用户名: 密码: 验证码:
电力系统间谐波检测算法及电动机间谐波源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各种非线性负荷、电力电子装置和波动性负荷大量接入电网,电网中的间谐波含量逐渐增大。间谐波不仅会像谐波一样引起负荷功率因数的降低、增加各种能量的损耗、引发与供电系统的谐振,还会产生电压闪变、无源滤波器过载、电压过零点偏移等一系列新的问题,导致电能质量的恶化并影响到电网的安全经济运行。与传统的谐波相比,间谐波造成危害的范围更广,因此,必须对其进行治理。而治理的前提在于对间谐波参数进行准确估计及对间谐波产生机理的深入认识。间谐波具有一定时变性和随机性,其幅值通常较小且频率可能出现在任意频点上,因此,传统的谐波分析方法在分析间谐波时存在较大不足。针对间谐波的特点和目前的研究现状,论文主要从间谐波检测算法、电压闪变包络线提取方法、电动机间谐波源建模几个方面开展研究,主要工作如下:
     (1)在间谐波检测方面,提出基于最优窗Burg算法的间谐波谱估计新方法。首先系统阐述了基于AR模型的间谐波分析原理,并对AR模型具有的高分辨率特性进行了深入分析。Burg算法为AR模型中较常用的方法,但Burg算法在递推AR模型参数的过程中,会产生误差项,造成AR模型参数与实际值不符,导致谱峰偏移和谱线分裂现象。针对Burg算法的这一缺点,提出加窗的方式来对误差项进行抑制,通过在平均频率误差方差最小的意义下来获得最优窗,然后利用加窗后的反射系数进行Levinson递推运算。由于该算法能保证获得一个稳定的AR模型,因此,其谱估计性能优于AR模型中的Marple算法。将该方法与目前间谐波检测中最常用的特征值法进行计算量和谱估计性能两方面比较,两者均具有较高的频率分辨率,并不受非同步采样的影响,但最优窗Burg算法由于利用了Levinson递推,其计算量远小于特征值法。在利用最优窗Burg算法获得间谐波信号的功率谱后,进一步采用最小二乘法求取各次谐波和间谐波的幅值和初相位。
     (2)在电压闪变包络线提取方面,提出基于时频原子方法的电压闪变检测新方法。该方法将经同步检波后的电压闪变信号通过匹配追踪的方式分解成一系列时频原子,其中每一个原子都来自于冗余的时频原子库,选择的原子可以最好地匹配信号结构。通过对所选原子的频率参数进行取舍,从而达到低通滤波的目的。由于该方法中不含有卷积运算,因此避免了边界效应。其不仅能够对电压闪变信号进行不失真地包络检波,而且能避免FIR滤波器、IIR滤波器和小波变换等传统滤波方法带来的边界效应。
     (3)负载转矩波动会导致感应电动机定子电流波动,该波动的电流中包含有间谐波。根据这一现象,建立了机械负荷波动时的感应电动机间谐波源模型。相比前人的工作,该模型考虑到感应电动机更多的参数,模型更为详细,具有更高的精度。针对感应电动机在负载转矩波动时的非线性模型,论文首先对其进行线形化处理,在此基础上推导出定子间谐波电流表达式。Matlab仿真结果验证了该表达式的正确性。进一步地,利用该表达式对负载转矩波动和定子间谐波电流频谱之间的关系进行分析,并分析了电动机稳态输出功率的变化对定子间谐波电流频谱的影响。
     (4)建立了计及机械负荷波动且通过变频调速驱动的感应电动机间谐波源模型。首先对电动机输入电压频谱特征进行分析,在此基础上给出定子间谐波电流的频率预测公式,利用瞬时功率守恒理论和开关函数调制理论来分析定子间谐波电流穿越电压源型变频调速装置的过程,然后推导出供电系统侧间谐波电流的表达式,利用该表达式可对系统侧间谐波电流的频率及频谱特性进行分析,最后仿真研究了负载转矩波动对系统侧间谐波电流频谱的影响。
With extensive applications of nonlinear loads, power electronic devices and fluctuating loads in power system, it causes an increase of interharmonic content in the grid, and the interharmonic of the grid leads to a series of problems, besides the typical problems caused by harmonics such as the load power factor reductions, the variety of energy loss increase, and the excitation of various resonance modes with supply system, it creates some new problems, such as voltage flicker, the passive filter overload, zero offset of the voltage waveform. So it causes power quality deterioration and affects the safe and economic operation of the power grid. Comparing with the traditional harmonics, the interharmonics have a more extensive damage for the power system, so it must be suppressed. The accurate estimation of interharmonics parameters and the deep understanding of their origins are a premise of the suppression of them. The interharmonics have the time variability and randomness characteristics, and their amplitudes are usually very small, and their frequencies can appear any point of the spectrum, so the traditional harmonic analysis methods have a serious deficiency to the interharmonic analysis. According to the interharmonic characteristics and the research status at present, this paper researches on the interharmonic detection algorithm, the voltage flicker envelope extraction method and the motor interharmonic source. The main work is as follows:
     (1) About interharmonic detection, a new method of interharmonic spectral estimation based on the optimal window Burg algorithm is presented. Firstly, the principle of the interharmonic analysis based on the AR model is elaborated, and the high resolution characteristic of AR model is analyzed. The Burg algorithm of AR model is often used, but the error will appears in the process of AR model parameter recursion. It causes that the AR model parameters don't consistent with the actual values, leading the shortcoming of the peak bias and spectral line splitting. Aiming at this shortcoming of the Burg algorithm, a windowed method is present to suppress the error. Firstly, the optimal window can be obtained by minimizing the variance of average frequency error, and then the Levinson recursion is operated by windowed reflection coefficient. Since the method can guarantee to obtain a stable AR model, its spectral estimation performance is better than the Marple algorithm of AR model. By comparing the optimal window Burg algorithm with the eigenvalue methods from the points of the view of computational complexity and spectrum estimation performance, we can find that they both have the high frequency resolution and aren't affected by the asynchronous sampling, but the computational complexity of the optimal window Burg algorithm is far less than the eigenvalue methods. According to the acquired power spectrum by using the optimal window Burg algorithm, the amplitudes and initial phases of every harmonic and interharmonic are computed further by least square method in this paper.
     (2) About the voltage flicker envelope extraction, a new time-frequency atom-based method to detect voltage flicker is proposed. By means of matching pursuit, the voltage flicker signal after the synchronous detection is divided into a series of time-frequency atoms in which each atom is from redundant time-frequency atom dictionary and the chosen atoms can match to the signal structure. The frequency parameters of the chosen atoms are accepted or rejected to achieve the purpose of low-pass filtering. There is no convolution operation in the proposed method, so the boundary effect can be avoided. The results show that by use of the proposed method, not only undistorted envelope detection can be implemented, but also the boundary effect brought about by the traditional filtering methods, FIR filter, IIR filter and wavelet transform, can be avoided.
     (3) The oscillating load torque leads to the induction motor stator current oscillations, and the oscillating current contains interharmonics. According to this phenomenon, the interharmonic source model of the induction motor with oscillation mechanical load is established. Compared to previous work, this model takes into account the more parameters of the induction motor, so the model is more detailed and has a higher accuracy. The mathematical model of the induction motor, which is nonlinear when the load torque oscillates, is linearized firstly. On this basis, the expression of the stator interharmonic currents is derived. The matlab simulation results verify the correctness of the proposed expression. Furthermore, the relationship between load torque oscillations and the spectrum of the stator interharmonic currents is analyzed by the proposed expression, and the effect of the various motor steady output powers on the spectrum of the interharmonics is investigated.
     (4) The interharmonic source model of the induction motor driven by the voltage source inverters (VSI) considering mechanical load oscillation is established. Firstly the motor input voltage spectral characteristics is analyzed, on this basis, the formula to forecast the frequencies of the stator interharmonic currents is presented, and the process that the stator interharmonic currents pass through VSIs is analyzed using the modulation theory and instantaneous power conservation theory, and then, the expression of the interharmonic currents on supply system side is derived, and the frequencies and spectrum characteristics of interharmonic currents on supply system side can be analyzed by this expression, and finally, the effect of the load torque oscillation on the spectrum of the interharmonic currents on supply system side is investigated by simulation.
引文
[1]林海雪.电力系统的间谐波来源及其影响[J].电源技术应用.2010,13(05):1-6.
    [2]林海雪.公用电网间谐波国家标准介绍[J].供用电.2010,27(06):8-11.
    [3]Testa A., Akram M. F., Burch R., et al. Interharmonics:Theory and Modeling[J]. IEEE Transactions on Power Delivery.2007,22(4):2335-2348.
    [4]Testa A.. Issues related to interharmonics[C]. Power Engineering Society General Meeting,2004. IEEE,2004.777-782 Vol.771.
    [5]雍静.间谐波源模型和间谐波电压特性及其闪变效应的研究[D].2007:1.
    [6]卿柏元,滕召胜,高云鹏,等.基于Nuttall窗双谱线插值FFT的电力谐波分析方法[J].中国电机工程学报.2008,28(25):153-158.
    [7]Basic D.. Input Current Interharmonics of Variable-Speed Drives due to Motor Current Imbalance[J]. IEEE Transactions on Power Delivery.2010,25(4):2797-2806.
    [8]吴文宣,吴丹岳,林焱,等.电流型变频器的间谐波分析及应用模型构建[J].电工技术学报.2010,25(02):163-169.
    [9]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,1994:121-127.
    [10]Hu L., Ran L.. Direct method for calculation of AC side harmonics and interharmonics in an HVDC system[J]. IEE Proceedings-Generation, Transmission and Distribution.2000,147(6): 329-335.
    [11]余涛,史军,任震.交直流并联输电系统的间谐波研究[J].中国电机工程学报.2008,28(22):118-123.
    [12]Hu L., Yacamini R.. Calculation of harmonics and interharmonics in HVDC schemes with low DC side impedance [J]. Generation, Transmission and Distribution, IEE Proceedings C.1993, 140(6):469-476.
    [13]De Rosa F., Langella R., Sollazzo A., et al. On the interharmonic components generated by adjustable speed drives[J]. IEEE Transactions on Power Delivery.2005,20(4):2535-2543.
    [14]Xu W., Dommel H. W., Hughes M. B., et al. Modelling of adjustable speed drives for power system harmonic analysis [J]. IEEE Transactions on Power Delivery.1999,14(2):595-601.
    [15]Carbone R., De Rosa F., Langella R., et al. Modelling of AC/DC/AC conversion systems with PWM inverter[C].2002 IEEE Power Engineering Society Summer Meeting, Chicago, IL, USA, 2002.1004-1009.
    [16]Rifai M. R., Ortmeyer T. H., McQuillan W. J.. Evaluation of current interharmonics from AC drives[J]. IEEE Transactions on Power Delivery.2000,15(3):1094-1098.
    [17]Vilar C., Usaola J., Amaris H.. A frequency domain approach to wind turbines for flicker analysis[J]. IEEE Transactions on Energy Conversion.2003,18(2):335-341.
    [18]Larsson A.. Flicker emission of wind turbines caused by switching operations[J]. IEEE Transactions on Energy Conversion.2002,17(1):119-123.
    [19]Papathanassiou S. A., Papadopoulos M. P.. Harmonic analysis in a power system with wind generation[J]. IEEE Transactions on Power Delivery.2006,21(4):2006-2016.
    [20]翁利民,陈允平,舒立平.大型炼钢电弧炉对电网及自身的影响和抑制方案[J].电网技术.2004,28(02):64-67.
    [21]Dahai Zhang, Xu W., Yutian Liu. On the phase sequence characteristics of interharmonics[J]. IEEE Transactions on Power Delivery.2005,20(4):2563-2569.
    [22]Filippetti F., Franceschini G., Tassoni C., et al. AI techniques in induction machines diagnosis including the speed ripple effect[J]. IEEE Transactions on Industry Applications.1998,34(1): 98-108.
    [23]Rusek J.. Interharmonics generated by induction machines[J]. Electrical Power Quality and Utilisation, Magzine.2006,11(2):49-52.
    [24]郝江涛,刘念,幸晋渝,等.电力系统中间谐波的来源及危害[J].四川电力技术.2005,(02):11-14.
    [25]高师湃,李群湛,贺建闽.基于IEC标准的闪变测试系统研究[J].电力自动化设备.2003,23(07):27-30.
    [26]朱珂,雍静,泰亚萨内特.间谐波对闪变影响的量化分析[J].中国电机工程学报.2008,28(28):113-118.
    [27]Gunther E. W.. Interharmonics-recommended updates to IEEE 519[C]. Power Engineering Society Summer Meeting,2002 IEEE,2002.950-954 vol.952.
    [28]金维刚,刘会金,李智敏.间谐波引起电力系统次同步振荡——工程实例、机理、作用形式及应对措施[J].电力系统保护与控制.2010,38(09):31-36.
    [29]Lambrecht D., Kulig T.. Torsional Performance of Turbine Generator Shafts Especially Under Resonant Excitation [J]. IEEE Transactions on Power Apparatus and Systems.1982, PAS-101(10):3689-3702.
    [30]Yacamini R.. How HVDC schemes can excite torsional oscillations in turbo-alternator shafts[J]. Generation, Transmission and Distribution, IEE Proceedings C.1986,133(6):301-307.
    [31]林海雪.电力系统中的间谐波问题[J].供用电.2001,18(03):6-9.
    [32]高培生.电力系统中的间谐波频谱分析[D].2008:8-48.
    [33]Testa A., Gallo D., Langella R.. On the Processing of harmonics and interharmonics:using Hanning window in standard framework [J]. IEEE Transactions on Power Delivery,.2004,19(1): 28-34.
    [34]庞浩,李东霞,俎云霄,等.应用FFT进行电力系统谐波分析的改进算法[J].中国电机工程学报.2003,23(06):50-54.
    [35]张介秋,梁昌洪,陈硕圃.基于卷积窗的电力系统谐波理论分析与算法[J].中国电机工程学报.2004,24(1]):48-52.
    [36]钱昊,赵荣祥.基于插值FFT算法的间谐波分析[J].中国电机工程学报.2005,25(21):87-91.
    [37]赵黎丽.基于相关Hanning窗插值的间谐波分析算法[J].电工技术学报.2008,23(11):153-158.
    [38]吴静,赵伟.一种用于分析电网谐波的多谱线插值算法[J].中国电机工程学报.2006,26(08):55-60.
    [39]温和,滕召胜,卿柏元.Hanning自卷积窗及其在谐波分析中的应用[J].电工技术学报.2009,24(02): 164-169.
    [40]曾博,滕召胜,高云鹏,等.基于Rife-Vincent窗的高准确度电力谐波相量计算方法[J].电工技术学报.2009,24(08):154-158.
    [41]温和,滕召胜,王一,等.基于布莱克曼-纳托尔窗的高精度电力谐波智能分析方法[J].中国电机工程学报.2009,29(25):92-97.
    [42]蔡忠法.电参量自适应测量技术研究[D].2009:30-50.
    [43]马秉伟,周莉,刁均伟.基于现代谱估计方法的间谐波检测[J].继电器.2005,33(03):25-27.
    [44]马秉伟,刘会金,周莉,等.一种基于自回归模型的间谐波谱估计的改进算法[J].中国电机工程学报.2005,25(15):79-83.
    [45]蔡忠法,陈隆道.基于AR谱估计和Adaline神经元的间谐波分析[J].电力系统自动化.2007,31(17): 78-82.
    [46]王波,杨洪耕.基于AR谱估计和插值FFT的间谐波检测方法[J].继电器.2006,34(04):49-56.
    [47]张惠娟,汪友华,王艳廷,等.基于AR模型的电力系统间谐波分析[J].电工技术学报.2010,25(07):144-164.
    [48]G Proakis J.统计信号处理算法[M].汤俊,等.译.北京:清华大学出版社,2006:455-462.
    [49]张静,徐政,王峰,等TLS-ESPRIT算法在低频振荡分析中的应用[J].电力系统自动化.2007,31(20):84-88.
    [50]M. Manolakis D. G., Ingle V. K., Kogon S..统计与自适应信号处理[M].周正等,译.北京:电子工业出版社,2003:456-471.
    [51]王志群,朱守真,周双喜.基于Pisarenko i皆波分解的间谐波估算方法[J].电网技术.2004,28(15):72-82.
    [52]石敏,吴正国,尹为民.基于多信号分类法和普罗尼法的间谐波参数估计[J].电网技术.2005,29(15): 81-84.
    [53]Barabell A.. Improving the resolution performance of eigenstructure-based direction-finding algorithms[C]. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP'83.,1983.336-339.
    [54]沈睿佼,杨洪耕.基于特征空间求根法的非整数次谐波估计方法[J].中国电机工程学报.2006,26(24):72-76.
    [55]高培生,谷湘文,吴为麟.基于求根多重信号分类和遗传算法的谐波间谐波频谱估计[J].电工技术学报.2008,23(06):109-113.
    [56]陈国志,蔡忠法,陈隆道.基于Root-MUSIC和Adaline神经网络的间谐波参数估计[J].浙江大学学报(工学版).2011,45(01):173-177.
    [57]Lobos T., Leonowicz Z., Rezmer J., et al. High-resolution spectrum-estimation methods for signal analysis in power systems[J]. IEEE Transactions on Instrumentation and Measurement.2006, 55(1):219-225.
    [58]Leonowicz Z., Lobos T., Rezmer J.. Advanced spectrum estimation methods for signal analysis in power electronics[J]. IEEE Transactions on Industrial Electronics.2003,50(3):514-519.
    [59]李晶,裴亮,郁道银,等.一种用于电力系统谐波与间谐波分析的超分辨率算法[J].中国电机工程学报.2006,26(15):35-39.
    [60]Roy R., Paulraj A., Kailath T.. ESPRIT--A subspace rotation approach to estimation of parameters of cisoids in noise[J]. IEEE Transactions on Acoustics, Speech and Signal Processing.1986, 34(5):1340-1342.
    [61]牛卢璐.基于ESPRIT的谐波和间谐波参数估计方法[J].继电器.2007,35(09):37-40.
    [62]张静,徐政,牛卢璐.TLS-ESPRIT在电力系统信号高精度频谱估计中应用[J].电力自动化设备.2009,29(05):48-51.
    [63]刘亚梅,杨洪耕,马超.谐波和间谐波参数估计的新方法[J].西南交通大学学报.2011,46(04):604-610.
    [64]Bracale A., Carpinelli G. Leonowicz Z., et al. Measurement of IEC Groups and Subgroups Using Advanced Spectrum Estimation Methods[J]. IEEE Transactions on Instrumentation and Measurement.2008,57(4):672-681.
    [65]Gu I. Y. H., Bollen M. H. J.. Estimating Interharmonics by Using Sliding-Window ESPRIT[J]. IEEE Transactions on Power Delivery.2008,23(1):13-23.
    [66]皇甫堪,陈建文,楼生强.现代数字信号处理[M].北京:电子工业出版社,2003:195-220.
    [67]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社,2002:119-125,263-285.
    [68]Costa F. F., Cardoso A. J. M.. Harmonic and Interharmonic Identification Based on Improved Prony's Method[C]. IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on, 2006.1047-1052.
    [69]丁屹峰,程浩忠,吕干云,等.基于Prony算法的谐波和间谐波频谱估计[J].电工技术学报.2005,20(10):94-97.
    [70]杨玉坤,杨明玉.Prony算法在谐波、间谐波参数辨识中的应用[J].电力系统及其自动化学报.2012,24(03):121-126.
    [71]张经纬,周念成,杨芳,等.基于四阶累积量的多信号分类法间谐波检测研究[J].继电器.2008,36(07):19-28.
    [72]兰华,孙亮,石要武.基于互高阶谱Pisarenko方法的间谐波计算[J].电工电能新技术.2006,25(01):5-8.
    [73]田伟,王洪希,白晶.基于互高阶谱MUSIC法的间谐波检测[J].继电器.2007,35(22):49-52.
    [74]田伟,王韵然,曲晶.基于互高阶谱的ESPRIT法的间/次谐波参数估计[J].东北电力大学学报.2007,27(02):68-72.
    [75]薛蕙,杨仁刚.利用Morlet连续小波变换实现非整次谐波的检测[J].电网技术.2002,26(12):41-44.
    [76]薛蕙,杨仁刚,罗红.利用小波包变换实现电力系统谐波分析[J].电网技术.2004,28(05):41-45.
    [77]乐叶青,徐政.平滑伪Wigner-Ville分布在电力系统谐波和电压变动检测中的应用[J].继电器.2006,34(16):39-43.
    [78]张宇辉,金国彬,李天云.基于自适应最优核时频分布理论的间谐波分析新方法[J].中国电机工程学报.2006,26(18):84-89.
    [79]Mallat S. G., Zhifeng Zhang. Matching pursuits with time-frequency dictionaries [J]. IEEE Transactions on Signal Processing.1993,41(12):3397-3415.
    [80]Zhang Gexiang, Rong Haina. Quantum-inspired genetic algorithm based time-frequency atom decomposition[J]. Lecture Notes in Computer Science.2007,4490:243-250.
    [81]Zhang Gexiang, Rong Haina. Improved quantum-inspired genetic algorithm based time-frequency analysis of radar emitter signals[J]. Lecture Notes in Artificial Intelligence.2007, 4481:484-491.
    [82]Tropp J. A.. Greed is good:algorithmic results for sparse approximation[J]. IEEE Transactions on Information Theory.2004,50(10):2231-2242.
    [83]李明,张葛祥,王晓茹.时频原子方法在间谐波分析中的应用[J].电网技术.2009,33(17):81-85.
    [84]S Mallat.信号处理的小波导论[M].杨力华,戴道清,黄文良,等译.北京:机械工业出版社,2002:50-53.
    [85]Hernandez A., Mayordomo J. G., Asensi R., et al. A new frequency domain approach for flicker evaluation of arc furnaces[J]. IEEE Transactions on Power Delivery.2003,18(2):631-638.
    [86]赵刚,施围,林海雪.闪变值计算方法的研究[J].电网技术.2001,25(11):15-18.
    [87]张全明,刘会金,兰泉妮,等.基于频谱分析的间谐波闪变效应计算[J].电力系统自动化.2009,33(09):67-71.
    [88]李天云,祝磊,党国营,等.总体最小二乘-旋转矢量不变技术在电压闪变参数提取中的应用[J].电网技术.2009,33(13):58-63.
    [89]刘小河,赵刚,于娟娟.电弧炉非线性特性对供电网影响的仿真研究[J].中国电机工程学报.2004,24(06):30-34.
    [90]Beites L. F., Mayordomo J. G., Hernandez A., et al. Harmonics, interharmonics and unbalances of arc furnaces:a new frequency domain approach[J]. IEEE Transactions on Power Delivery.2001,16(4):661-668.
    [91]Salor O., Gultekin B., Buhan S., et al. Electrical Power Quality of Iron and Steel Industry in Turkey[J]. IEEE Transactions on Industry Applications.2010,46(1):60-80.
    [92]李天云,赵妍,韩永强,等.Hilbert-Huang变换方法在谐波和电压闪变检测中的应用[J].电网技术.2005,29(02):73-77.
    [93]王志群,朱守真,周双喜.Hilbert变换求取电压闪变有关参数[J].电力系统自动化.2004,28(05):34-37.
    [94]舒泓,王毅.基于数学形态滤波和Hilbert变换的电压闪变测量[J].中国电机工程学报.2008,28(01):111-114.
    [95]陈祥训.实时跟踪电压闪变幅度的移动不变小波分析方法[J].中国电机工程学报.2004,24(10): 1-7.
    [96]赵学东,孙树勤.闪变仪中调制波的几种检波方法[J].电网技术.1996,20(04):52-54.
    [97]王建勋,刘会金,肖辉.基于同步解调的间谐波闪变测量方法[J].中国电机工程学报.2011,31(S1):67-72.
    [98]周兆经,周文晖,李青.采用小波分解和同步检波的电压闪变信号检测新方法[J].电力系统及其自动化学报.2001,13(06):23-27.
    [99]张宇辉,陈晓东,刘思革.采用小波包分析和拟同步检波的电压闪变信号检测新方法[J].继电器.2004,32(03):6-9.
    [100]马玉龙,刘连光,张建华,等.IEC闪变测量原理的数字化实现方法[J].中国电机工程学报.2001,21(11):92-95.
    [101]Ishihara Ken, Katayama Seiichi, Kokubu Takao, et al. Application of New Drive Systems for Plate Mill Drives[J]. IEEE Transactions on Industry Applications.1986, IA-22(2):345-351.
    [102]Schoen R. R., Habetler T. G. Effects of time-varying loads on rotor fault detection in induction machines[J]. IEEE Transactions on Industry Applications.1995,31(4):900-906.
    [103]Blodt M., Chabert M., Regnier J., et al. Mechanical Load Fault Detection in Induction Motors by Stator Current Time-Frequency Analysis[J]. IEEE Transactions on Industry Applications.2006,42(6):1454-1463.
    [104]Salles G., Filippetti F., Tassoni C., et al. Monitoring of induction motor load by neural network techniques [J]. IEEE Transactions on Power Electronics.2000,15(4):762-768.
    [105]Immovilli F., Bellini A., Rubini R., et al. Diagnosis of Bearing Faults in Induction Machines by Vibration or Current Signals:A Critical Comparison[J]. IEEE Transactions on Industry Applications.2010,46(4):1350-1359.
    [106]Trajin B., Regnier J., Faucher J.. Comparison Between Stator Current and Estimated Mechanical Speed for the Detection of Bearing Wear in Asynchronous Drives[J]. IEEE Transactions on Industrial Electronics.2009,56(11):4700-4709.
    [107]祁才君,王小海.基于插值FFT算法的间谐波参数估计[J].电工技术学报.2003,18(01): 92-95.
    [108]高培生,谷湘文,吴为麟.基于空间谱和支持向量回归机的间谐波分析[J].电力系统自动化.2007,31(24):67-70.
    [109]金国彬,李玲,李天云,等.间谐波高精度检测新方法[J].电力系统及其自动化学报.2009,21(02):25-30.
    [110]任震,黄群古,黄雯莹,等.基于多频带小波变换的电力系统谐波分析新方法[J].中国电机工程学报.2000,20(12):38-41.
    [111]薛蕙,杨仁刚.基于连续小波变换的非整数次谐波测量方法[J].电力系统自动化.2003,27(05):49-53.
    [112]Marple L.. A new autoregressive spectrum analysis algorithm[J]. IEEE Transactions on Acoustics, Speech and Signal Processing.1980,28(4):441-454.
    [113]Swingler D. N.. A modified Burg algorithm for maximum entropy spectral analysis [J]. Proceedings of the IEEE.1979,67(9):1368-1369.
    [114]Kaveh M., Lippert G. An optimum tapered Burg algorithm for linear prediction and spectral analysis[J]. IEEE Transactions on Acoustics, Speech and Signal Processing.1983,31(2): 438-444.
    [115]陆传赉.现代信号处理导论[M].北京:北京邮电大学出版社,2002:102-109.
    [116]李新,刘杰,陈文礼.基于Root-MUSIC和支持向量机的间谐波参数估计[J].电测与仪表.2012,49(06):15-18.
    [117]李新,陈文礼,侯兴哲,等.支持向量机结合TLS-ESPRIT的间谐波参数估计[J].电力系统及其自动化学报.2012,24(02):67-71.
    [118]马秉伟,周莉.基于TLS-ESPRIT算法和支持向量机的间谐波检测[J].高电压技术.2009,35(06):1468-1471.
    [119]初宪武.基于TLS-ESPRIT算法和自适应神经网络的间谐波分析[J].电工电能新技术.2010,29(02):17-20.
    [120]李琼林,刘会金,张振环,等.基于互调原理的交直交变流系统中的间谐波分析[J].中国电机工程学报.2007,27(34):107-114.
    [121]张定华,桂卫华,王卫安,等.大型电弧炉无功补偿与谐波抑制的综合补偿系统[J].电网技术.2008,32(12):23-29.
    [122]韩松,荣娜,阮征,等.一种基于Prony和Hilbert变换的瞬时电压闪变检测的改进方法[J].电测与仪表.2007,44(08):11-14.
    [123]肖燕,黄成军,郁惟镛,等.波形匹配追踪算法在多局放脉冲提取中的应用[J].中国电机工程学报.2005,25(11):157-162.
    [124]Jean-Luc Starck, Candes E. J., Donoho D. L.. The curvelet transform for image denoising[J]. IEEE Transactions on Image Processing.2002,11(6):670-684.
    [125]Gribonval R., Bacry E.. Harmonic decomposition of audio signals with matching pursuit[J]. IEEE Transactions on Signal Processing.2003,51(1):101-111.
    [126]费晓琪,孟庆丰,何正嘉.基于冲击时频原子的匹配追踪信号分解及机械故障特征提取技术[J].振动与冲击.2003,22(02):26-29.
    [127]高师湃,李群湛,贺建闽.闪变测试系统研究[J].电力自动化设备.2002,22(05):22-25.
    [128]Dahai Zhang, Wilsun Xu, Nassif A.. Flicker source identification by interharmonic power direction[C]. Electrical and Computer Engineering,2005. Canadian Conference on, 2005.549-552.
    [129]Bose BK.现代电力电子学与交流传动[M].王聪,赵金,于庆广,等译.北京:2005:45-46, 244-245,271-284.
    [130]Kundur P.电力系统稳定与控制[M].周孝信,等译.北京:2001:187-201.
    [131]Arrillaga J, Watson NR.电力系统谐波[M].林海雪,范明天,薛惠,译.北京:中国电力出版社,2008:1-10.
    [132]Carbone R.. Analyzing Voltage background distortion effects on PWM adjustable-speed drives[J]. IEEE Transactions on Power Electronics.2004,19(3):765-774.
    [133]Chang G. W., Shin-Kuan Chen. An analytical approach for characterizing harmonic and interharmonic currents generated by VSI-fed adjustable speed drives[J]. IEEE Transactions on Power Delivery.2005,20(4):2585-2593.
    [134]张承慧,崔纳新,李珂.交流电机变频调速及其应用[M].北京:机械工业出版社,2008:48-54.
    [135]Chang G W., Shin-Kuan Chen, Huai-Jhe Su, et al. Accurate Assessment of Harmonic and Interharmonic Currents Generated by VSI-Fed Drives Under Unbalanced Supply Voltages[J]. IEEE Transactions on Power Delivery.2011,26(2):1083-1091.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700