用户名: 密码: 验证码:
离子交换膜化学反应器去除水中铬(Ⅵ)和磷酸盐的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水溶性污染物铬(Ⅵ)和磷若超标,会对环境和人体健康产生严重的危害。目前对于水中铬(Ⅵ)去除的研究报道绝大多数是针对工业废水中铬(Ⅵ)的去除,而专门针对饮用水中铬(Ⅵ)去除的研究报道则相对较少。污水处理厂出水中总磷以磷酸盐、聚磷酸盐和有机磷的形式存在,而磷酸盐为主要存在形式,对二沉池出水中磷酸盐进行深度处理对于控制总磷排放含量有着极其重要的意义。本研究通过构建离子交换膜化学反应器,并用于水中铬(Ⅵ)和磷酸盐的去除。
     阴离子交换膜分离铬(Ⅵ)和磷酸盐试验结果表明,当原水中铬(Ⅵ)初始浓度为1.0mg/L,pH值为6.95左右,补偿溶液NaCl浓度为0.1mol/L,原水和补偿溶液进水流量为2.5mL/min,膜两侧溶液搅拌强度为500r/min,水温为25℃时,阴离子交换膜对铬(Ⅵ)的分离去除率为86.4%,相同试验条件下阴离子交换膜对磷酸盐的分离去除率为84.3%。采用Na2SO4作为补偿溶液时,阴离子交换膜对铬(Ⅵ)和磷酸盐的分离去除率降低,且其对磷酸盐分离效果的影响较大。不同补偿溶液NaCl浓度条件下阴离子交换膜对铬(Ⅵ)和磷酸盐的分离去除率相差不大,但离子通量随NaCl浓度的增加而增大。当原水pH值分别为11.0和3.0时,阴离子交换膜对铬(Ⅵ)和磷酸盐的分离去除率降低。膜两侧溶液搅拌强度和水温增大时,铬(Ⅵ)和磷酸盐的分离效果提高。增加原水进水流量,阴离子交换膜对铬(Ⅵ)和磷酸盐的分离去除率降低。二价共存离子SO42-对铬(Ⅵ)和磷酸盐离子竞争作用大于一价共存离子NO3-和Cl-,共存离子浓度越高,离子交换竞争作用越强。正交试验结果表明,各因素中原水进水流量和补偿溶液种类分别对铬(Ⅵ)和磷酸盐的分离影响最大,其对分离试验结果有显著影响。
     在最佳分离运行参数条件下,单位时间内化学反应池铬(Ⅵ)和磷酸盐富集含量均随原水初始浓度的增加而增加。铬(Ⅵ)最佳还原剂投加量为FeSO4·7H2O:Cr(Ⅵ)=20:1,可适当过量投加硫酸亚铁,不调节原水pH值。投药量系数增加时,磷酸盐化学沉淀去除效果增加。在3种不同运行方式条件下,离子交换膜化学反应器对铬(Ⅵ)和磷酸盐处理水中浓度均小于或接近于相应的水质标准要求。
     铬(Ⅵ)和磷酸盐离子交换动力学试验结果表明,阴离子交换膜对铬(Ⅵ)和磷酸盐的饱和交换容量分别为1.59mmol/g(干膜)和0.51mmol/g(干膜)。铬(Ⅵ)和磷酸盐离子交换过程均符合颗粒扩散控制(PDC)动力学模型,增加铬(Ⅵ)和磷酸盐初始浓度和温度,离子交换表观速率常数和颗粒扩散系数增大。铬(Ⅵ)和磷酸盐离子从给体池通过阴离子交换膜至化学反应池的迁移交换过程从宏观上可分为3步,膜采用NaCl溶液浸泡预处理和增加补偿Cl-离子浓度,分别促进铬(Ⅵ)和磷酸盐离子的第1步和第3步迁移交换过程,而铬(Ⅵ)和磷酸盐离子第2步迁移交换过程主要取决于交换离子和阴离子交换膜的基本特性。补偿溶液NaCl浓度增加时,阴离子交换膜内铬(Ⅵ)和磷酸盐含量明显降低。两层膜试验中,铬(Ⅵ)含量基本都分布在膜1内,膜2内铬(Ⅵ)含量较少;补偿溶液NaCl浓度较低和较高时,膜内磷酸盐含量的分布由给体池至化学反应池分别呈递增和递减趋势。原水中存在带电胶体颗粒是造成膜污染的主要原因,阴离子交换膜可采用酸碱化学清洗。
     离子交换膜化学反应器分离和去除技术在给水、饮用水源铬(Ⅵ)突发性应急处理以及污水中磷酸盐的处理等方面,尤其在有自然咸水可利用的地区,具有潜在的应用价值。
When the concentration of water-soluble pollutants such as Cr(Ⅵ)andphosphorus exceeds the water standard, there will be a serious danger to theenvironment and human health. Currently, most of the research of Cr(Ⅵ)removal wasfocused on Cr(Ⅵ)removing in industrial effluent, while relatively fewer literatureswere specially involved in Cr(Ⅵ) uptake in drinking water. Phosphorus exists in theform of phosphate, polyphosphate and organic phosphorus in the sewage effluent,while phosphate is the main form. Advanced treatment for phosphate of the effluent ofsecondary sedimentation tank has an extremely important significance for the controlof total phosphorus discharge to receiving waters. The aim of this study is to developean ion-exchange membrane chemoreactor, which will be used for Cr(Ⅵ) andphosphate removal from aqueous solution.
     The results of our experiments with Cr(Ⅵ) and phosphate separation byanion-exchange membrane showed that the separation efficiency of Cr(Ⅵ) fromfeeding chamber reached86.4%under the conditons of influent Cr(Ⅵ) concentration1.0mg/L, pH6.95, NaCl concentration0.1mol/L in counterion solution, flow rate offeed and counterion solutions2.5mL/min, stirring speed500r/min, and phasetemperature25℃. In addition, the separation efficiency of phosphate byanion-exchange membrane could achieve84.3%under the identical experimentalcondition. Using Na2SO4as counterion solution, the separation efficiency of Cr(Ⅵ)and phosphate was reduced, and the latter got a comparatively greater decrease. Withthe different NaCl concentrations in counterion solution, no change was likely to befound in the separation efficiency of Cr(Ⅵ) and phosphate by anion-exchangemembrane; however the ion flux rised dramatically with the increase of NaClconcentration in counterion solution. When initial pH of feed solution was11.0and3.0, the separation efficiency of Cr(Ⅵ) and phosphate dropped. It was also found thatthe separation efficiency of Cr(Ⅵ) and phosphatewas greatly improved with theincrease of stirring speed and phase temperature in feed and counterion solutions. Theseparation efficiency of Cr(Ⅵ) and phosphate decreased significantly with increasingthe flow rate of feed solution. The competitive removal experiments indicated that thedivalent ion (SO42-) had a profound interfering effect compared to monovalent ions(NO3-and Cl-), and the higher the concentration of coexisting ions, the more stronger of the competitive effect. Orthogonal experiments showed that the flow rate of feedsolution and counterion solution species mostly affected the separation of Cr(Ⅵ) andphosphate, respectively, which had a significant impact on the results of separationexperiments of Cr(Ⅵ) and phosphate by anion-exchange membrane.
     In the optimum operating parameters of separation, the enrichment content ofboth Cr(Ⅵ) and phosphate in chemoreactor per unit time were increased with theincrease of influent concentration in feed solution. The optimum dosage ofFeSO4·7H2O: Cr(Ⅵ) was found to be20:1with reductant removal of Cr(Ⅵ), andappropriately excessive dosage of FeSO4could be added without adjustment of pH inraw water. Increasing dosage coefficient with the ratio of PFS to P, the removalefficiency of phosphate by chemical precipitation was enhanced. Effluentconcentrations of Cr(Ⅵ) and phosphate treated by ion-exchange membranechemoreactor were less than or close to the corresponding water quality standardsunder three different operation conditions.
     Ion exchange kinetics of Cr(Ⅵ)and phosphate were also specially investigated.The experimental results showed that the saturated exchange capacity of Cr(Ⅵ) andphosphate with anion-exchange membrane were1.59mmol/g(dry membrance) and0.51mmol/g(dry membrance), respectively. The ion exchange process of both Cr(Ⅵ)and phosphate could be described by the Particle Diffusion Control(PDC) kineticmodel. With the increase of initial concentration and phase temperature of Cr(Ⅵ) andphosphate, the apparent rate constant and particle diffusion coefficient of the two ionsincreased. The transport process of Cr(Ⅵ) and phosphate ions transferred fromfeeding chamber to chemoreactor through the anion-exchange membrane could bedivided into three steps on the whole. Using pretreated anion-exchange membraneimmersing in NaCl solution and increasing Cl-concentration in counterion solutioncould efficiently promote the first and third transport process of Cr(Ⅵ) and phosphateions, respectively. However, the second transport process of Cr(Ⅵ) and phosphateions was mainly depended on the basic characteristic of exchange ion andanion-exchange membrane. When NaCl concentration in counterion solution wasincreased, the content of Cr(Ⅵ)and phosphate ions in anion-exchange membranedecreased significantly. In the experiments with two overlapping membranes, Cr(Ⅵ)ions mainly distributed in membrane1, and fewer were found in membrance2. Withlower and higher NaCl concentration in counterion solution, the content of phosphateions distribution in two overlapping membranes presented increasing and descendingtrend from side of feeding chamber to side of chemoreactor respectively. The charged colloidal particles existed in raw water were the main reason for membrane fouling,and the membrane could be restored by acid-alkali chemical cleaning.
     In consequence, separation and removal technology using ion-exchangemembrane chemoreactor might be a promise potential process for emergencytreatment of raw water polluted by Cr(Ⅵ)and advanced treatment of phosphatecontaining wastewater, especially in the area where high salted nature water can beutilized.
引文
[1] Liang N, Yang L Y, Dai J R, et al. Heavy metal pollution in surface water ofLinglong gold mining area, China. Procedia Environmental Sciences,2011,10:914-917
    [2]董蕊妮,李少佩,李国庆.浅析水体中重金属污染现状及治理技术.见:中国环境科学学会2011年学术年会论文集.乌鲁木齐:中国环境科学学会,2011,1804-1807
    [3]马前,庄琳懿,倪亚明.国内外重金属污染处理技术的进展.见:全国水体污染控制、治理技术与突发性水污染事故应急处理高级研讨会论文集.上海:中国环境科学学会,2006,95-102
    [4] Meng W, Qin Y W, Zheng B H, et al. Heavy metal pollution in Tianjin Bohai Bay,China. Journal of Environmental Sciences,2008,20(7):814-819
    [5] Krishna A K, Satyanarayanan M, Govil P K. Assessment of heavy metalpollution in water using multivariate statistical techniques in an industrial area:A case study from Patancheru, Medak District, Andhra Pradesh, India. Journal ofHazardous Materials,2009,167(1-3):366-373
    [6]何仕均,赵璇,叶裕才等.利用弱碱阴离子交换树脂去除饮用水源中微量铬(Ⅵ).清华大学学报(自然科学版),2002,42(5):662-664
    [7]周振国,徐魁安,史文仪.铬的水文地球化学异常、污染及其处理利用研究.上海地质,1991,4:12-19
    [8]施周,贺维鹏.饮用水水源中重金属污染防控技术与对策.给水排水,2012,38(8):1-3
    [9] Baral S S, Das S N, Rath P. Hexavalent chromium removal from aqueoussolution by adsorption on treated sawdust. Biochemical Engineering Journal,2006,31(3):216-222
    [10] Sharma Y C, Weng C H. Removal of chromium(Ⅵ) from water and wastewaterby using riverbed sand: Kinetic and equilibrium studies. Journal of HazardousMaterials,2007,142(1-2):449-454
    [11] Sadaoui Z, Hemidouche S, Allalou O. Removal of hexavalent chromium fromaqueous solutions by micellar compounds. Desalination,2009,249(2):768-773
    [12]熊道陵,李英,钟洪鸣等.铬回收技术及其研究进展.有色金属科学与工程,2011,2(5):6-11
    [13]楼紫阳,宋立言,赵由才等.中国化工废渣污染现状及资源化途径.化工进展,2006,25(9):988-994
    [14]肖小云,郭学谋.铬渣堆场周围环境污染现状研究.湖南农业科学,2008,3:102-103
    [15]相震,吴向培.工业性铬污染对湟水水质的影响.环境与健康杂志,2004,21(3):160-161
    [16]范力,张建强,程新等.离子交换法及吸附法处理含铬废水的研究进展.水处理技术,2009,35(1):30-33
    [17] Venkateswaran P, Palanivelu K. Studies on recovery of hexavalent chromiumfrom plating wastewater by supported liquid membrane using tri-n-butylphosphate as carrier. Hydrometallurgy,2005,78(1-2):107-115
    [18]李炳.颗粒活性炭负载氧化铁(IOCGAC)吸附除Cr(Ⅵ)研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2007,1-3
    [19]张永江.蛋壳膜生物材料和粉末活性炭对砷、铬的吸附及其应用研究:[西南大学硕士学位论文].重庆:西南大学化学化工学院,2010,2-3
    [20]徐衍忠,秦绪娜,刘祥红等.铬污染及其生态效应.环境科学与技术,2002,25(1):8-9
    [21]张志军,李玲,朱宏等.化学沉淀法去除电镀废水中铬的实验研究.环境科学与技术,2008,31(7):96-97
    [22] Gheju M, Balcu I. Removal of chromium from Cr(Ⅵ) polluted wastewaters byreduction with scrap iron and subsequent precipitation of resulted cations.Journal of Hazardous Materials,2011,196:131-138
    [23]谢腊平,杨玉杰,连庆堂等.硫的含氧酸盐处理混合电镀废水中六价铬的研究.电镀与环保,2008,28(1):37-39
    [24]吴成宝,胡小芳,罗韦因等.浅谈铁氧体法处理电镀含铬废水.电镀与涂饰,2006,25(5):51-55
    [25]王家宏,常娥,丁绍兰等.吸附法去除水中六价铬的研究进展.环境科学与技术,2012,35(2):67-72
    [26] Natale F D, Lancia A, Molino A, et al. Removal of chromium ions from aqueoussolutions by adsorption on activated carbon and char. Journal of HazardousMaterials,2007,145(3):381-390
    [27] Aydin Y A, Aksoy N D. Adsorption of chromium on chitosan: Optimization,kinetics and thermodynamics. Chemical Engineering Journal,2009,151(1):188-194
    [28] Kumar P A, Chakraborty. Fixed-bed column study for hexavalent chromiumremoval and recovery by short-chain polyaniline synthesized on jute fiber.Journal of Hazardous Materials,2009,162(2-3):1086-1098
    [29]田森林,张启华,管彦伟.锯屑处理含铬废水的实验研究.安全与环境学报,2002,2(4):11-13
    [30]王国惠.板栗壳对重金属Cr(Ⅵ)吸附性能的研究.环境工程学报,2009,3(5):791-794
    [31] Li C, Chen H Z, Li Z H. Adsorptive removal of Cr(Ⅵ) by Fe-modified steamexploded wheat straw. Process Biochemistry,2004,39(5):541-545
    [32] Zhou H L, Chen Y F. Effect of acidic surface functional groups on Cr(Ⅵ)removal by activated carbon from aqueous solution. Rare Metals,2010,29(3):333-338
    [33] Huang G L, Shi J X, Langrish T A G. Removal of Cr(Ⅵ) from aqueous solutionusing activated carbon modified with nitric acid. Chemical Engineering Journal,2009,152(2-3):434-439
    [34] Fang J, Gu Z M, Gang D C, et al. Cr(Ⅵ) removal from aqueous solution byactivated carbon coated with quaternized poly(4-vinylpyridine). EnvironmentalScience&Technology,2007,41(13):4748-4753
    [35] Namasivayam C, Sureshkumar M V. Removal of chromium(Ⅵ) from water andwastewater using surfactant modified coconut coir pith as a biosorbent.Bioresource Technology,2008,99(7):2218-2225
    [36]杨慧芬,张伟娜,胡瑞娟.十六烷基三甲基溴化铵改性沸石对水中Cr(Ⅵ)的吸附去除率.硅酸盐学报,2010,38(11):2143-2147
    [37]邵红,孙伶.铁钛改性膨润土对铬的吸附性能研究.环境科学与技术,2006,29(7):12-13,30
    [38]王萍,李国昌. Keggin离子改性凹凸棒石对废水中六价铬的吸附研究.非金属矿,2006,29(6):46-49
    [39] Tenorio J A S, Espinosa D C R. Treatment of chromium plating process effluentswith ion exchange resins. Waste Management,2001,21(7):637-642
    [40] Galan B, Castaneda D, Ortiz I. Removal and recovery of Cr(Ⅵ) from pollutedground waters: A comparative study of ion-exchange technologies. WaterResearch,2005,39(18):4317-4324
    [41] Cavaco S A, Fernandes S, Quina M M, et al. Removal of chromium fromelectroplating industry effluents by ion exchange resins. Journal of HazardousMaterials,2007,144(3):634-638
    [42]严义芳,陈福北.利用阴离子交换树脂处理模拟含铬废水的研究.化工技术与开发,2011,40(5):46-49
    [43]吴克明,石瑛,王俊等.离子交换树脂处理钢铁钝化含铬废水的研究.工业安全与环保,2005,31(4):22-23
    [44] Shi T H, Wang Z C, Liu Y, et al. Removal of hexavalent chromium from aqueoussolutions by D301, D314and D354anion-exchange resins. Journal of HazardousMaterials,2009,161(2-3):900-906
    [45] Edebali S, Pehlivan E. Evaluation of Amberlite IRA96and Dowex1×8ion-exchange resins for the removal of Cr(Ⅵ) from aqueous solution. ChemicalEngineering Journal,2010,161(1-2):161-166
    [46]郑广宏,肖方.含Cr(Ⅵ)电镀废水治理技术研究进展.工业用水与废水,2008,39(5):11-14
    [47]雷英春.电解法处理高浓度含铬废水回收铬的研究.安全与环境学报,2011,11(6):43-45
    [48]刘峥,韩国成,王永燎.钛-铁双阳极电絮凝法去除电镀废水中的铬(Ⅵ).工业水处理,2007,27(10):51-54
    [49] Adhoum N, Monser L, Bellakhal N, et al. Treatment of electroplating wastewatercontaining Cu2+, Zn2+and Cr(Ⅵ) by electrocoagulation. Journal of HazardousMaterials,2004,112(3):207-213
    [50] Sudha B R, Abraham T E. Biosorption of Cr(Ⅵ) from aqueous solution byRhizopus nigricans. Bioresource Technology,2001,79(1):73-81
    [51] Tewari N, Vasudevan P, Guha B K. Study on biosorption of Cr(Ⅵ) by Mucorhiemalis. Biochemical Engineering Journal,2005,23(2):185-192
    [52]尹华,叶锦韶,彭辉等.掷孢酵母吸附去除铬的性能研究.环境化学,2003,22(5):469-473
    [53]叶锦韶,尹华,彭辉等.高效生物吸附剂处理含铬废水.中国环境科学,2005,25(2):245-248
    [54]罗隽,胡勇有,仲海涛.烟束曲霉菌丝球对Cr(Ⅵ)的去除—还原与吸附作用.环境科学学报,2007,27(10):1585-1592
    [55]马王钢,孙培德,王泽艾等. BM二代菌去除电镀废水中重金属离子的效果研究.环境工程学报,2010,4(2):301-304
    [56] Ziagova M, Dimitriadis G, Aslanidou D, et al. Comparative study of Cd(Ⅱ) andCr(Ⅵ) biosorption on Staphylococcus xylosus and Pseudomonas sp. in singleand binary mixtures. Bioresource Technology,2007,98(15):2859-2865
    [57]徐良.饮用水除铬工艺设计的应用.给水排水,1999,25(8):8-10
    [58]黄廷林,张玉政,卢金锁.饮用水水源突发性Cr(Ⅵ)污染应急处理实验研究.安全与环境学报,2009,9(1):47-50
    [59]陶光华,陆少鸣,王健.饮用水源突发性铬污染去除方法的比较研究.环境工程学报,2010,4(1):133-136
    [60]陆少鸣,陶光华,王健.饮用水原水突发性铬污染的应急处理研究.中国给水排水,2010,26(11):136-138
    [61]王利平,丁福圣,高乃云等. KDF滤料去除自来水中铅、铬和镉的试验研究.水资源保护,2009,25(6):73-75
    [62]顾雪琼,陈维芳.改性活性炭对饮用水中铬酸盐的去除特性研究.水资源与水工程学报,2011,22(2):20-24
    [63] Korngold E, Belayev N, Aronov L. Removal of chromates from drinking waterby anion exchangers. Separation and Purification Technology,2003,33(2):179-187
    [64] Zhou A M, Tang H X, Wang D S. Phosphorus adsorption on nature sediments:Modeling and effects of pH and sediment composition. Water Research,2005,39(7):1245-1254
    [65] Mezenner N Y, Bensmaili A. Kinetics and thermodynamic study of phosphateadsorption on iron hydroxide-eggshell waste. Chemical Engineering Journal,2009,147(2-3):87-96
    [66] Sibrell P L, Montgomery G A, Ritenour K L, et al. Removal of phosphorus fromagricultural wastewaters using adsorption media prepared from acid minedrainage sludge. Water Research,2009,43(8):2240-2250
    [67]刘焱,王世和,吴玲琳等.工业废渣基复合除磷材料的吸附动力学及热力学分析.东南大学学报(自然科学版),2009,39(6):1231-1235
    [68]张薇,罗颖.控制水体磷污染及其削减途径.中国环境保护优秀论文集(下册),2005:1170-1172
    [69]曹承进,秦延文,郑丙辉等.三峡水库主要入库河流磷营养盐特征及其来源分析.环境科学,2008,29(2):310-315
    [70] Ferreira J G, Bricker S B, Simas T C. Application and sensitivity testing of aeutrophication assessment method on coastal systems in the United States andEuropean Union. Journal of Environmental Management,2007,82(4):433-445
    [71] Painting S J, Devlin M J, Malcolm S J, et al. Assessing the impact of nutrientenrichment in estuaries: Susceptibility to eutrophication. Marine PollutionBulletin,2007,55(1-6):74-90
    [72] Andersen J H, Murray C, Kaartokallio H, et al. A simple method for confidencerating of eutrophication status classifications. Marine Pollution Bulletin,2010,60(6):919-924
    [73]许光眉.石英砂负载氧化铁(IOCS)吸附去除锑、磷研究:[湖南大学博士学位论文].长沙:湖南大学土木工程学院,2006,9-10
    [74]胡远来.利用阴离子交换膜去除水中磷的试验研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2011,11-57
    [75]王广伟,邱立平,张守彬.废水除磷及磷回收研究进展.水处理技术,2010,36(3):17-22
    [76] Doyle J D, Parsons S A. Struvite formation, control and recovery. WaterResearch,2002,36(16):3925-3940
    [77] De-bashan L E, Bashan Y. Recent advances in removing phosphorus fromwastewater and its future use as fertilizer (1997-2003). Water Research,2004,38(19):4222-4246
    [78]杨庆娟,王淑莹,彭永臻.生活污水生物除磷研究及工艺发展进程.给水排水,2008,34:20-23
    [79] Hu J Y, Ong S L, Ng W J. A new method for characterizing denitrifyingphosphorus removal bacteria by using three different types of electron acceptors.Water Research,2003,37(14):3463-3471
    [80]赵丹,任南琪,陈坚等.生物除磷技术新工艺及其微生物学原理.哈尔滨工业大学学报,2004,36(11):1460-1462
    [81]高志广,周琪,陈银广等.厌氧HRT对A/O除磷工艺的影响.水处理技术,2006,32(11):21-23
    [82]彭永臻,侯红勋,孙洪伟等. A2/O氧化沟工艺中NO3-对生物除磷影响.哈尔滨工业大学学报,2008,40(8):1311-1314
    [83]杨殿海,卢文健,王荣昌等.低温条件下A2/O生物强化除磷系统的反硝化除磷特性.水处理技术,2011,37(4):33-36
    [84] Li J, Xing X H, Wang B Z. Characteristics of phosphorus removal fromwastewater by biofilm sequencing batch reactor (SBR). BiochemicalEngineering Journal,2003,16(3):279-285
    [85] Tsuneda S, Ohno T, Soejima K, et al. Simultaneous nitrogen and phosphorusremoval using denitrifying phosphate-accumulating organisms in a sequencingbatch reactor. Biochemical Engineering Journal,2006,27(3):191-196
    [86]王淑莹,闫骏,侯红勋等.内循环对Orbal氧化沟系统生物脱氮除磷的影响.北京工业大学学报,2008,34(5):522-527
    [87] Panswad T, Doungchai A, Anotai J. Temperature effect on microbial communityof enhanced biological phosphorus removal system. Water Research,2003,37(2):409-415
    [88]王昶,吕晓翠,贾青竹等.含磷废水处理技术研究进展.水处理技术,2009,35(12):16-21
    [89] Chen Y G, Randall A A, McCue T. The efficiency of enhanced biologicalphosphorus removal from real wastewater affected by different ratios of acetic topropionic acid. Water Research,2004,38(1):27-36
    [90] Vargas M, Casas C, Baeza J A. Maintenance of phosphorus removal in an EBPRsystem under permanent aerobic conditions using propionate. BiochemicalEngineering Journal,2009,43(3):288-296
    [91]李勇智,彭永臻,王淑滢等.强化生物除磷体系中的反硝化除磷.中国环境科学,2003,23(5):543-546
    [92]蔡天明,蔡舒,宁强等.影响EBPR系统生物除磷的主要因素.环境工程,2008,26(5):74-76
    [93]丁文明,黄霞.废水吸附法除磷的研究进展.环境污染治理技术与设备,2002,3(10):23-27
    [94] Clark T, Stephenson T, Pearce P A. Phosphorus removal by chemicalprecipitation in a biological aerated filter. Water Research,1997,31(10):2557-2563
    [95] Zhou Y N, Xing X H, Liu Z H, et al. Enhanced coagulation of ferric chlorideaided by tannic acid for phosphorus removal from wastewater. Chemosphere,2008,72(2):290-298
    [96]潘理黎,王玲,郑海军等.城镇污水处理厂尾水深度化学除磷试验研究.水处理技术,2011,37(6):50-53
    [97]邢伟,黄文敏,李敦海等.铁盐除磷技术机理及铁盐混凝剂的研究进展.给水排水,2006,32(2):88-91
    [98]徐丰果,罗建中,凌定勋.废水化学除磷的现状与进展.工业水处理,2003,23(5):18-20
    [99] Liu Y C, Shi H C, Li W L, et al. Inhibition of chemical dose in biologicalphosphorus and nitrogen removal in simultaneous chemical precipitation forphosphorus removal. Bioresource Technology,2011,102(5):4008-4012
    [100]汪辉,马伟芳,曾凡刚.几种无机混凝剂除磷优化及污水深度净化研究.工业水处理,2012,32(4):46-48
    [101]张林生,鞠宇平,周瑜等.石灰沉淀—结晶法处理高浓度含磷废水.给水排水,2002,28(5):42-44
    [102]万锐,吕锡武,朱光灿等.诱导结晶法回收磷的试验研究.中国给水排水,2009,25(15):82-85
    [103]谭婧,丁丽丽,赵明宇等.锌对磷酸铵镁和磷酸钙结晶回收磷的影响.环境科学与技术,2010,33(3):54-58
    [104] Genz A, Kornmuller A, Jekel M. Advanced phosphorus removal frommembrane filtrates by adsorption on activated aluminium oxide and granulatedferric hydroxide. Water Research,2004,38(16):3523-3530
    [105] Babatunde A O, Zhao Y Q. Equilibrium and kinetic analysis of phosphorusadsorption from aqueous solution using waste alum sludge. Journal ofHazardous Materials,2010,184(1-3):746-752
    [106]李晓东,孙铁珩,李海波等.人工湿地除磷研究进展.生态学报,2007,27(3):1226-1232
    [107]汪俊三,覃环.高水力负荷人工湿地处理富营养化湖水.中国给水排水,2005,21(1):1-4
    [108]蒋跃平,葛滢,岳春雷等.人工湿地植物对观赏水中氮磷去除的贡献.生态学报,2004,24(8):1720-1725
    [109] Awual M R, Jyo A. Assessing of phosphorus removal by polymeric anionexchangers. Desalination,2011,281:111-117
    [110]董秉直,曹达文,陈艳.饮用水膜深度处理技术.第1版.北京:化学工业出版社,2006,1-6
    [111]王学松.现代膜技术及其应用指南.第1版.北京:化学工业出版社,2005,3-5,250-267
    [112]徐铜文.离子交换膜的重大国家需求和创新研究.膜科学与技术,2008,28(5):1-10
    [113]徐铜文.膜化学与技术教程.第1版.合肥:中国科学技术大学出版社,2003,172-210
    [114]余翯,徐铜文.均相阳离子交换膜研究进展.水处理技术,2005,31(3):1-4
    [115] Choi Y J, Kang M S, Moon S H. A new preparation method forcation-exchange membrane using monomer sorption into reinforcing materials.Desalination,2002,146(1):287-291
    [116]田中良修.离子交换膜基本原理及应用.葛道才,任庆春.第1版.北京:化学工业出版社,2010,13-27
    [117] Hichour M, Persin F, Molenat J, et al. Fluoride removal from diluted solutionsby Donnan dialysis with anion-exchange membranes. Desalination,1999,122(1):53-62
    [118]黄万抚,罗凯,李新冬.电渗析技术应用研究进展.中国资源综合利用,2003,11:15-19
    [119] Sadrzadeh M, Mohammadi T. Sea water desalination using electrodialysis.Desalination,2008,221(1-3):440-447
    [120] Sadrzadeh M, Mohammadi T. Treatment of sea water using electrodialysis:Current efficiency evaluation. Desalination,2009,249(1):279-285
    [121]杨浩,张新胜,王伟等.电渗析法处理丙烯腈废水的研究.工业水处理,2008,28(12):49-52
    [122]张维润,樊雄.电渗析浓缩海水制盐.水处理技术,2009,35(2):1-4
    [123]徐铜文.扩散渗析法回收工业酸性废液的研究进展.水处理技术,2004,30(2):63-66
    [124] Xu J, Lu S G, Fu D. Recovery of hydrochloric acid from the waste acidsolution by diffusion dialysis. Journal of Hazardous Materials,2009,165(1-3):832-837
    [125]王昆,王伟,邢卫红.扩散渗析法回收不锈钢酸洗废液中硝酸.膜科学与技术,2010,30(6):62-65
    [126] Wang H, Wu C M, Wu Y H, et al. Cation exchange hybrid membranes based onPVA for alkali recovery through diffusion dialysis. Journal of MembraneScience,2011,376(1-2):233-240
    [127] Ersoz M, Kara H. Cobalt(Ⅱ) and nickel(Ⅱ) transfer through chargedpolysulfonated cation exchange membranes. Journal of Colloid and InterfaceScience,2000,232(2):344-349
    [128]谢德华,施周,陈世洋等.基于唐南渗析原理阳离子交换膜对Cu2+、Mn2+、Zn2+去除能力的研究.环境科学,2010,31(9):2100-2104
    [129] Durmaz F, Kara H, Cengeloglu Y, et al. Fluoride removal by Donnan dialysiswith anion exchange membranes. Desalination,2005,177(1):51-57
    [130] Fonseca A D, Crespo J G, Almeida J S, et al. Drinking water denitrificationusing a novel ion-exchange membrane bioreactor. Environmental Science&Technology,2000,34(8):1557-1562
    [131] Matos C T, Velizarov S, Crespo J G, et al. Simultaneous removal of perchlorateand nitrate from drinking water using the ion exchange membrane bioreactorconcept. Water Research,2006,40(2):231-240
    [132] Kalis E J, Weng L, Dousma F, et al. Measuring free metal ion concentrations insitu in natural waters using the Donnan membrane technique. EnvironmentalScience&Technology,2006,40(3):955-961
    [133] Kalis E J, Weng L, Temminghoff E J, et al. Measuring free metal ionconcentrations in multicomponent slolutions using the Donnan membranetechnique. Analytical Chemistry,2007,79(4):1555-1563
    [134] Mokrani S, Dammak L, Bulvestre G, et al. Experimental and theoreticalstudies of the crossed ionic fluxes through a cation-exchange membrane.Journal of Membrane Science,2002,199(1-2):147-160
    [135] Mohammad A, Inamuddin, Amin A, et al. Forward ion-exchange kinetics ofheavy metal ions on the surface of carboxymethyl cellulose Sn(Ⅳ) phosphatecomposite nano-rod-like cation exchanger. Journal of Thermal Analysis andCalorimetry,2012,110(2):715-723
    [136] Krishna R, Wesselingh J A. The Maxwell-Stefan approach to mass transfer.Chemical Engineering Science,1997,52(6):861-911
    [137]靳朝辉.离子交换动力学的研究:[天津大学博士学位论文].天津:天津大学化工学院,2004,3-11
    [138]孟洪,彭昌盛,卢寿慈.离子交换膜的选择透过性机理.北京科技大学学报,2002,24(6):656-660
    [139] Zabolotsky V I, Nikonenko V V, Pismenskaya N D, et al. Coupled transportphenomena in overlimiting current electrodialysis. Separation and PurificationTechnology,1998,14(1-3):255-267
    [140]董殿权.离子交换剂的合成及交换机理研究:[天津大学博士学位论文].天津:天津大学化工学院,2006,92-103
    [141]陈福星,周立祥.生物催化合成的施氏矿物对废水中Cr(Ⅵ)的吸附.中国环境科学,2006,26(1):11-15
    [142]刘志刚,虞静静,李轶等.城市污水处理厂磷的形态变化规律研究.给水排水,2011,37(2):50-53
    [143] Castillo E, Granados M, Cortina J L. Chromium(Ⅵ) transport through theRaipore1030anion exchange membrane. Analytica Chimica Acta,2002,464(1):15-23
    [144] Tor A, Buyukerkek T, Cengeloglu Y, et al. Simultaneous recovery of Cr(Ⅲ)and Cr(Ⅵ) from the aqueous phase with ion-exchange membranes.Desalination,2005,171(3):233-241
    [145]高孟春,梁方圆,杨丽娟等.阴离子交换膜生物反应器反硝化性能的研究.中国给水排水,2010,26(3):4-6
    [146] Wang Q H, Lenhart J J, Walker H W. Recovery of metal cations from limesoftening sludge using Donnan dialysis. Journal of Membrane Science,2010,360(1-2):469-475
    [147]国家环境保护总局.水和废水监测分析方法.第4版.北京:中国环境科学出版社,2002,243-349
    [148]周振国,徐魁安.地下水饮用水除铬研究.水处理技术,1989,15(6):359-365
    [149] Krishna B S, Murty D S R, Prakash B S. Surfactant-modified clay as adsorbentfor chromate. Applied Clay Science,2001,20(1-2):65-71
    [150] Alkan E, Kir E, Oksuz L. Plasma modification of the anion-exchangemembrane and its influence on fluoride removal from water. Separation andPurification Technology,2008,61(3):455-460
    [151]徐佩立.边界层及其在传递过程中的应用.第1版.北京:高等教育出版社,1988,26-32
    [152] Wisniewski J A, Kabsch M, Lakomska S. Donnan dialysis and electrodialysisas viable options for removing bromates from natural water. Desalination,2011,281:257-262
    [153] Tor A. Removal of fluoride from water using anion-exchange membrane underDonnan dialysis condition. Journal of Hazardous Materials,2007,141(3):814-818
    [154]何灿芝,罗汉.应用统计学.第1版.长沙:湖南大学出版社,2004,148-176
    [155]李兰,华承伟,武庆东.甘蓝酿酒工艺的研究.中国酿造,2011,10:182-185
    [156] Wisniewski J, Rozanska A, Winnicki T. Removal of troublesome anions fromwater by means of Donnan dialysis. Desalination,2005,182(1-3):339-346
    [157] Neil J R, Vennemann T W, Mckenzie W F. Effects of speciation on equilibriumfractionations and rates of oxygen isotope exchange between (PO4)aqand H2O.Geochimica et Cosmochimica Acta,2003,67(17):3135-3144
    [158] Malgorzata K K, Katarzyna M N, Winnicki T. Analysis of membrane foulingin the treatment of water solutions containing humic acids and mineral salts.Desalination,1999,126(1-3):179-185
    [159]唐建国,林洁梅.化学除磷的设计计算.给水排水,2000,26(9):17-21
    [160] Zagorodni A A(扎戈罗德尼). Ion Exchange Materials: Properties andApplications(离子交换材料—性能与应用).第1版.北京:科学出版社,2007,221-241
    [161]董殿权,张凤宝,张国亮等. Li4Ti5O12的合成及对Li+的离子交换动力学.物理化学学报,2007,23(6):950-954
    [162]王永利,马晓建,常春.离子交换树脂吸附乙酰丙酸的动力学研究.离子交换与吸附,2007,23(4):330-336
    [163]王三反,完颜华,张国俊等.离子迁移途径及选择透过性的理论修正.兰州铁道学院学报(自然科学版),2000,19(3):72-75
    [164] Hichour M, Persin F, Sandeaux J, et al. Fluoride removal from waters byDonnan dialysis. Separation and Purification Technology,2000,18(1):1-11
    [165]王北福,于水利,聂立宏等.原油对离子交换膜的污染及机理研究.膜科学与技术,2006,26(6):39-43
    [166] Lindstrand V, Sundstrom G, Jonsson A. Fouling of electrodialysis membranesby organic substances. Desalination,2000,128(1):91-102
    [167] Lee H J, Choi J H, Cho J, et al. Characterization of anion exchange membranesfouled with humate during electrodialysis. Journal of Membrane Science,2002,203(1-2):115-126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700