用户名: 密码: 验证码:
镉胁迫对陆地棉生长发育、产量和品质的影响及其耐镉性的遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉是毒性最强和农田受污染最普遍的重金属之一。镉在土壤-植物系统中的迁移性较为活跃,不仅严重影响作物的产量和品质,并可通过食物链富集危害人体健康。因此,土壤镉修复已成为保证农产品质量安全和持续高效的利用土地资源的一项重要科学任务。治理镉污染的土壤最有效的途径就是培育和种植非食用作物或食用器官累积量低的作物品种。这样既可以逐渐吸收消除土壤中的镉,又可以合理利用土地,保障土地持续产出。棉花作为一种重要的经济作物,主产品是棉纤维,副产品是棉籽,是一种适合用于治理土壤镉污染的作物之一
     本研究以转基因抗草甘膦棉种质系ZD-90、转Bt基因抗虫棉品种SGK3和陆地棉标准系TM-1为研究材料,通过二年的模拟大田试验,观察镉协迫下棉花植株在整个生育期内的生长状况,测定相关的生理和光合作用指标,并分析产量、纤维品质、种子品质以及金属离子含量及其在细胞中的分布等,探索棉花修复镉污染土壤的可能性及其耐镉性的生理生化基础。同时,以16份转基因抗虫棉棉花品种为亲本,按完全双列杂交设计配制成1套包括亲本、F1和F2的遗传材料,采用包括加性、显性和母体效应遗传模型(ADM模型),研究了棉花幼苗耐镉性的遗传特点和分子机理。主要研究结果如下:
     1.镉胁迫对棉花生长发育的影响2009~2010年二年不同浓度镉处理的模拟大田试验结果表明,低浓度镉处理对棉花植株生长发育具有有一定的促进作用,但高浓度镉处理对棉花植株的生长发育具有明显的抑制作用,品种间对镉胁迫的反应有显著差异。棉花植株生理生化指标测定结果表明,在低浓度镉胁迫下,棉花植株体内的抗氧化化物酶如POD、SOD、CAT和APX等迅速升高以对付镉胁迫所引起的体内活性氧的增加而免遭伤害。随着镉处理浓度的增加和胁迫时间的延长,植株体内累积的MDA量呈逐渐升高趋势,叶绿素a、叶绿素b、叶绿素a/b和叶绿素总量总体上呈逐渐降低趋势,叶片净光合速率先升高后降低,蒸腾速率和气孔导度逐渐降低,气孔限制值逐渐升高。
     2.镉胁迫对棉花产量及产量因素的影响参试棉花品种(系)的籽棉和皮棉产量均随着镉处理浓度的增加而显著降低。从产量构成因素来看,品种(系)间对镉处理的反应不尽一致。TM-1和SGK3的衣分均随着镉胁迫浓度的增加而降低,而ZD-90的衣分在镉处理后却反而高于对照;3个参试品种(系)的单株铃数均随着镉胁迫浓度的增加而显著降低;TM-1和ZD-90的铃重均随着镉胁迫浓度的增加而显著降低,而SGK3在浓度处理时的单铃重反而提高,中高浓度镉处理后其铃重随处理浓度增加而降低。
     3.镉胁迫对棉花纤维品质的影响参试品种(系)在镉处理后的纤维品质有所下降,但不同的纤维品质指标间参试品种(系)的反应不尽一致。TM-1和SGK3的纤维长度在低镉处理浓度时表现增加,在高浓度处理时表现下降,而ZD-90的纤维长度则随镉处理浓度增加而增加。3个品种(系)的纤维断裂比强度在200μM镉处理下最大,处理间差异均不显著。马克隆值均为在镉处理低浓度时增加,而高浓度处理时降低,处理间差异均不显著,其中SGK3的马克隆值高于ZD-90和TM-1。纤维伸长率在处理间差异不显著,其中ZD-90的纤维伸长率在镉处理后均低于对照。
     4.镉胁迫对棉花种子品质的影响镉处理后,3个棉花品种(系)的种子物理品质均有一定的下降,但不同参试品种(系)间,对镉胁迫的反应各不相同,其中TM-1的籽指、仁指和仁壳比等性状对受镉胁迫影响较大,对镉较敏感;ZD-90和SGK3二个转基因棉品种(系)的种子物理品质在处理间差异不显著,对镉胁迫反应不敏感。高浓度镉处理后,3个品种(系)种仁蛋白质含量均低于低浓度处理,但高于对照;镉处理后的油分含量与蛋白质含量变化相反。蛋白质中的氨基酸相对含量受镉处理影响较小,但参试品种间有一定的差异,其中TM-1镉处理后的半胱氨酸相对含量增加,而SGK3镉处理后的半胱氨酸含量相对降低。镉处理对棉籽油中不同脂肪酸含量的影响表现不一致,其中棕榈酸含量随镉处理浓度的升高而显著降低,亚油酸含量在不同镉处理浓度间无显著差异。3个棉花品种(系)种仁棉酚含量在镉处理后有不同程度的降低。其中ZD-90和SGK3的棉酚含量均低于TM-1。
     5.镉胁迫对棉花种子显微和超显微结构的影响石蜡切片结果表明,棉花种子种仁表面色素腺体密度随着镉处理浓度的升高逐渐降低,结果与棉酚含量测定结果相一致。透射电镜结果表明,镉处理浓度越高,种仁细胞受伤害越严重,表现为细胞核变得不规则,染色质的凝聚,核仁扭曲和解体;细胞膜与细胞壁分离;细胞壁变厚;细胞质浓缩,细胞器结构异常,细胞坍塌解体,对细胞造成致死性的伤害。电镜观察结合能谱分析确定镉以晶体或电子致密颗粒形式存在于蛋白质中的空泡、细胞间隙、细胞质以及附着在细胞壁上。
     6.镉胁迫下镉及其它金属元素在棉花体内的积累与转运不同镉浓度处理下,棉花各器官和组织镉含量测定结果表明,3个参试棉花品种(系)叶柄中累积的镉含量最高,纤维最低。不同部位累积镉能力的顺序为:纤维<种仁<棉籽壳<根系<叶片<茎秆<铃壳<叶柄。各器官对镉的转运能力、富集系数和对镉吸收能力的顺序一致,说明棉花具有较强的吸收、转运和富集重金属镉的能力,并随着土壤中的镉含量增加而增加。不同品种(系)间,镉积累与转运有明显差异,其中SGK3和ZD-90的镉累积、转运能力高于TM-1。镉与其它金属元素间相关分析表明,镉胁迫促进了纤维和棉籽壳对Mg、Mn、Cu、Zn元素的吸收和累积,影响了叶片、叶柄和铃壳对Mn、Zn元素的吸收和累积,影响了种子和茎秆对Mn、Cu元素的吸收,促进了根对Mg、Mn、Zn元素的吸收。
     7.棉花耐镉性的遗传分析以16份耐镉性差异明显的转基因杂交棉及其双列杂交组合为材料,采用加性、显性和母体效应遗传模型(ADM模型),对棉花耐镉相关生理性状的遗传分析。结果表明,植株幼苗干重、叶片和根系的POD活性值和MDA含量不受加性遗传效应的影响,而是受显性效应和母体效应的影响。镉处理后,幼苗干重的显性效应和母体效应均低于对照;叶片POD活性值的显性效应和母体效应均随镉处理浓度升高而增加;根系POD活性值和MDA含量的显性效应均在200μM镉处理时达到最高值。对于这些生理性状,可根据母体的总体表现利用杂种优势在处理中后期进行选择。镉处理后棉花幼苗地上部干重的遗传率高于对照,而根干重的遗传率低于对照。说明地上部干重受镉胁迫影响较小,在处理前期选择有效,而根干重受影响较大,在处理后期选择有效。
     8.镉胁迫对棉花基因组DNA甲基化的影响棉花基因组DNA甲基化分析研究表明,镉处理后,DNA的甲基化程度增加,未发生甲基化的比例降低,过甲基化的比例逐渐升高,表明镉胁迫可能诱导棉花基因组整体甲基化水平的提高。镉处理引起棉花叶片CCGG胞嘧啶甲基化位点数遗传频率下降和变异频率升高。由母本单独遗传的频率均低于对照,由父本单独遗传的频率均高于对照。从甲基化遗传模式来看,镉处理前主要以母本M1、H1和HM1为主,镉胁迫后主要以双亲D为主。由母本单独变异的频率以及双亲变异的频率均低于对照;由父本单独变异的频率均高于对照。从甲基化变异模式来看,以双亲变异为主,其它在镉处理前主要以母本VH1和VM1为主,镉胁迫后主要以VM2为主。
Cadmium (Cd) is one of the most toxic heavy metals being contaminating our soils. It can be easily absorbed and accumulated by plants. The high accumulation of Cd not only inhibits the plant growth and negatively affects crop yield and quality, but also causes harm to human health through the food chain. It is therefore necessary to reduce soil Cd level to ensure the safety of agricultural products and ensure the sustainable and efficient use of the Cd contaminated soil. The most effective way of reducing soil Cd level is the breeding of Cd tolerant cultivars having no or very low Cd in their edible parts. Cotton (Gossypium hirsutum L.) is one of the important fibre crops in the world, which is widely used for fiber production. Thus it can also be used to be remediate Cd contaminated soil.
     In this study, we planted cotton cultivars namely ZD-90, SGK3and TM-1on Cd polluted soils in2009and2010. ZD-90is a transgenic glyphosate tolerant cotton germplasm with EPESP-G7developed by our laboratory. SGK3is an insect-resistant cultivar obtained from the Biotechnology Center of the Chinese Academy of Agricultural Sciences. TM-1is the upland cotton genetic standard line obtained from USDA, ARS, College Station, Texas, USA. A pot experiment was conducted to study the growth conditions, physiological traits and photosynthetic parameters, analyze the yield, fiber quality traits, seed quality traits, Cd accumulation and distribution, and explore the phytoremediation capability of these cultivars of Cd. Furthermore, we explored the genetic features and molecular mechanisms of the Cd resistance in cotton seedlings through the genetic models of ADM, by using sixteen transgenic insect-resistant cotton cultivars as parental with a diallel mating design. The main results were as follows:
     1. Effect of cadmium on the physiology and metabolism of cotton
     A pot experiment showed that cotton plant growth under Cd stress was dose-dependent. It is beneficial to cotton plants growth at low Cd concentrations, however, significant growth inhibition at high Cd concentrations. There are significant differences among cotton cultivars with respect to Cd stress. The physiolosical and biochemical analysis of cotton plant indicated that the activity of antioxidant enzymes such as POD, SOD, CAT and APX, etc. in plant cells greatly increased to avoid harmful effects at low Cd concentration. With the increase in Cd concentration and length of growth period, MDA content increased, chlorophyll decreased gradually, net photosynthetic rate increased at low Cd concentration and then declined. Transpiration rate and stomatal conductance decreased, stomatal limitation value increased gradually.
     2. Effect of cadmium on cotton yield and its components
     Cotton yield significantly declined in the three cultivars under Cd stress. The mean value of lint was declined in TM-1and SGK3with an increase in Cd level, while it was increaced in ZD-90. A significant decreasing trend of bolls per plant was found in the three cultivars. As compared to control plants, boll weight increased to the highest at200μM Cd level and then declined significantly at600μM Cd level for SGK3, while a continuously decreasing trend was found for ZD-90and TM-1.
     3. Effect of cadmium on cotton fiber quality traits
     Fiber quality traits of the three cotton cultivars decreased to a little under Cd stress. The main difference exsised between fiber quality and cultivars. It was beneficial to fiber length at low Cd concentrations, which was inhibited at high Cd concentrations in TM-1and SGK3, but increased in ZD-90. Fiber strength was found increasing to the highest at200μM Cd level and there was no significant difference in the exposed cultivars. Micronaire was acceptable at low Cd concentrations, and showed a decline at high Cd concentrations. Higher micronaire was observed in SGK.3than that in ZD-90and TM-1. No significant difference was found for fiber elongation at all Cd levels in the three cultivars. It was lower at all Cd treatments than control.
     4. Effect of cadmium on cotton seed quality
     The physical quality traits of cottonseeds showed a little decrease in the three cotton cultivars under Cd stress, but cultivar specific response was different. TM-1was sensitive to Cd as a marked decrease was found in seed index, kernel index and kernel/hull. ZD-90and SGK3was not sensitive to Cd because there were no significant differences in seed physical traits. Seed protein content at higher Cd level was lower in comparison with lower Cd level, but was still higher than control. The change of oil content is opposite to that of protein content. Relative content of amino acids was less influenced by Cd stress, but there were some differences among cultivars. Cys content was increased in TM-1and decreased in SGK3. It was inconsistent with different fatty acids content under Cd stress. Palmitic acid conent in the seed decreased significantly with increasing Cd supply. There were not significant changes in the content of linoleic acid in seed under the various treatments compared to controls. A decreasing trend was observed for gossypol content in the three cultivars. Gossypol content in ZD-90and SGK3was lower than that in TM-1.
     5. Effect of cadmium on microstructure and ultra-microstructure of cotton seeds
     Paraffin showed that the pigment gland density on surface of seeds was decreased with the increase in Cd concentration, which was consistant with the trend of gossypol content in cotton seeds. TEM results showed that the damage to the seed cells became more and more prominent with increasing concentration of cadmium as compared to control. The main alterations were such as plasmolysis, disintegration of nucleus, shrinkage of cytoplasm, thickening and constriction of cell wall, abnormal structures of organelle, cell collapse and disintegration. TEM observation and ED AX analysis confirmed that Cd was existed in the form of rings and crystals as well as electron dense granules, distributed in intercellular space, cytoplasm and cell wall.
     6. Accumulation and transportation of Cd and other metal elements in cotton plant under Cd stress
     The results of Cd accumulation in cotton plant under Cd stress showed that petiole was the highest part in Cd accumulation, and fiber was the lowest. The ability of uptake and accumulation in different parts of the three varieties with the rise of Cd level was in order:fiber      7. Genetic features analysis of the resistance to Cd of cotton seedlings
     Genetic analysis on physiological traits showed that there were not genetic effects on plant dry weight, POD activity and MDA content in leaf and root, but the dominant effects and maternal effects. For the dominant effects and maternal effects, it was lower of seedling dry weight under Cd stress than that in control and increased with Cd levels of leaf POD activity. The dominant effects of root POD activity and MDA content were increasing to the highest at200p.M Cd level. For these physiological charecters, it could be selected according to maternal effects and using heterosis at longer treatment time. The heritability of shoot dry weight was higher than control in Cd treatments, while was lower in root dry weight. It showed that less influence was found on shoot dry weight and much influence on root dry weight under Cd stress.
     8. Effect of cadmium on cotton genomic DNA methylation
     MASP analysis showed that Cd may induce the changes of genomic methylation levels because of the rise in DNA methylation level and the reduction of unmethylation under Cd stress. The genetic frequency of CCGG cytosine methylation loci decreased and variation frequency increased under Cd stress. The frequency inherited from the female parent alone was lower while thet inherited from the male parent alone was higher than the control. According to the inheritance of cytosine methylation patterns, M1, Hland HM1patterns of the female parent served as the main patterns at control, D pattern of parents played a major role. The variation frequency from the female and both parents was lower than that of the control, but was higher than the control from the male parent. According to the variation of cytosine methylation patterns, the D pattern of parents played a major role.
引文
1.曹莹,黄瑞冬,蒋文春,曹志强.重金属铅和镉对玉米品质的影响.沈阳农业大学学报,2005,36(2):218-220.
    2.陈凌.土壤镉污染的植物修复技术.无机盐工业,2009,41(2):45-47.
    3.刁现民,孙敬三.植物体细胞无性系变异的细胞学和分子生物学研究进展.植物学通报,1999,16(4):372-377.
    4.葛才林,杨小勇,刘向农.重金属对水稻和小麦DNA甲基化水平的影响.植物生理与分子生物学学报,2002,28:363-368.
    5.郭连旺,许大全,沈允钢.田间棉花叶片光合效率中午降低的原因.植物生理学报,1994,20(4):360-366.
    6.郭天财,夏来坤,朱云集,康国章,秦学磊,张春丽.铜、镉胁迫对冬小麦籽粒淀粉含量和糊化特性影响的初步研究.麦类作物学报,2006,26(3):107-110.
    7.韩贻仁.分子细胞生物学.北京:科学出版社,2000.
    8.何纪力,徐光炎,朱惠民.江苏省环境背景值研究.北京:中国环境科学出版社,2006,9.
    9.何俊瑜,任艳芳,朱诚,蒋德安.镉胁迫对镉敏感水稻突变体活性氧代谢及抗氧化酶活性的影响.生态环境,2008,17(3):1004-1008.
    10.何盈,熊文恺.土壤重金属污染及治理措施.江西农业学报,2006,18(3):159-161.
    11.何勇强,陶勤南,广濑和久.镉胁迫下大豆中镉的分布状况及其子粒品质.环境科学学报,2000,20(4): 510-512.
    12.洪柳,秀新.应用MSAP技术对脐橙品种进行DNA甲基化分析.中国农业科学,2005,38(11):2301-2307
    13.胡丹艳.棉花色素腺体的形态结构与转育利用研究.浙江大学博士学位论文,2002.
    14.黄冬芬,王志琴,刘立军,杨建昌.镉对水稻产量和品质的影响.热带作物学报,2010,31(1):19-24.
    15.黄冬芬,奚岭林,王志琴,刘立军.杨建昌结实期灌溉方式对水稻品质和不同器官镉浓度与分配的影响.作物学报,2008,34(3):456-464.
    16.黄冬芬,奚岭林,杨立年,王志琴,杨建昌.不同耐镉基因型水稻农艺和生理性状的比较研究.作物学报,2008,34(5):809-817.
    17.黄凯丰.重金属镉、铅胁迫对茭白生长发育的影响.扬州大学博士研究生论文.2008,76-78.
    18.黄凯丰,马红,陈庆富,江解增.隔铅复合胁迫对茭白生理生化指标及产量的影响.北方园艺.2009,8:89~91.
    19.黄亚群,马文奇,刘社平,王激清.春小麦品种磷效率相关性状的遗传.河北省科学院学报,1999,16(2):1-7.
    20.江水英,肖化云,吴声东.影响土壤中镉的植物有效性的因素及镉污染土壤的植物修复.中国土壤与肥料,2008,2:6-10.
    21.柯庆明,林文雄,梁康迳,梁义元、朱燕,肖美秀.水稻稻米镉累积的遗传生态特性研究.农业现代化研究,2008,29(3):376-384.
    22.李合生,孙群,赵世杰,章文华.植物生理生化实验原理及技术.北京:高等教育出版社.2000:167-169.
    23.李铭红,李侠,宋瑞生.受污农田中农作物对重金属镉的富集特征研究.中国生态农业学报,2008,16(3):675-679.
    24.李子芳,刘惠芬,熊肖霞,刘卉生.镉胁迫对小麦种子萌发幼苗生长及生理生化特性的影响.农业环境科学学报,2005,24(增刊):17-20.
    25.刘登义,王友保.污灌对小麦幼苗生长及活性氧代谢的影响.应用生态学报,2002,13(10):1319-1322.
    26.刘维涛,张银龙,陈喆敏,周启星,罗红艳.矿区绿化树木对镉和锌的吸收与分布.应用生态学报,2008,19(4):752-756.
    27.刘秀梅,聂俊华,王庆仁.六种植物对Pb的吸收与耐性研究.植物生态学报,2002,26(5):533-537.
    28.刘毅.镉的危害及其研究进展.中国城乡企业卫生,2003,4:12-13.
    29.鲁如坤,熊礼明,时正元.关于土壤-作物生态系统中镉的研究.土壤学报,1992,24(3):129-132.
    30.罗春领,沈振国.植物对重金属的吸收和分布.植物学通报,2003,20(1):59-66.
    31.马洪霞.两种逆境胁迫对拟南芥DNA甲基化水平的影响.河南大学研究生硕士学位论文,2009.
    32.马榕.重视磷肥中重金属镉的危害.磷肥与复肥,2002,17(6):5-6.
    33.马文丽,金小弟,王转花.镉处理对乌麦种子萌发幼苗生长及抗氧化酶的影响.农业环境科学学报,2004,23(1):55-59.
    34.孟玲,王焕校,覃德勇.六种重金属对大肠杆菌体内质粒DNA一级结构的影响.中国环境科学,1999,19(2):169-171.
    35.潘学标,刘明孝,蒋国柱.气象环境和遗传性对棉花光合作用及干物质生产影响的研究.作物学报,1990,16(4):317-323.
    36.潘学标.不同叶色基因型棉花的一些光合特性比较.植物生理学通讯,1989,5:20-23.
    37.彭海,张静.胁迫与植物DNA甲基化:育种中的潜在应用与挑战.自然科学进展,2009,19(3):248-256.
    38.秦天才,吴玉树.镉、铅及其相互作用对小白菜生理生化特性的影响.生态学报,1994,14(1):46-50.
    39.芮玉奎,张福锁,陆雅海.转基因棉花纤维中重金属和矿质元素含量研究.光谱学与光谱分析,2008,28(4):937-939.
    40.苏玲,章永松,林咸永.维管植物的镉毒和耐性机制.植物营养与肥料学报.2000,6(1):106-112.
    41-孙彩霞,齐华,孙加强,张丽莉,缪璐.转基因棉花苗期光合特性的研究.作物学报,2007,33(3):469-475.
    42.孙善康,陈建华,项时康,魏守军.棉花种子营养品质研究.中国农业科学,1987,20(5):12-16.
    43.陶明煊,吴国荣,顾龚平,陆长梅.Cd对荇菜光合、呼吸速率和ATPase活性的毒害影响.南京师大学报(自然科学版),2002,25(3):94-98.
    44.汪洪,赵士诚,夏文建,王秀斌,范洪黎,周卫.不同浓度镉胁迫对玉米幼苗光合作用、脂质过氧化和抗氧化酶活性的影响.植物营养与肥料学报,2008,14(1):36-42.
    45.王丙莲,张迎梅,谭玉凤.镉铅对泥鳅DNA甲基化水平的影响.毒理学杂志,2006,20:78-80.
    46.王焕校.污染生态学基础.云南:云南大学出版社,1990,71-148.
    47.王慧忠,李鹃.重金属镉、铅对多年生黑麦草细胞内几种抗氧化酶基因表达的影响.农业环境科学学报,2008,27(6):2371-2376.
    48.王凯荣.镉对不同基因型水稻生长毒害影响的比较.农村生态环境,1996,12(3):18-23.
    49.王姗姗,王颜红,张红.镉胁迫对花生籽实品质的影响及响应机制.生态学杂志,2007,26(11):1761-1765.
    50.王新,吴燕玉.重金属在土壤-水稻系统中的行为特性.生态学杂志,1997,16(4):10-14.
    51.王兴明,涂俊芳,李晶,王立龙,刘登义.镉处理对油菜生长和抗氧化酶系统的影响.应用生态学报,2006,17(1):102-106.
    52.魏行,沈敏,李胜清,薛爱芳,陈洁.转基因油菜籽中重金属铅、镉、铜、铬、铁含量的测定.食品科学,2008,29(8):553-556.
    53.魏行,沈敏,王金玲,薛爱芳,李胜清,陈洁.石墨炉原子吸收光谱法测定转基因棉籽中的铅镉铜铬.分析科学学报,2009,25(2):201-204.
    54.吴旭红.三个苜蓿品种对镉污染的生理生态反应及抗性比较.生态环境,2005,14(5):658-661.
    55.武立鹏,朱卫国.DNA甲基化的生物学应用及检测方法进展.中华检验医学杂志,2004,27(7):468-474.
    56.夏增禄.土壤环境容量及其应用.北京:气象出版社,1998.
    57.项时康,杨伟华.棉属植物种子棉酚及其旋光体的研究.中国农业科学,1993,26(6):31-35.
    58.许嘉琳,鲍子平.农作物体内铅、镉、铜的化学形态研究.应用生态学报,1991,2(3):244-248.
    59.许嘉琳.陆地生态系统中的重金属.中国环境出版社,1995,23-29.
    60.严重玲,洪业汤.Cd、Pb胁迫对烟草叶片中活性氧清除系统的影响.生态学报,1997,17(5):488-492.
    61.杨丹慧.重金属离子对高等植物光合膜结构与功能的影响.植物学通报,1991,8(3):26-69.
    62.杨金兰,柳李旺,龚义勤,黄丹琼,王峰,何玲莉.镉胁迫下萝卜基因组DNA甲基化敏感扩增多态性分析.植物生理与分子生物学学报,2007,33(3):219-226.
    63.杨居荣,贺建新,蒋婉如.镉污染对植物生理、生化的影响.农业环境保护,1995,14(5):193-197.
    64.杨居荣,蒋婉茹.农作物Cd耐性的种内和种间差异.应用生态学报,1994,5(2):192-196.
    65.杨明杰,林咸永.对不同种类植物生长和养分积累的影响.应用生态学报,1998,9(1):89-94.
    66.杨志艺,万书波,范仲学,闫彩霞,李春娟,单世华.镉胁迫对不同类型花生品种籽仁品质和镉含量的影响.山东农业科学,2009,3:63-66.
    67.杨玉敏,张庆玉,杨武云,田丽,蕾建容,张翼,李俊.镉胁迫对不同基因型小麦产量及构成因子的影响.植物营养与肥料学报,2011,17(3):532~538.
    68.叶常丰,戴心维.种子学.北京:中国农业出版社,1994,249-304.
    69.仪治本,孙毅,牛天堂,梁小红,刘龙龙,闫敏,赵威军.玉米杂交种及其亲本基因组DNA胞嘧啶甲基化水平研究.西北植物学报,2005,25(12):2420-2425.
    70.于方明,仇荣亮,汤叶涛,应蓉蓉,周小勇,赵璇,胡鹏杰,曾晓雯.Cd对小白菜生长及氮素代谢的影响研究.环境科学,2008,29(2):506-511.
    71.于辉,杨中艺,向佐湘,陈桂华,刘明稀,张志飞,袁剑刚.两种不同镉积累类型水稻糙米中镉的存在形态.中山大学学报,2010,49(1):85-89.
    72.余苹中,廖柏寒,宋稳成.模拟酸雨和Zn对四季豆根与叶酶活性的影.农业环境科学学报,2004,23(5):917-920.
    73.张国平,深见元弘,关本根.不同镉水平下小麦对镉及矿质养分吸收和积累的品种间差异.应用生态学报,2002,13(4):454-458.
    74.张军,束文圣.植物对重金属镉的耐受机制.植物生理与分子生物学学报,2006,32(1):1-8.
    75.张利红,李雪梅,陈强,何兴元.铅对不同品种玉米幼苗抗氧化酶活性及根系活力的影响.吉林农业大学学报,2006,28(2):119-122.
    76.张树攀.高粱属牧草对土壤重金属镉的响应及富集效应的研究.扬州大学学位论文.2010.
    77.张宪政.作物生理研究法.北京:中国农业出版社.1992:148-149.
    78.张义贤.重金属对大麦(Hordeum vulgare)毒性的研究.环境科学学报,1997,17(2):199-205.
    79.张玉秀,Bu G.植物耐重金属机理研究进展.植物学报,1999,41:453-457.
    80.张志良,瞿伟菁.植物生理学实验指导(第三版).北京:高等教育出版社.2003:123-124.
    81.赵云雷,叶武威,王俊娟,樊保香,宋丽艳.DNA甲基化与植物抗逆性研究进展.西北植物学报,2009,29(7):1479-1489.
    82.赵云雷.棉花杂交种与亲本间DNA胞嘧啶甲基化及其基因差异表达分析.华中农业大学博士学位论文,2007.
    83.郑文娟,邓波儿.铬和镉对作物品质的影响.土壤,1993,25(6):324-326.
    84.郑湘如,王希善.植物解剖结构显徽图谱.北京:农业出版杜.1982,22.
    85.周启星,宋玉芳.污染土壤修复原理和方法.北京:科学出版社,2004:23-25.
    86.周青,黄晓华,屠昆岗,黄纲业,张建华,曹玉华.对镉胁迫下菜豆幼苗的影响.中国环境科学,1998,18(5):442-445.
    87.邹琦.植物生理学实验指导.北京:中国农业出版社.2000:110-165.
    88. Adlakha RC, Ashorn CL, Chart D, Zwelling LA. Modulation of 4'-(9-acridinylamino) methanesulfonm-anisidide-induced, topoisomerase Ⅱ-mediated DNA cleavage by gossypol, Cancer Rea,1989,49: 2052-2058.
    89. Adriano DC. Trace elements in terrestrial environments. Biogeochemistry, Bioavailability, and risks of metals,2001.
    90. Aina R, Sgorbati S, Santagostino A, Labra M, Ghiani A, Citterio S. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant,2004,121:472-480.
    91. Akimoto K, Katakami H, Kim HJ, Ogawa E. Epigenetic inheritance in rice plants. Annals of Botany, 2007,100(2):205-217.
    92. Alcantara E, Romera FJ, Canete M. Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. Journal of Experimental Botany, 1994,45(12):1893-1898.
    93. Anderson A, Pettersson O. Cadmium in Swedish winter wheat:regional differences and their origin. Swed. J. Agric. Res,1981,11:49-55.
    94. Anderson JM, Park YI, Chow WS. Photoinaction and photoprotection of photosystem Ⅱ in nature. Physiologia Plantarum,1997,100(2):214-223.
    95. Andersson A, Nilsson KO. Influence of lime and soil pH on Cd availability to plants. AmlBiol,1974,3: 1981.
    96. Aravind P, Prasad MNV. Zinc alleviates cadmium induced oxidative stress in Ceratophyllum demersum L. a free floating freshwater macrophyte. Plant Physiology and Biochemistry,2003,41(4):391-397.
    97. Asada K. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:601-639.
    98. Athur E, Crews H, Morgan C. Optimizing plant genetic strategies for minimizing environmental contamination in the food chain. Int. J. Phytoreme. Diat,2000,1:1-21.
    99. Barcelo J, Poschenrieder C. Plant water relation as affected by heavy metal stress:a review. J Plant Nut, 1990,13:1-37.
    100. Barcelo J, Vazquez MD, Poschenrieder C. Structural andultrastructural disorders in cadmium treated bush bean plants (Phaseolus vulgaris L.). New Phytologist,1988,108:37-49.
    101. Baryla A, Carrier P, Franek F. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil:causes and consequences for photosynthesis and growth. Planta,2001,212(5): 696-709.
    102. Baszyriski T, Wajda L, Krol M, Wolinska D, Krupa Z, Tukendorf A. Photosynthetic activities of cadmium-treated tomato plants. Plant Physiology and Biochemistry,1980,48:365-370.
    103. Beata MK, Kazimierz S. Influence of Cd(Ⅱ), Cr(Ⅵ) and Fe(Ⅲ) on early steps of deetiolation process in wheat:fluorescence spectral changes of protochlorophyllide and newly formed chlorophyllide. Agriculture, Ecosystems and Environment,2005,106:199-207.
    104. Bender J. Cytosine methylation of repeated sequences in eukaryotes:the role of DNA pairing. Trends in Biochemical Sciences,1998,23(7):252-256.
    105. Berardi L C, Coldblatt L A. Gossypol toxic constituents of plant foodstuffs. New York:Academic Press, 1980:183-237.
    106. Berrry JA, Downton WJS. Environmental regulation of photosynthesis. In:Govindjee T D, ed. Photosynthesis:Development, Carbon Metabolism and Plant Productivity. Vol II. New York: Academic Press.1982:263-343.
    107. Black MC, Ferrel JR, Homing RC. DNA strand breakage in fish water Mussels(Anodonta grandis)exposed to lead in the laboratory and field. Environment Toxicology Chemistry,1996,15: 802-808.
    108. Boggess SF, Willavize S, Koeppe DE. Differential response of soybean genotypes to soil cadmium. Agron. J,1978,70:756-760.
    109. Bowler C, Van Montague M, Inze D. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:83-116.
    110. Boyko A, Kovalchuk I. Epigenetic control of Plant stress response. Enbiron Mol Mutagen,2007,49(1): 61-72.
    111. Bringezu K, Lightenberger O, Leopold I. Heavy metal tolerance of Silene vulgaris. Journal of Plant Physiology,1999,154:536-546.
    112. Cerda S, Weitaman SA. Influence of oxygen radical injury on DNA methylation. Mutation Research, 1997,386:141-152.
    113. Chan SW, Henderson IR, Jacobsen SE. Gardening the genome:DNA methylation in Arabidopsis thaliana. Nature Reviews Genetics,2005,6:351-360.
    114. Chaney RT, Malik M, Li YM. Phytoremediation of soil metal. Current opinions in biotechonology, 1997(8):279-284.
    115. Chaubey CN, Senadhira D, Gregoria GB. Genetic analysis of tolerance for phosphorus deficiency in rice(Oryza sativa L.). Theor. Appl. Genet,1994,89:313-317.
    116. Chen YX, He YF, Luo Y. Physiological mechanism of plant roots exposed to cadmium. Chemosphere, 2003,50:789-793.
    117. Cheong YH, Pandey GK, Grant JJ. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J,2007,52: 223-239.
    118. Choi CS, Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Molecular Genetic Genomics,2007, 277:589-600.
    119. Clemens S, Kim EJ, Neumann D. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO Journal,1999,18:3325-3333.
    120. Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plant. Biochimiestry,2006,11 (88):1707-1719.
    121. Cobbett CS. Phytochelatin biosynthesis and function in heavy-metal detoxification. Current Opinion in Plant Biology,2000,3:211-216.
    122. Crews MH, Davies DW. Heavy metal uptake from contaminated soils by six cultivars of lettuces. J. Agri. Sci,1986,105:591-595.
    123. Da Silva AE, Gabelman WH and Coors JG. Inheritance studies of low-phosphorus tolerance in maize (Zea mays L.) grown in a sand-alimina culture medium. Plant Soil,146:189-197.
    124. Daud MK, Sun YQ, Dawood M, Hayat Y, Variath MT, Wu YX, Raziuddin, Mishkat U, Salahuddin, Najeeb U, Zhu SJ. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars. J Hazard Mater,2009,161:463-473.
    125. Daud MK, Variath MT, Shafaqat Ali, Najeeb U, Jamil M, Hayat Y, Dawood M, Khan M I, Zaffar M, Cheema SA, Tong XH, Zhu SJ. Cadmium-induced ultramorphological and physiological changes in leaves of two transgenic cotton cultivars and their wild relative. J Hazard Mater,2009,168:614-625.
    126. De DN. Plant cell vacuoles. Collingwood, Australia:CSIRO,2000.
    127. Di Toppi LS, Gabbrielli R. Response to cadmium in higher plants. Environmental and Experimental Botany,1999,41(2):105-130.
    128. Dixit V, Pandey V, Shyam R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot,2001,52:1101-1109.
    129. Guttormsen G, Singh BR, Jeng AS. Cadmium concentration in vegetable crops grown in a sandy soil as affected by Cd levels in fertilizer and soil pH. Fertilizer Research,1995,41:27-32.
    130. Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Ann Rew Plant Physiol,1982, 33:317-345.
    131. Fieldes MA, Schaeffer SM, Krech MJ. DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax. Theoretical and Applied Genetics,2005,111(1):136-149.
    132. Finnegan EJ, Kovac KA. Plant DNA methyltransferases. Plant Molecular Biology,2000,43:189-201.
    133. Finnegan EJ, Genger PK, Peacock WJ, Dennis SS. DNA methylation in Plants. Plant Mol Biol,1998, 49:223-47.
    134. Finnegan EJ. Is plant gene expression regulated globally. Trends in Genetics,2001,17:361-365.
    135. Flavell RB. Inactivation of gene expression in plants as a on sequence of specific Sequence duplication. Proceeding of the National Academy of Sciences,1994:3490-3496.
    136. Florin PJ, Van Beusichem ML. Uptake and distribution of cadmium in maize inbred lines. Plant and Soil,1993,150:25-32.
    137. Foyer CH, Lelandais M, Kunert KJ. Photooxidative stress in plants. Physiol Plant,1994,92:696-717.
    138. Foyer CH, Lopez-Delgado H, Dat JF, Scott IM. Hydrogen peroxide-and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol. Plant,1997,100:241-254.
    139. Fruhauf S, Zeller WJ. New platinum, titanium and ruthenium complexes with different patterns of DNA damage in rat ovarian tumor cells. Cancer Research,1991,51:2943-2948.
    140. Furlani AMC, Lima M, Nass LL. Combining ability effects for P-efficiency characters in maize grown in low P nutrient solution. Maydica,1998,43(3):169-174.
    141. Goldberg AD, Allis CD, Bemstein E. Epigenetics:a landscape takes shape. Cell,2007,128(4): 635-638.
    142. Goll MG, Bestor TH. Eukaryotic cytosing methyltransferases. Annu Rev Biochem,2005,74:481-514.
    143. Gorny AG. Inheritance of nitrogen and phosphorus utilization efficiency in spring barley at the vegetative growth stages under high and low nutrition, Plant Breeding,1999,118(6):511-516.
    144. Gorny AG, Sodkiewicz T. Genetic analysis of the nitrogen and phosphorus utilization efficiencies in mature spring barley plants. Plant Breed,2001,120(2):129-132.
    145. Grill E, Winnacker E L, Zenk M H. Phytochelatins, a class of heavy metal-binding peptides from plants are functionally analogous to metallothioneins. Proc Natl Acad Sci USA,1987,84:439-443
    146. Gruenbaum Y, Naveh-Many T. Sequence specificity of methylation in higher Plant DNA. Nature,1981, 292:860-862.
    147. Gu JG, Zhou QX. Cleaning up through phytoremediation:a review of Cd contaminated soils. Ecol Sci, 2002,21:352-366.
    148. Guttormsen G, Singh BR. Cadmium concentration in vegetable crops grown in a sandy soil as affected by Cd levels in fertilizer and soil PH. Fertilizer Res,1995,4(1):27-32.
    149. Haag-kerwer A, Schafer HJ, Heiss S. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. Journal of Experimental Botany, 1999,50:1827-1835.
    150. Halliwell B, Gutteridge MC. Free radical in biology and medicine.3rd eds, Oxford University Press, New York,1999.
    151. Halliwell B, Gutteridge MC. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J,1984,219:1-14.
    152. Kimura K, Sakurada K, Katoh N. Inhibition by gorsypol of phospholipid-sensitive Ca2+-dependent protein kinase from pig testis, Biochim. Biophys. Acta,1985,839:276-280.
    153. King GJ. Morphological development in Brassica oleracea is modulated by in vivo treatment with 5-azacytidine. Journal of Horticulture Science,1995,70(2):333-342.
    154. Kovarik A, Koukalova B, Bezdek M, Opatrny Z. Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theor Appl Genet,1997,95:301-306.
    155. Kramer U. Phytoremediation:novel approaches to cleaning up polluted soils. Curr. Opin. Biotech,2005, 16:133-141.
    156. Krupa Z, Baszyriski T. Some aspects of heavy metal toxicity towards photosynthetic apparatus-direct and indirect effects on light and dark reactionsm. Acta Physiol. Plant,1995,17:177-190.
    157. Kumara C, Surinder Kumarb S. Photosynthetic activities of Pisum sativum seedings grown in presence of cadmium. Lakshaman Plant Physiology and Biochemistry,1999,37(4):297-303.
    158. Labra M, Ghiani A, Citterio S, Sgorbati S, Sala F, Tannini C, Ruffini Castiglione M, Bracale M. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol,2002,4: 694-699.
    159. Labra M, Ghiani A, Imazio S. Genetic and DNA rnethylation changes induced by Potassium dichromate in Brassica napus L. ChemosPhere,2004,54:1049-1058.
    160. Lee CYG, Moon YS, Yuan JH, Chen AF. Enzyme inactivation and inhibition by gossypol, Mol. Cell. Biochcm,1982,47:65-70.
    161. Lee J, Shim D, Song WY. Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Molecelar Biology,2004,54:805-815.
    162. Lee YW, Broday L, Costa M. Effects of nickel on DNA methyhransferase activity and genomic DNA methylation levels. Mutat Res,1998,31:213-218.
    163. Leita L, Nobili D. Analysis of intercellular cadmium forms in roots and leaves of bush bean. Plant Nutrition,1996,19:527-533.
    164. Leutwiler LS, Hough-Evans BR, Meyerowitz EM. The DNA of Arabidopsis thaliana. Molecular Genetic Genomics,1984,194:15-23.
    165. Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chainreaction. Science,1992,257:967-971.
    166. Liu B, Wendel JF. Epigenetic phenomena and the evolution of plant allopolyploids. Molecular Phylogenetics and Evolution,2003,29:365-379.
    167. Liu ZL, Wang YM, Shen Y, Guo W, Liu B. Extensive alterations in DNA methylation and transcription in rice caused by introgression from Zizania latifolia. Plant Mol Biol,2004,54:571-582.
    168. Long L, Lin X, Zhai J. Heritable alteration in DNA methylation pattern occurred specifically at mobile elements in rice plants following hydrostatic pressurization. Biochemical and Biophysical Research Communications,2006,340(2):369-376.
    169. Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena Ruiz RO. Distribution of cadmium in shoot and root tissue of maize and pea plants:physiological disturbances. J. exp. Bot,1997,48:123-128.
    170. Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T. Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassicanapus allopolyploids. Plant Physiol,2006,140:336-348.
    171. Matzke MA, Matzke AJM. How and why do Plants inactivate homologous(trans)genes? Plant Physiology,1995,107:679-685.
    172. Messegure R, Ganal MW, Steffens JC. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Molecular Biology,1991,167:753-770.
    173. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002,7:405-410.
    174. Montero LM, Filipski J, Gil P. The distribution of 5-methylcytosine in the nuclear genome of plants. Nucleic Acdis Research,1992,20 (12):3207-3210.
    175. Nakano Y, Asadas K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology,1981,22:867-880.
    176. Nies DH, Silver S. Metal ion uptake by a plasmid-free metal-sensitive Alcaligenes eutrophus strain. Journal of Bacteriology,1989,171:4073-4075.
    177. Obrien P, Salacinskin J. Evidence that the reactions of cadmium in the presence of metallothionein can produce hydroxyl radicals. Archives of Toxicology,1998,72:690-700.
    178. Oliver DP, Gartrell JW, Tiller KG, Correll R, Cozen GD, Youngberg BL. Differential response of Australian wheat cultivars to cadmium concentration in wheat grain. Aust. J. Agri. Res,1995,46: 873-886.
    179. Ono BI, Ohue H, Ishihara F. Role of cell wall in Saccharomyces cerevisiae Mutants Resistant to Hg2+. Journal of Bacteriology,1988,170(12):5877-5882.
    180. Ouzounidou G, Moustakas M, Eleftheriou EP. Physiological and Ultrastructural Effects of Cadmium on Wheat (Triticum aestivum L.) Leaves. Archives of Environmental Contamination and Toxicology,1997, 32,154-160.
    181. Penner GA, Clarke J, Bezte LJ, Leisle D. Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome,1995,38:543-547.
    182. Piotr Przybylski, Krystian Pyta, Joanna Stefanska, Malgorzata Ratajczak-Sitarz, Andrzej Katrusiak, Adam Huczynski, Bogumil Brzezinski. Synthesis, crystal structures and antibacterial activity studies of aza-derivatives of phytoalexin from cotton plant-gossypol. European Journal of Medicinal Chemistry, 2009,44:4393-4403.
    183. Pizzinatto MA, Menten JOM, Soave J, Cia E, Maeda JA. Relacao entre densidade qualidade desementes de algodoeiro. Bragantia,1991,50:269-289
    184. Pomponi M, Censi V, Di G. Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation in the shoot. Planta,2006,223: 180-190.
    185. Portis E, Acquadro A, Comino C, Lanteri S. Analysis of DNA methylation during germination of pepper(Capsicum annuum L.)seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci,2004,166(1):169-178.
    186. Poulter A, Collin HA, Thurman DA, Hardwick K. The role of cell wall in the mechanism of lead and zinc tolerance in Anthoxonthum odoratum L. Plant Science,1985,42:61-66.
    187. Prasad MNV. Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot,1995,35:525-545.
    188. Rakha FA. Abou Youssef AY, Omar AA, El Bendary AA, El Fouly MM. Genetic nature of phosphorus accumulation in maize. J. Plant Nutr,1992,15:4,501-512.
    189. Razin A, Cedar H. DNA methylation-Biochemistry and Biological Significance. Journal of Chromatography,1992,581:31-40.
    190. Reik W, Dean W, Walte J. Epigenetic reprogramming in mammalian development. Science,2001,293: 1089-1093.
    191. Richard IS, Dennis ES. Reactivation of a silent Ac following tissue culture is associated with 5-azacytidine alteration in its methylation Pattern. Molecular Genetic Genomics,1991,229:365-372.
    192. Richards EJ. DNA methylation and plant development. Trends Gene,1997,13 (8):319-322.
    193. Riddle NC, Richards EJ. Genetic variation in epigenetic inheritance of ribosomal RNA gene methylation in Arabidopsis. Plant J,2005,41:524-532.
    194. Riveta U, Chiriboga E, Coleman J. Mechanism of carrot seed tolerance to cadmium toxicity. Plant Physiology,2005,161:207-211.
    195. Roberta A, Sergio S, Angela S, Massimo I, Alessandra G, Sandra C. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiologia Plantarum,2004,121: 472-480.
    196. Rosenberg LJ, Adlakha RC, Desai DM, Rao PN. Inhibition of DNA polymerase-a by gossypol. Biochim. Biophys. Acta,1986,866:258-267.
    197. Salt DE, Rauser WE. MgATP-dependent transport of phytochelatin across the tonoplast of oat roots. Plant Physiol,1995,107:1293-1301.
    198. Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot,2001,52(364):2115-2126.
    199. Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot,1999,41: 105-130.
    200. Sano H, Kamada I, Youssefian S. A single treatment of rice sedling with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA. Molecular Genetic Genomics,1990,220: 441-447.
    201. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PEB, Williams DJ, Moore MR. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett, 2003,137:65-83.
    202. Sawhney V, Sheoran IS, Singh R. Nitrogen fixation, photosynthesis and enzymes of ammonia assimilation and ureide biogenesis in nodules of mungbean (Vigna radiata) grown in presence of cadmium. Indian J Exp Biol,1990,28:883-886.
    203. Schaedle M, Bassham JA. Chloroplast glutathione reductase. Plant Physiology,1977,59:1011-1012.
    204. Schutzendubel A, Schwanz P, Teichmann T, Gross K. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol,2001,127: 887-898.
    205. Semanea B, Cuypersa A, Smeets K. Cadmium responses in Arabidopsis thaliana:glutathione metabolism and antioxidative defence system. Physiol Plant,2007,129:519-528.
    206. Sengalevitch G. Problems of heavy metals contamination and using the agricultural lands in the region of KCM-AD-Plovdiv, Prilozenie za ekologia kam bjuletin KCM.1999,1:10-14.
    207. Shah K, Kumar R G, Verma S. Eeffect of cadmium on lipid perxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seeding. Plant Science,2001,161:1135-1144.
    208. Shao GS, Chen MX, Wang WX. Iron nutrition affects cadmium accumulation and toxicity in rice. Plant Growth Regulation,2007,53:33-42.
    209. Siedleka A, Baszynsky T. Inhibition of election flow around photosystem I in chloroplasts of cadmium-treated maize plants is due to cadmium-induced iron defiency. Physiol Plant,1993,87: 199-202.
    210. Smith F H. Determination of gossypol in leaves and flower buds of Gossypium. J Amer oil Chem Soc, 1971,44:267-269.
    211. Speed T R, Kzieg D R, Jividen G. Relationship between cotton seeding cold tolerance and physical and chemical properties. In:Dugger P, Richter D A (Eds.), Proc. Belwide Cotton Conf.2. National Cotton Council, Memphis, TN,1996. pp.1170-1171
    212. Stenson PD, Ball EV, Mort M. Human gene mutation database (HGMD):2003 update. Human Mutant, 2003,21(6):577-581.
    213. Steward N, Ito M, Yamaguchi Y. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. The Journal Biology Chemistry,2002,277(40):37741-37746.
    214. Suzuki N, Koizumi N, Sano H. Screening of cadmium-resonsive genes in Arabidopsis thaliana. Plant Cell Environ,2001,24:1177-1188.
    215. Tanaka H, Masuta C, Uehara K. Morphological changes and hypomethylation of DNA in transgenic tobacco expressing antisense RNA of the S-adenosyl-L-homocysteine hydrolase gene. Plant Molecular Biology,1997,35(6):981-986.
    216. Thomas GM, Harrison HC. Genetic line effects on parameters influencing cadmium concentration in lettuce. J. Plant Nutri,1991,14:953-962.
    217. Turek-Plewa J, Jaqodzinski PP. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cellular and Molecular Biology Letters,2005,10:631-647.
    218. Van Assche F, Cligsters H. Effects of heavy metal on enzyme activity in plants. Plant Cell Environ, 1990,13(2):195-206.
    219. Vollenweider P, Cosio C, Gunthardt-Goerg MS, Keller C, OSIO C. Localization and effects of cadmium in leaves of a cadmium tolerant willow (Salix viminalis L.); Part Ⅱ. Microlocalization and cellular effects of cadmium. Environmental and Experimental Botany,2005,55:1-16.
    220. Wagner GJ. Accumulation of cadmium in crop plants and its consequences to human health. Adv. Agron,1993,51:173-212.
    221. Wedrychowski A, Schmidt WN, Hnilica LS. The in vivo cross-linking of protein sand DNA by heavymetal. Journal of Biological Chemistry,1986,261:3370-3376.
    222. Weigel H J. The effect of Cd2+ on photosynthetic reaction of mesophyll protoplasts. Physiol Plant,1985, 63:192-200.
    223. Wilson F D, Smith J N. Some genetic relationships between gland density and gossypol content in G. hirsutum L. Crop Sci,1976,16:830-832.
    224. Wojcik M, Tukiendorf A. Cadmium uptake, localization and detoxification in Zea mays. Biologia Plantarum,2005,49 (2):237-245.
    225. Wu F B, Chen F, Wei K, Zhang G P. Effect of cadmium on free amino acids, glutathione and ascorbic acid content in two barley genotypes differing in Cd tolerance. Chemoshpere,2004,57:447-454
    226. Xiao W, Custard KD, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL. DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell,2006,18:805-814.
    227. Xiong LZ, Xu CG, Shagi-Maroof MA, Zhang Q. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive polymorphism technique. Molecular Genetic Genomics,1999,261:439-446.
    228. Y.Z. Qin, Y.X. Zhu. How cotton fibers elongate:a tale of linear cell-growth mode, Current Opinion in Plant Biology,2011,14:106-111.
    229. Yi ZB, Sun Y, Niu T. Patterns of DNA cytosine methylation between hybrids and their parents in sorghum genome. Acta Agronomica Sinica,2005,31(9):1138-1143.
    230. Yoder JA, Walsh CP, Bester TH. Cytosine methylation and the ecology of intragenomic Parasites. TrendsGenet,1997,13:335-340.
    231. Zhang GP, Fukami M, Sekimoto H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crop. Res,2002,77: 93-98.
    232. Zhang XY, Yazaki J, Sundaresan A, Cokus S, Chan, SWL, Chen HM, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE. Genome-wide highresolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell,2006,126(6):1189-1201.
    233. Zhao XX, Cai Y, Liu B. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids. Plant sci,2007,172:930-938.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700