epoxy resins[J]. Bioresources,2011,6(3):2492-2503.
    [85]魏兰,刘忠.木质素基环氧树脂的合成[J].中华纸业,2004,(1):44-48.
    [86]叶菊娣,洪建国.改性木质素合成环氧树脂的研究[J].纤维素科学与技术,2007,15(4):28-32.
    [87]王海洋,陈克利.木质素的氢解及其合成环氧树脂探索[J].化工时刊,2004,18(3):27-30.
    [88]陈为健,程贤甦,方润.木质素基聚酯型环氧树脂的制备及表征[J].纤维素科学与技术,2009,17(2):1-5.
    [89]程贤甦,陈为健.一种酶解木质素环氧树脂及其制备方法[P].中国,200810071746.
    [90]Hirose, S., Hatakeyama, T., Hatakeyama, H.. Synthesis and thermal properties of epoxy resins from ester carboxylic acid derivative of alcoholysis lignin[J]. Macromolecular Symposia,2003,197:157-169.
    [91]Hirose, S., Hatakeyama, T., Hatakeyama, H.. Glass transition and thermal decomposition of epoxy resins from the carboxylic acid system consisting of ester-carboxylic acid derivatives of alcoholysis lignin and ethylene glycol with various dicarboxylic acids[J]. Thermochimica Acta,2005,431(1-2):76-80.
    [92]来源于网络资料,地址http://baike.baidu.com/link?url=FWOOdQX4ahkWOd CgFkdRews2KMzRDG9SjpcibVGQUCrA5zOXilyswK2CpFZUoR5.
    [93]李梅.木质素磺酸钠合成水性环氧固化剂的研究[J],林产化学与工业,2011,31(2):53-58.
    [94]程贤甦.一种溶剂型木质素改性环氧树脂固化剂及其制备方法[P],公开号:CN102134305 A.
    [95]程贤甦.酶解木质素环氧树脂的原料配方及其制备方法[P],公开号:CN100528926 C.
    [1]周建,罗学刚,林晓艳.淀粉和木质素可降解发泡材料研究进展及展望[J].化工进展,2006,25(8):923-927.
    [2]王研,陈咏梅,万平玉,韩雁明,秦特夫.CaO/MgO复合固体碱催化剂催化降解木质素的研究[J].林产化学与工业,2012,32(3):81-87.
    [3]杨晓慧,周永红,郭晓听.木质素在合成聚氨酯中的应用[J].林产化学与工业,2010,30(3):115-120.
    [4]靳艳巧,程贤甦.浇注型酶解木质素聚氨酯弹性体的制备[J].聚氨酯工业,2008,23(3):22-24.
    [5]彭志远,谌凡更.木质素-聚氨酯水凝胶的合成及其性能[J].功能高分子学报,2010,23(4):405-408.
    [6]Jia, S.Y., Cox, B. J., Guo, X.W.. Hydrolytic cleavage of (3-0-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides[J]. Industrial and Engineering Chemistry Research,2011,50(2):849-855.
    [7]Zakzeski, J., Bruijnincx, C. A., Jongerius, A.L.. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chemical Reviews,2010, 110(6):3552-3599.
    [8]Thring, R.W.. Alkaline degradation of acell lignin[J]. Biomass and Bioenergy, 1994,7(1/2/3/4/5/6):125-130.
    [9]Miller, J. E., Evan, L., Littlewolf, A.. Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents[J], Fuel,1999, 78(11):1363-1366.
    [10]Karag, Z. S., Bhaskar, T., Muto, T.. Hydrothermal upgrading of biomass:Effect of K2CO3 concentration and biomass/water ratio on products distribution[J]. Bioresource Technology,2006,97(1):90-98.
    [11]Thring, R. W., Chornet, E., Bouchard, J.. Characterization of lignin residues derived from the alkaline hydrolysis of glycol lignin[J]. Canadian Journal of Chemistry,1990,68(1):82-89.
    [12]Hattori, H.. Heterogeneous basic catalysis[J]. Chemical Reviews,1995,95(3): 537-538.
    [13]魏彤,王谋华,魏伟.固体碱催化剂[J].化学通报,2002,(9):594-600.
    [14]Choudary, B.M., Kantam, M.L., Santhi, P. L.. New and ecofriendly options for the production of speciality and fine chemicals[J]. Catalysis Today,2000,57(1/2): 17-32.
    [15]陆世雄,丁忠浩,陈英明.固体碱催化剂制备生物柴油的研究[J].环境科学与技术,2011,34(4):172-175.
    [16]叶结旺,金春德,宋平安.碳酸钠催化碱木质素的热解动力学研究[J].林产化学与工业,2010,30(6):40-44.
    [17]廖艳芬,王树荣,骆仲泱.氯化钙催化纤维素热裂解动力学研究[J].燃料化学学报,2005,33(6):692-697.
    [18]冯国东,周永红,胡立红.木质素液化技术研究进展[J].生物质化学工程,2009,43(3):37-41.
    [19]李梅,吕鹏梅,肖弥彰.CaO基催化剂在制备生物柴油中的应用进展[J].化工进展,2010,29(11):2071-2078.
    [20]高智勤,江琦,李向召.固体碱催化剂及其催化机理[J].精细石油化工,2006,23(4):62-66.
    [21]郗伟,李新平.过氧化氢与β-O-4型木质素醌型发色基团反应特性的研究[J].中华纸业,2008,29(12):32-36.
    [22]陈洪章.纤维素生物技术[M].北京:化学工业出版社,2005.
    [23]任世学.超声波活化碱木质素及多效碱木质素水处理剂合成与应用研究[D].东北林业大学博士论文,2005.
    [24]齐连丽.碱木质素改性脲醛树脂的研究[D].南京林业大学硕士论文,2008.
    [25]徐凤英.氧化铜/活性炭(CuO/C)催化还原碱木质素研究[D].东北林业大学硕士论文,2005.
    [26]蒋挺大,木质素[M].化学工业出版社,2001.
    [27]邹长军,张丽颖,姚伟宁.超强碱催化剂碱强度(H->37)的指示剂测定法[J].分析实验室,2005,24(2):73-75.
    [28]廖中清,刘同孙.非水溶液回滴法测定固体氧化镁的表面总碱度[J].硅酸盐通报,1989,(6):44-48.
    [1]Matsushita, Y., Yasuda, S.. Reactivity of a Condensed type Lignin Model Compound in the Mannich Reaction and Preparation of Cationic Surfactant from Sulfuric Acid lignin [J]. Journal of Wood Science,2003,49(2):166-171.
    [2]Matsushita, Y., Yasuda, S.. Preparation of Anion exchange Resins from Pine Sulfuric Acid Lignin, One of the Acid Hydrolysis Lignins [J]. Journal Wood Science, 2003,49:423-429.
    [3]Dilling, D. J.. Lignosulfonate Dispersant and Smoothing and Azo Dye Reduction [J]. Textile Chemist and Colorist,1986,18 (2):11.
    [4]刘祖广,陈朝晖,王迪珍.木质素的Mannich反应研究进展[J].中国造纸学报,2007(1):104-108.
    [5]魏兰,刘忠.木质素利用新技术[J].黑龙江造纸,2003,(1):19-20.
    [6]于浩,路太平.双酚A-环氧氯丙烷醚化反应动力学[J].热固性树脂,1994,(3):11-16.
    [7]李燕燕,王兴涌,徐富强.3-间甲苯氧基-1,2-环氧丙烷的合成[J].中国科技论文在线,http://www.paper.edu.cn,1-6.
    [8]Caroon,J. M., Clark, R. D., Kluge, A. F., Nelson, J. T., Strosberg, A.M. Unger,S.H., Michel, A. D. Whiting,R. L.. Synthesis and antihypertensive activity of a series of 8-substituted 1-oxa-3,8-diazaspiro[4.5]decan-2-ones[J]. Journal of Medicinal Chemistry,1981,24(11):1320-1328.
    [9]林惠安.愈创木酚甘油醚合成工艺改进[J].广东药学,2001,11(4):20-21.
    [10]万嵘,郑一文.愈创木酚缩水甘油醚的合成[J].化工时刊,2004,10(18):25-26.
    [11]Malutan, T., Nicu, R. Popa,V. I.. Lignin modification by epoxidation[J]. Bioresources,2008,3:1371-1376.
    [12]Mansouri, N.E. El. Yuan, Q.L., Huang,F.R.. Synthesis and characterization of kraft lignin based epoxy resins[J]. Bioresources,2011,6:2492-2503.
    [13]Zhao, B.Y., Fan, Y. ZH., Hu, K.A.. Development of lignin epoxide-a potential matrix of resin matrix composite[J]. Journal of Wuhan University ofTechnology-Material Science Edition,2000,15(3):6-12.
    [14]Zhao,B., Chen, G., Liu, Y., Hu, K., Wu, E.. Synthesis of lignin base epoxy resin and its characterization[J]. Journal of materials science letters,2001,20:859-862.
    [15]叶菊娣,洪建国.改性木质素合成环氧树脂的研究[J].纤维素科学与技术,2007,15(4):28-32.
    [16]周婵,许家喜.非对称环氧乙烷的区域选择性亲核开环反应[J].化学进展,2011,23(1):165-131.
    [17]Boa, A. N., Clark,S., Hirst, P. R.. Ring opening reactions of quinoline substituted epoxides[J]. Tetrahedron Letters,2003,44(52):9299-9302.
    [18]蒋旭峰.高选择性合成二异丙醇胺反应动力学及新工艺[M].南京化工大学硕士学位论文,2000.
    [19]蒋挺大,木质素[M].化学工业出版社,2001,57.
    [20]王雪梅,王炼石,阮伟明,包春磊,张安强,冯兆均.端烯基聚醚大分子单体的合成及表征[J].应用化工,2008,37(1):47-50.
    [21]ASTM 2074-92 Standard.
    [22]王研,陈咏梅,万平玉,韩雁明,秦特夫.CaO/MgO复合固体碱催化剂催化降解木质素的研究[J].林产化学与工业,2012,32(3):81-87.
    [1]王新波,黄龙男.降解型环氧树脂[J].化学进展,2009,21(12):2704-2711.
    [2]潘国元.耐热新型环氧树脂的合成、固化反应及结构性能研究[D].北京化工大学博士论文,2007.
    [3]赵乐.新型乳化沥青混合料路用性能研究[D].长安大学硕士论文,2012.
    [4]代晓青.RFI工艺成型复合材料构件用树脂模研究[D].国防科技大学硕士论文,2005.
    [5]Kim, S. W., Lu, M. G., Shim, M. J.. CharaEteristics of medical polymer based on an epoxy Resin system-Curing reaetion charaEteristics of biphenol epoxy monomer with Phenolie Functional hardeners [J]. Journal of Applied Polymer Science,2001, 82:1495-1503.
    [6]Kim, W. G., Yoon, H. G., Lee, J. Y.. Curre kinetics of biphenyl epoxy resin system using latent catalysts [J]. Journal of Applied Polymer Science,2001,81:2711-2720.
    [7]Han, S., Yoon, H. G., Suh, K.S.. Cure kinetics of biphenyl epoxy-phenol novolac resin system using triphenylphosphine as catalyst[J]. Journal of Polymer Science, Part A,1999,37:713-720.
    [8]Han, S., Kim, W. G., Yoon, H. G. Kinetics study of the effect of catalysts on the curing of biphenyl epoxy resin[J]. Journal of Applied Polymer Science,1998,68: 1125-1137.
    [9]刘祥查,陆路德,杨绪杰.热分析法研究复合纳米Ti02催化酸酐/环氧树脂固化特性[J].热固性树脂,2000,15(1):26-29.
    [10]过梅丽.高聚物与复合材料的动态力学热分析[M].2002,化学工业出版社.
    [11]Ellis, B., Found,M.S., Bell, J.R.. Effects of cure treatment on glass transition temperatures for a BADGE-DDM epoxy resin[J]. Journal of Polymer Science,1996, 59(10):1493-1505.
    [12]Alriols,M.G., Tejado, A., Blanco, M., Mondragon, I., Labidi, J.. Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process[J]. Chemical Engineering Journal, 2008,148(1):106-114.
    [13]Sun, R.C., Lu, Q., Sun, X.F.. Physico-chemical and thermal characterization of lignins from Caligonum monogoliacum and Tamarix spp[J]. Polymer Degradation Stabilility,2001,72(2):229-238.
    [14]Abdul khalil, H.P.S., Marliana, M.M., Alshammari, T.. Epoxy-EFB composites [J]. Bioresources,2011,6(4):5206-5223.
    [15]Yang, H., Yan, R., Chen,H., Lee, D.H., Zheng, C.. Characteristics of hemicelluloses, cellulose and lignin pyrolysis[J]. Fuel,2007,86:1781-1788.
    [16]刘墨君.二维全反射衰减红外法研究环氧树脂的吸水行为[D].复旦大学硕士学位论文,2003.
    [17]Wong, T. C., Brountman, L. J.. Polymer Engineering and Science,1985,25: 521-523.
    [18]Aronhime, M. T., Peng, X., Gillham, J.K., Small, R. D.. Effect of time-temperature path of cure on the water absorption of high Tg epoxy resins[J]. Journal of Applied Polymer Science,1986,32(2):3589-3626.
    [19]Lee, M. C., Peppas, N. A.. Water Transport in Epoxy Resins[J]. progress in polymer science,1993,18:947-961.
    [1]过梅丽.高聚物与复合材料的动态力学热分析[M].化学工业出版社,2002.
    [2]潘国元.耐热新型环氧树脂的合成、固化反应及结构性能研究[D].北京化工大学博士论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700