用户名: 密码: 验证码:
运动再学习疗法对猴脑缺血损伤功能恢复的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     运动再学习疗法(Motor relearning programme for stroke, MRP)为现代先进康复医学治疗新技术,已经成为治疗缺血性脑血管病所导致各种神经功能障碍的一项重要功能性训练方法,具有较好的脑保护作用,但是其分子生物学机制尚不十分清楚,推测可能与脑缺血后受损脑组织的神经再生(neurogenesis)和/或血管新生(angiogenesis, AG)存在一定的关联性。如果运动再学习疗法促使脑缺血所致受损神经功能的恢复确与受损脑组织神经再生和/或血管新生相关,那么使用运动再学习疗法对脑缺血区周围神经再生和/或血管新生的影响,是以促进神经生长发育、损伤修复再生为主,还是以促进血管新生为主,或者是以共同促进神经再生和血管新生来促使受损神经功能恢复呢?为进一步证实这个假设,本实验在以往研究的基础上选择非人灵长类恒河猴为研究系统,通过成功制备建立恒河猴脑缺血动物模型,应用运动再学习疗法训练实验动物,观察运动再学习疗法这种功能训练技术对脑缺血两侧脑组织会产生什么影响?对于脑缺血受损脑组织中神经元和星形胶质细胞又会有何影响?能否引起受损神经元和胶质细胞分泌一些神经营养因子来实现受损神经组织生长发育、修复或者再生?对缺血损伤区或者周围缺血半暗带区的血管和血流量又有什么影响?能否促进受损脑区新生血管的形成和相应促血管生成的因子分泌和生长?
     我们选用在遗传和生理上较啮齿类或其他动物,更接近人类的非人灵长类恒河猴作为实验对象,通过电凝法阻断恒河猴右侧大脑中动脉M1段制备建立猴脑缺血损伤模型,使用运动再学习疗法(MRP)训练造模成功实验恒河猴60天,采用免疫组织化学的方法,通过定量形态学分析受损脑部相关脑组织区域能够较好地表达神经元功能状况、提示神经元细胞生长状态内在标记的神经丝蛋白(neurofilament protein, NF)与作为全脑所有成熟和反应性星形胶质细胞(astrocyte, Ast)的免疫组化特征性标记的胶质纤维酸性蛋白(glial fibrillary acidic protein, GFAP)(这两个因子的含量和表达水平可以反映受损脑组织神经损伤修复、再生状况)以及能够较好地促进血管形成的血管内皮细胞生长因子(vascular endothelial growth factor, VEGF)和启动血管新生的碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF)(这两个因子的含量和表达水平可以反映受损脑组织血管新生状况)的表达变化;通过单光子发射计算机体层摄影(single photon emission computed tomography, SPECT)技术半定量检测训练前后实验恒河猴相关脑区脑血流量的改变;使用对判定脑损伤猴行为学较为常用,信度和效度较高的“卒中临床等级评定量表(stroke clinical rating scale, SCRS)"评定训练前后实验动物自身神经功能的变化,探索运动再学习疗法这种康复治疗技术是否具有良好的促进神经再生、血管新生的趋势,尤其想了解运动再学习疗法对脑缺血受损脑组织脑可塑性和功能重建的影响以及与神经再生和血管新生的关系?试图阐明运动再学习疗法促进脑缺血损伤神经功能恢复的机制,为临床广泛运用该治疗技术提供理论依据。
     方法
     第一部分:实验设计将9只雄性成年恒河猴随机等分为3组,每组3只:训练组(大脑中动脉缺血模型+运动再学习疗法训练)、自然恢复组(大脑中动脉缺血模型+未进行运动再学习疗法训练)和假手术组(仅暴露大脑中动脉,没有阻断大脑中动脉,未进行运动再学习疗法训练)进行随机对照试验(randomized controlled trial, RCT)。采用电凝阻断恒河猴右侧大脑中动脉M1段方法(与Marahall等改良的闭塞单一大血管法一致)制备建立恒河猴脑缺血损伤模型,但在实施手术造模过程中,发现训练组、自然恢复组和假手术组三组均有实验猴死亡,整个实验动物建模过程完成后9只恒河猴中仅有3只猴造模成功,5只猴死亡,1只猴存活但造模未成功,由于实验恒河猴价格昂贵成本较高,无法进一步补充实验动物数量,所以不能实现原来实验设计的实验组、自然恢复组和假手术组三组分组,只能把仅有的3只造模成功实验动物随机设为训练组。3只造模成功恒河猴残疾程度高度一致,均表现为左侧中枢性面舌瘫、左侧肢体完全性瘫痪、偏身感觉障碍等症状和体征。最终3只恒河猴进入结果分析。并且,根据实验动物恒河猴的特性,造模成功后第3天起采用促进实验动物的觉醒意识水平、增强肌力、改善平衡协调能力等一系列改良运动再学习疗法的康复治疗综合技术训练实验组3只恒河猴,每天1小时,共60天;同时,于建模前1天,建模后3天,10天,60天分别应用“卒中临床等级量表”对实验动物的意识状态、防御反应、抓握反射、四肢运动、步态、平衡能力等神经功能进行评定,观察运动再学习疗法对脑缺血受损神经功能恢复程度的影响。
     第二部分:应用94mTC-双半胱乙酯(99mTc-ECD) SPECT灌注成像技术对9只实验恒河猴均进行半定量检测相关脑区脑血流量情况,扫描时间为建模前1天、建模后3天,10天,60天,但由于实验过程中存在实验动物不断死亡和动物建模未成功,无法完成所有9只实验动物的SPECT检测和收集所有实验动物完整的SPECT检测数据,所以只能选择把造模失败已经死亡和即使存活但未能成功建模的实验动物剔除,仅把电凝法阻断恒河猴右侧大脑中动脉M1段制备成功脑缺血损伤模型的的3只恒河猴实验动物所进行的所有SPECT检测数据纳入实验数据进行统计,应用SPECT灌注成像检测仪自带软件开展相关检测指标对照分析,了解运动再学习疗法对脑缺血损伤后各脑区局部脑血流量的影响。
     第三部分:将电凝法阻断右侧大脑中动脉M1段制备成功脑缺血损伤模型的3只恒河猴实验动物,使用运动再学习疗法(MRP)在动物饲养笼内外进行60天的综合性康复训练,每天1小时。60天时麻醉处死动物,4%多聚甲醛灌注固定后取实验动物脑,收集两侧大脑中动脉供血区中央前回运动区(Precentral Motor Area)脑组织标本,采用实验动物手术侧与非手术侧的自身对照方法,通过免疫组织化学的方法,定量检测分析实验恒河猴两侧脑组织中央前回运动区神经元和胶质细胞中NF、GFAP、VEGF、bFGF阳性细胞数以及这些因子的表达变化,以反映运动再学习疗法对于脑缺血受损脑组织神经神经生长发育、修复再生和/或血管新生的影响。
     结果
     第一部分:从实验动物神经功能评定曲线可知,建模前1天,实验猴神经功能未受损;建模后3天,神经功能严重受损,损伤程度达到高峰;建模后10天,受损神经功能逐渐改善;建模后60天,受损神经功能改善明显,但尚未恢复到正常。本实验结果进一步显示运动再学习疗法训练对3只脑缺血损伤恒河猴神经功能障碍改善显著(P<0.01),不仅促进其运动功能的恢复,而且对实验恒河猴的意识状态、自我照顾能力、平衡能力(肢体和面部肌肉协调性)等症状和体征改善明显,但是对于瘫痪侧肢体肌肉力量改善不显著,可能与恒河猴为四肢动物,善于调整自身的平衡协调性以便更好地适应生存需要有关。
     第二部分:SPECT分析结果显示通过手术造模引起的脑缺血可以导致恒河猴全脑平均局部脑血流(rCBF)的显著性改变(P=0.042),尤其是左侧小脑(P=0.042)、左侧枕叶(P=0.023)、右侧颞叶(P=0.039)、左侧颞叶(P=0.033)、右侧顶叶(P=0.042)、右侧额叶(P=0.018)以及左侧脑半球(P=0.042),局部脑血流发生明显降低。与建模前1天相比,建模后3天恒河猴各脑区rCBF均显著降低;建模后10天,恒河猴各脑区rCBF开始逐步恢复;建模后60天恒河猴各脑区rCBF基本恢复正常,有些脑区rCBF甚至高于建模前,包括右侧小脑、左侧小脑、右侧枕叶、左侧枕叶、左侧颞叶、左侧顶叶、左侧额叶、左侧脑半球以及全脑。分析其主要原因,可能是建模后通过运动再学习疗法训练可以明显地改善损伤恒河猴不同脑区的脑血流量,不仅梗死侧大脑各脑区血流恢复显著,而且双侧大脑中一些脑区脑血流量比建模前还增加,说明运动再学习疗法一方面通过提高双侧脑血流自身调节功能,实现脑血液循环的生理学重组;另一方面,运动再学习疗法也可能通过整体训练实验动物的肌肉力量、平衡、协调、坐位、站立、步行、上肢、头面口腔功能等促进脑血流量的增加。同时,还发现一个值得思索的现象,尽管MRP可以明显改善脑缺血损伤恒河猴两侧的局部脑血流量,但是仍然无法改变脑缺血损伤所导致的右/左脑区脑血流量的不对称性。
     第三部分:脑缺血恒河猴进行改良运动再学习疗法综合训练60天后,处死动物,收集脑组织标本,大体病理学显示脑缺血猴梗死侧脑组织发生液化坏死变软,脑组织萎缩,形成中风囊。免疫组化定量分析表明,与非手术侧相比,NF、GFAP,VEGF, bFGF阳性细胞主要集中在缺血损伤侧缺血周围区,缺血损伤侧NF、GFAP、VEGF和bFGF含量显著增加,缺血损伤侧大脑皮质中央前回运动区NF.GFAP、 VEGF和bFGF表达显著增强(P<0.001),说明运动再学习疗法能够促进和增加脑缺血受损脑组织神经元和胶质细胞分泌一些因子反映受损脑组织神经生长发育、损伤修复再生和/或者受损区域血管新生的状况,进而揭示该治疗方法具有一定的促进神经再生和血管新生能力的趋势。
     结论
     1.运动再学习疗法可以不同程度地改善脑缺血损伤所导致的各种神经功能障碍。
     2.运动再学习疗法可以明显改善脑缺血损伤周围及相关脑区局部脑血流量。
     3.运动再学习疗法可以显著增加脑缺血区脑组织中神经元和胶质细胞NF、GFAP、VEGF、bFGF含量,提高这些因子的表达水平。
     4.研究结果揭示运动再学习疗法具有脑缺血损伤后脑保护作用的趋势。
     5.从功能学和形态学角度,阐明运动再学习疗法促进脑缺血损伤功能恢复的治疗机制,可能与运动再学习疗法能够同时促进脑缺血损伤周围区脑组织神经生长发育、修复再生、血管新生和改善脑血流量相关。
Objective
     Motor relearning program (MRP), as an advanced modern technology, has become an important method of treatment for ischemic cerebrovascular disease caused by a variety of neurological dysfunction, with better brain protection. However, its molecular mechanism is not yet very clear. Presumably it involves nerve repair, nerve regeneration or angiogenesis. This study plans to assess the effects of MRP therapy on ischemic brain, neurons, astrocytes, blood vessels and blood flow. This study may help reveal the mechanism of MRP therapy, and determine whether MRP therapy promotes nerve repair, nerve regeneration or angiogenesis.
     In this study, we select the rhesus monkeys as model animals because they are genetically closer to humans than rodents and other animals. The monkeys had an occlusion of the M1segment of the right middle cerebral artery (MCA) by using electrocoagulation. They were then trained with MRP for60days. The expression of NF (neurofilament protein), GFAP (glial fibrillary acidic protein), VEGF (vascular endothelial growth factor), and bFGF (basic fibroblast growth factor) between injured and non-injured areas were detected and comparatively analyzed by immunohistochemical staining. SPECT (single photon emission computed tomography) was used before and after MCA occlusion to semi-quantify the changes of rCBF (regional cerebral blood flow). A stroke clinical rating scale was used before and after MCA occlusion to quantify the results of a clinical neurological examination. In the present study, we hope to explore whether the MRP therapy has promoted nerve regeneration and/or angiogenesis, especially want to learn more about the influences of MRP therapy on ischemic brain. This study attempts to clarify the mechanism of MRP on recovery of brain ischemia.
     Methods
     Part Ⅰ:In this study,9adult male rhesus monkeys were randomly divided into three groups:the training group (middle cerebral artery occlusion model plus MRP therapy), the spontaneous recovery group (middle cerebral artery occlusion, not for MRP training), and the sham operation group (exposed only to the middle cerebral artery, without blocking the middle cerebral artery, not for training). Rhesus monkeys had an occlusion of the M1segment of the right middle cerebral artery (MCA) by using electrocoagulation. However, in the course of the surgery, it was found that there were monkeys died in the training group, the natural recovery group, and the sham group. Eventually, there were only3successful modeling monkeys.5monkeys died in the course of the surgery, and1monkey was not successfully modeled. Due to insufficient funds, the number of experimental animals cannot be further added. Therefore, the original design of experiments cannot be achieved. The remaining3monkeys were put in the training group. These three monkeys reached a considerable measure of agreement in degree of disability, with paralysis of the left facial tongue, complete paralysis of the left limb, and hemidysesthesia. The data from these three monkeys was used in the final analysis. Three days after the surgery, the monkeys were trained to promote the awakening of consciousness, enhance muscle strength, and improve the balance and coordination ability with a series of modified MRP therapy, according to their respective characteristics. Each monkey was trained for60days,1hour per day. On1day before the surgery,3days,10days and60days after the surgery, a stroke clinical rating scale was used to evaluate the state of consciousness, defensive reaction, grasping reflex, limb movement, gait, balance and other neurological functions, which might help to observe the effects of MRP therapy on cerebral ischemia.
     Part Ⅱ:99mTc-ECD SPECT was performed for the9monkeys to semi-quantify the rCBF. The scan time was set on1day before surgery,3days,10days, and60days after surgery. Because there were monkeys died in the course of surgery, only three successfully modeled monkeys completed the SPECT scans. The data from these three monkeys was used in the final analysis.
     Part III:Three successfully modeled monkeys were trained with MRP inside and outside the cage. The MRP therapy lasted for60days,1hour per day. In the end, these three monkeys were killed. The brain was fixed with40%paraformaldehyde and the brain tissue from both sides of the central gyrus was obtained. By using immunohistochemical staining, the expression of NF (neurofilament protein), GFAP (glial fibrillary acidic protein), VEGF (vascular endothelial growth factor), and bFGF (basic fibroblast growth factor) were detected and compared between injured areas and non-injured areas to reflect the effects of MRP therapy on nerve repair, regeneration and/or angiogenesis.
     Results
     Part Ⅰ:1day before surgery, the monkeys" neurological function was not impaired. On3days after surgery, the neurological function was severely damaged. On10days after surgery, the damaged nerve began slowly to recover. On60days after surgery, the neurological function had improved significantly, but had not yet returned to normal. These results showed that MRP therapy could significantly improve the neurological function caused by cerebral ischemia (P<0.01) This therapy not only promoted the recovery of motor function, but also improved the state of consciousness, self-care skills and balance (limb and facial muscle coordination). However, the improvement of paralyzed limb muscle strength was not significant, possibly because rhesus monkeys walked on all four limbs. They were skilled at adjusting their balance to better adapt to environments.
     Part II:SPECT analysis showed that the surgery can lead to significant decreases in regional cerebral blood flow (rCBF)(P=0.042), especially the left cerebellum (P=0.042), left occipital lobe (P=0.023), right temporal lobe (P=0.039), left temporal lobe (P=0.033), right parietal lobe (P=0.042), right frontal lobe (P=0.018) and the left hemisphere (P=0.042). Compared with preoperation, the rCBF was significantly reduced on3days after surgery. On10days after surgery, the rCBF gradually restored. On60days after surgery, the rCBF returned to normal, and the rCBF of some brain regions was even higher than before modeling, including the right cerebellum, the left cerebellum, right occipital lobe, left occipital lobe, left temporal lobe, left parietal lobe, left frontal lobe, left cerebral hemisphere and the whole brain. Although the MRP therapy can significantly improve the rCBF in rhesus monkeys, it cannot change the asymmetry of brain induced by cerebral ischemia. These results indicated that the MCA occlusion had significantly affected the rCBF, and the MRP therapy can significantly improve the rCBF. Not only the rCBF of injured brain areas was significantly improved, but also the rCBF of some brain areas had even reached a higher level than pre-surgery. This showed that the MRP therapy improved the rCBF to achieve physiological reorganization on the one hand and exercised whole muscles, balance, coordination, sitting, standing, walking, upper limbs, head, face and mouth to further promote an increase in rCBF on the other.
     The expression of NF, GFAP, VEGF and bFGF in injured areas, especially precentral motor area, was significantly higher than non-injured areas. MRP has greatly improved rCBF of cerebral ischemic stroke monkeys, but cannot change the functional asymmetry of cerebral hemispheres. Moreover, MRP has greatly improved neurological function of cerebral ischemic stroke monkeys, not only promoted the recovery of motor function, but also improved the monkeys'state of consciousness, abilities to care for themselves, and balance (coordination of facial and limb muscles). However, MRP cannot improve the strength of paralysed limb's muscles, possibly because monkeys walk on all fours.
     Part III:After60days'MRP training, the monkeys were sacrificed and the brain tissue was obtained. The results of pathologic examination indicated that the brain tissue formed stroke capsule. Immunohistochemical analysis showed that the positive cells of NF, GFAP, VEGF and bFGF were mainly concentrated in the ischemic damage areas. Compared to non-operated side, the expression of NF, GFAP, VEGF and bFGF were significantly increased (P<0.001). It was confirmed that MRP therapy can increase the expression of neurotrophic factor, suggesting this therapy had the ability to promote nerve regeneration and/or angiogenesis.
     Conclusion
     1. MRP therapy can improve a variety of neurological dysfunction induced by cerebral ischemia.
     2. MRP therapy can significantly increase the cerebral blood flow of ischemic injuried areas and related brain areas.
     3. MRP therapy can significantly increase the expression levels of NF, GFAP, VEGF and bFGF.
     4. MRP therapy can effectively improve neurological dysfunction, possibly because it promotes neuronal regeneration or angiogenesis in injured areas to have a significant improvement on neurological deficits caused by cerebral ischemia.
     5. This will provide a theoretical basis for carrying out MRP therapy in patients with
     cerebral ischemia.
引文
[1]贾建平,崔丽英,王伟.神经病学.第六版.北京:人民卫生出版社,2008年.171-209
    [2]Zhao D. Epidemiological studies of stroke in Chinese population. Chin J Epidemiol, 2003,24(3):236-239.
    [3]Thorsen AM, Holmqvist LW, de Pedro-Cuesta J, et al. A randomized controlled trial of early supported discharge and continued rehabilitation at home after stroke:five-year follow-up of patient outcome. Stroke,2005,36(2):297-303
    [4]Ostwald SK, Davis S, Hersch G, et al. Evidence-Based Educational Guidelines for Stroke Survivors After Discharge Home [J]. J Neurosci Nurs,2008,40(3):173-191
    [5]Taube E. Somatosensory deafferentation research with monkey:Implication for rehabilitation medicine [A]. In:Ince L. P. Behavioral Psychology in Rehabilitation Medicine:Clinical application[M]. New York:Williams & Wilkins,1980:371-401
    [6]Taube E, Uswatte G, Pikiditi RD, et al. Constrain-induced movement therapy:a new family techniques with broad application to physical rehabilitation:a clinical review. J Rehabil Res Dev,1999,36:237-251
    [7]Uswatte G, Taube E. Implications of the learned nonues formulation for measuring rehabilitation outcomes:lessons from constrain-induced movement therapy. Rehabilit Psychol,2005,50(1):34-42
    [8]Dahl AE, Askim T, Stock R, et al. Short-and long-term outcome of constrain-induced movement therapy after stroke:a randomized controlled feasibility trial. Clin Rehabilit, 2008,22(5):436-447
    [9]Wolf SL, Winstein CJ, Miller JP, et al. Retention of upper limb function in stroke survivors who have received constrain-induced movement therapy:the EXCIMT randomized clinical trial. Lancet Neurol,2008,7(1):33-40
    [10]Wolf SL, Winstein CJ, Miller JP, et al. Effect of constrain-induced movement therapy on upper extremity function 3 to9 months after stroke:the EXCIMT randomized clinical trial. JAMA,2006,296(17):2095-2104
    [11]Stevens JA, Stoykov ME. Using motor imagery in the rehabilitation of hemiparesis.Arch Phys Med Rehabil,2003,84(7):1090-1092
    [12]Page SJ, Levine P, Leonard A. Mental practice in chronic stroke:results of a randomized, placebo-controlled trial. Stroke,2007,38(4):1293-1297
    [13]Muller K, Butefisch CM, Seitz RJ, et al. Mental practice improves hand function after hemiparetic stroke. Restor Neurol Neurosci,2007,25(5-6):501-511
    [14]Craje C, van der Graaf C, Lem FC, et al. Determining specificity of motor imagery training for upper limb improvement in chronic strokepatients:a training protocol and pilotre sults. Int J Rehabil Res,2010,33(4):359-362
    [15]Anke V, Jeanine AV, Sascha R, et al. Motor imagery in patients with a right hemisphere stroke and unilateral neglect. Brain Inj,2011,25(4):387-393
    [16]Magdalena L, Marie JH, Chris D, et al. Mental practice with motor imagery in stroke recovery:randomized controlled trial efficacy. Brain.2011,134:1373-1386
    [17]Barbeau H, Rossignol S.Recovery of locomotion after chronic spinalization in the adult cat. Brain Res,1987,412(1):84-95
    [18]Stephanie A.C, Ellen W. M. Effect of a short-burst of gait training with body weight-supported treadmill training a person with chronic stroke:a single-subject study Physiother Theory Pract,2011,27(3):223-230
    [19]刘罡,吴毅,胡永善,等.跑台训练对脑缺血大鼠脑卒中超微机构及突触素表达的影响[J].中国康复医学杂志,2008,23(10):872-874
    [20]贾杰,胡永善,吴毅,等.跑台运动训练促进脑梗死大鼠外源性移植的神经干细胞迁移分化的实验研究[J].中国康复医学杂志,2008,23(7):594-597
    [21]黄永禧,王宁华.中风患者运动再学习方法的原理与应用[J].中国康复医学杂志,1996,11(4):183-186
    [22]黄永禧,王宁华.中风患者运动再学习方法的原理与应用[J].中国康复医学杂志,1996,11(5):232-234
    [23]Carr JH, Shepherd R. A motor relearning program for stroke. Beijing:Peking University Press.1999
    [24]Carr JH, Shepherd R. Stroke rehabilitation-guidelines for exercise and training to optimize motor skill. Beijing:Peking University Press.2007
    [25]黄永禧,王宁华,李燕文,等.应用MAS法评测脑卒中偏瘫患者的运动功能[J].中国康复医学杂志,1993,8(2):53-56
    [26]中华医学会神经病学分会神经康复学组,中华医学会神经病学分会脑血管病学组,卫.生部脑卒中筛查与防治工程委员会.中国脑卒中康复治疗指南(2011完全版)[J].中国康复理论与实践医学杂志,2012,18(4):301-318
    [27]Langhammer H, Stanghelle JK. Bobath or motor relearning programme:a follow-up one and four years post stroke. Clin Rehabil,2006,17(9):731-734
    [28]Langhammer H, Stanghelle JK. Bobath or Motor Relearning Programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation:a randomized controllled study. Clin Rehabil,2000,14(4):361-369
    [29]Gustavsen M, Jansen R, Kjendahl, et al. Motor relearning program approach improves short-term motor outcomes and reduces hospital stay after stroke. Austn J Physiother,2002, 48(l):59-66
    [30]Krutulyte G, Kimtys A, Krisciunas A, et al. The effectiveness of physical therapy methods (Bobath and motor relearning program) in rehabilitation of stroke patients. Medicina (Kaunas Lithuania),2003,39(9):889-895
    [31]Muramatsu H, Takano T, Koike K, et al. Hemiplegia recovers after cranioplasty in stroke patients in the chromic stage. Int J Rehbil Res,2007,30(2):103-109
    [32]Snels IA K, Beckerman H, Lankhorst GJ. Risk factors for hemiplegic shoulder pain:A systematic review. Phys Rehabi Med,2002,14(3-4):223-230
    [33]Ada I, Foongchomcheay A, Canning C. Supportive devices for preventing or reducing subluxation of the shoulder after stroke [J]. Cochrane Databases Syst Rev,2005, (1): CD003863. Review
    [34]Pertoldi S, Benedetto P. Shoulder-hand syndrome after stroke. A complex regional pain Syndrome. Eura Medicophys,2005,41(4); 283-292. Review
    [35]Vestergaard K, Andersen G, Gottrup H, et al. Lamotrigine for central poststroke pain:a Randomized controlled trial. Neurology,2001,56(2):184-189
    [36]Sackley C, Brittle N, Patel S, et al. The prevalence of joint contractures, pressure sores, painful shoulder, other pain, falls, and depression in the year after a severely disabling stroke. Stroke,2008,39(12):3329-3334
    [37]张庆元,王耀光,黄建平,等.103例脑卒中患者急性期心理障碍的研究[J].中国神经精神疾病杂志,2006,(1):83-84
    [38]Carr JH, Sepherd RB, Nordholm L, et al. A motor assessment scale for stroke. Physical Therapy,1985,65:175-180
    [39]Carr JH, Sepherd RB, Nordholm L, et al. Investigation of a new motor assessment scale for stroke patients. Physical Therapy,1985,65(2):175-180
    [40]Carr JH, et al. A motor relearning programme for stroke. London:Heinemann Physiotherapy,1987
    [41]Carr JH, et al. Movement science:Foundations for physical therapy in rehabilitation. Aspen Publishers,1987
    [42]Carr JH, Sepherd RB, A motor learning model for stroke rehabilitation. Physiotherapy,1989, 75(7):372-380
    [43]Carr JH, Mungovan, SF, Shepherd, RB, et al. Physiotherapy in stroke rehabilitation:bases for Australian physiotherapists'choice of treatment. Physiotherapy Theory and Practice, 1997,10(4):201-209
    [44]Carr JH, Sepherd RB. Stroke rehabilitation:guidelines for exercise and training to optimize motor skill. Butterworth-Heinemann London,2003
    [45]Carr JH, Sepherd RB. Neurological rehabilitation:optimizing motor performance. Elsevier India,2010
    [46]Wang Q, Zhang T. Advance in research establishment and neurological Behavioral assessment of non-human primate local cerebral ischemic model (review). Zhongguo Kangfu Lilun yu Shijian,2008,14(6):539-541
    [47]Chan DY, Chan CC, Au DK. Motor relearning programme for stroke patients:a randomized controlled trial. Clin Rehabil,2006,20(3):191-200
    [48]Pandian S, Arya KN, Davidson EW. Comparison of brunnstrom movement therapy and motor relearning program in rehabilitation of post-stroke hemiparetic hand:a randomized trial. J Bodyw Mov Ther,2012,16(3):330-337
    [49]Langhammer B, Stanghelle JK. Can physiotherapy after stroke based on the Bobath concept result in improved quality of movement compared to the motor relearning programme. Physiother Res Int,2011,16(2):69-80
    [50]Guo WL, Zhang HJ, Feng YQ, et al. Effect of motor relearning program on recovery of motor ability with stroke patients. Chin J Pract Neuro Dis,2009,12(6):91-92
    [51]Yu Q, Li XL, Tan B, et al. Effect of motor relearning program on recovery of motor ability and P300 potential of the cerebral infarction patients. Zhongguo Zuzhong Zazhi,2009, 4(10):824-827
    [52]Qing D, Guo T. Effect of motor relearning programme on lower limbs function of stroke patients. Zhongguo Kangfu Lilun yu Shijian,2010,16(4):372-373
    [53]Wurm F, Keiner S, Kunze A, et al. Effects of skilled forelimb training on hippoeampal neurogenesis and spatial learning after focal cortical infarcts in the adult rat brain. Stroke, 2007,38(10):2833-2840
    [54]Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke:making waves. Ann Neurol,2006,59(5):735-742
    [55]Johansson BB. Brain plasticity and stroke rehabilitation. Stroke,2000,31:223-239
    [56]Shen Y, Yu HM. Protective effect of erythropoietin on white matter damage in neonatal rat brain after intrauterine infection. Hangzhou:Zhejiang University, China.2009
    [57]Uchidal A, Brown A. Arrival, reversal, and departure of neurofilament at the tips of growing axons. Mol Biol Cell.2004,15(9):4215-4225
    [58]Gomes FC, Paulin D, Moura Neto V. Glial fibrillary acidic protein (GFAP):modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res,1999, 32(5):619-631
    [59]Rosengren, LE, Karlsson, JE, Sjogren, M, et al. Neurofilament protein levels in CSF are increased in dementia. Neurology,1999,52(5):1090-1090
    [60]Dirnagl, Ulrich, ladecola, Costantino, Moskowitz, Michael A. Pathobiology of ischaemic stroke:an integrated view. Trends in neurosciences,1999,22(9):391-397
    [61]Grant, Philip, Pant, Harish C. Neurofilament protein synthesis and phosphorylation. J Neurocytol,2000,29(11-12):843-872
    [62]Sjogren, M, Blomberg, M, Jonsson, M, et al. Neurofilament protein in cerebrospinal fluid:a marker of white matter changes. J Neurosci Res,2001,66(3):510-516
    [63]Norgren N, Rosengren L, Stigbrand T. Elevated neurofilament levels in neurological diseases. Brain Res,2003,987(1):25-31
    [64]Foerch C, Curdt I, Yan B, et al. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J Neurol Neurosurg Psychiatry, 2006,77(2):181-184
    [65]Lumpkins, KM, Bochicchio, GV, Keledjian, et al. Glial fibrillary acidic protein is highly correlated with brain injury. J Trauma and Acute Care Surgery,2008,65(4):778-784
    [66]Hayashi T, Abe K, Itoyama Y. Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow Metab. 1998,18(8):887-895
    [67]Cobbs, CS, Chen, J, Greenberg, DA, et al. Vascular endothelial growth factor expression in transient focal cerebral ischemia in the rat. Neurosci Lett,1998,249(2):79-82
    [68]Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int.1999,56(3):794-814
    [69]Issa R, Krupinski J, Bujny T, et al. Vascular endothelial growth factor and its receptor, KDR, in human brain tissue after ischemic stroke. Lab Invest,1999,79(4):417
    [70]Slevin M, Krupinski J, Slowik A, et al. Serial measurement of vascular endothelial growth factor and transforming growth factor-β1 in serum of patients with acute ischemic stroke. Stroke,2000,31(8):1863-1870
    [71]Marti HJ, Bernaudin M, Bellail A, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J pathol. 2000,156(3):965-976
    [72]Jin, KL, Mao, XO, Greenberg, DA. Vascular endothelial growth factor:direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA,2000,97(18):10242-10247
    [73]Osthuyse B, Moons L, Storkebaum, E, et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat genet.2001,28(2):131-138
    [74]Zhang R, Wang L, Zhang L, et, al. Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ Res.2003,92(3): 308-313
    [75]Mu, D, Jiang X, Sheldon R, et al. Regulation of hypoxia-inducible factor la and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis,2003, 14(3):524-534
    [76]Jin K, Zhu Y, Sun Y, et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA,2002,99(]8):11946-11950
    [77]Henry, TD, Annex, BH, McKendall, GR, et al. The VIVA Trial Vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation,2003,107(10):1359-1365
    [78]Ferrara N. Vascular endothelial growth factor:basic science and clinical progress. Endocr Rev,2004,25(4):581-611
    [79]Fuju Y, Nakala T. Cortical reorganization in patients with subcortical hemiparesis:neural mechanisms of functional recovery and prognostic implication.Neurosurg,2003,98:64-73
    [80]吴军发,吴毅,胡永善,等.脑卒中后偏瘫侧膝关节屈伸的脑功能磁共振成像的研究.中华物理医学与康复杂志,2008,30(11):756-759
    [81]张亚平.灵长类动物模型缺乏制约疾病和新药研究.第一届灵长类动物模型学术论坛,中国科学院昆明动物研究所,2013,12
    [82]Alexander W, Kiarash JG, Kristian PD, et al. A new model of cortical stroke in the rhesus macaque. J Cereb blood flow Metab,2009,29(6):1175-1186.
    [83]Wang Q, Zhang T, Zhan CY, et al. Nonhuman primate chronic stroke model with middle cerebral artery endovascular embolish. Zhongguo Kangfu Lilun yu Shijian.2012, 18(5):401-405
    [84]Marshall JW, Ridley RM. Assessment of functional impairment following permanent middle cerebral artery occlusion in a non-human primate species. Neurodegeneration,1996, 5(3):275-286
    [85]Tanaka F, Vines D, Tsuchida T, et al. Normal patterns on 99mTc-ECD brain SPECT scans in adults. J Nucl Med,2000,41(9):1456-1464
    [86]Ben R, Naimath K, Eray T, et al. Chronic ischemic stroke model in cynomolgus monkeys: behavioral, neuroimaging, and anatomical study. Neurol Res,2003,25(1):68-78
    [87]Del-Zoppo GJ. The neurovascular unit in the setting of stroke. J Intern Med,2010, 267(2):156-171
    [1]The Ministry of Science and Technology of the People's Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals.2006
    [2]Ben R, Naimath K, Eray T, et al. Chronic ischemic stroke model in cynomolgus monkeys: behavioral, neuroimaging, and anatomical study. Neurol Res,2003,25(1):68-78
    [3]Marshall JW, Ridley RM. Assessment of functional impairment following permanent middle cerebral artery occlusion in a non-human primate species. Neurodegeneration.1996, 5(3):275-286
    [4]尹勇,谷震,杨波,等.运动再学习对猴脑缺血损伤后脑血流量的影响[J].中国康复,2012,27(2):83-85
    [5]Mack WJ, King RG, Hoh DJ, et al. An improved functional neurological examination for use in nonhuman primate studies of focal reperfused cerebral ischemia. Neurol Res,2003, 25(3):280-284
    [6]Carr JH, Shepherd R. A Motor Relearning Program for Stroke[M]. Peking:Peking University Press,1999:1
    [7]Carr JH, Shepherd R. Stroke Rehabilitation-guidelines for Exercise ang Training to Optimize Motor Skill[M]. Peking:Peking University Press,2007:2-3
    [8]Langhammer H, Stanghelle JK. Can physiotherapy after stroke based on the Bobath concept result in improved quality of movement compared to the motor relearning programme. Physiother Res Int,2011,16(2):69-80
    [9]邵天民,贾云.运动再学习方案改善对脑卒中患者平衡功能的疗效观察[J].中国康复理论与实践,2006,12(12):1093-1094
    [10]Chan DY, Chan CC, Au DK. Motor relearning programme for stroke patients:a randomized controlled trial. Clin Rehabil,2006,20191-200
    [11]郭文玲,张弘娟,冯玉琴,等.运动再学习方案对脑卒中患者运动功能恢复的影[J].中国实用神经疾病杂志,2009,12(6):91-92
    [12]余茜,李晓红,覃波,等.运动再学习对缺血性脑卒中患者运动功能及其认知电P300的影响[J].中国卒中杂志,2009,4(10):824-827
    [13]秦大伟,郭天龙.运动再学习对脑卒中患者下肢功能的影响[J].中国康复理论与实践,2010,16(4):372-373
    [14]Frankel MR, Morgenstern LB, Kwiatkowski T, et, al. Predicting prognosis after stroke:a placebo group analysis from the national institute of neurological disorders and stroke rt-PA stroke trial. Neurology,2000,55(7):952-959
    [15]Fanny W, Silke K, Albrecht K, et al. Effects of skilled forelimb training on hippoeampal neurogenesis and spatial learning after focal cortical infarets in the adult rat brain. Stroke, 2007,38:2833-2840
    [16]徐丽丽,白玉龙,吴毅,等.运动训练改善脑缺血大鼠梗死体积神经行为能力的实验研究[J].中国康复医学杂志,2008,23(2):100-102
    [17]刘罡,吴毅,胡永善,等.跑台训练对脑缺血大鼠脑卒中超微机构及突触素表达的影[J].中国康复医学杂志,2008,23(10):872-874
    [18]贾杰,胡永善,吴毅,等.跑台运动训练促进脑梗死大鼠外源性移植的神经干细胞迁移分化的实验研究[J].中国康复医学杂志,2008,23(7):594-597
    [19]王强,张通.非入灵长类动物局灶性脑缺血模型的制备及神经功能评价的研究[J].中 国康复理论与实践,2008,14(6):539-541
    [20]中华医学会神经病学分会神经康复学组,中华医学会神经病学分会脑血管病学组,卫生部脑卒中筛查与防治工程委员会.中国脑卒中康复治疗指南(2011完全版)[J].中国康复理论与实践医学杂志,2012,18(4):301-318
    [21]Marshall JW, Ridley RM, Assessment of congnitive and motor deficits in a marmoset model of stroke. TLAR J,2003,44(2):153-160
    [22]Maulden M, Gassaway J, Horn SD, et al. Timing of initiation of rehabilitation after stroke. Arch Phys Med Rehabil,2005,86(12 Suppl 2):S34-S40
    [23]Musicco M, Emberti L, Nappi G, et al. Early and long-term outcome of rehabilitation in stroke patients:the role of patient characteristics, time of initiation, and duration of interventions. Arch Phys Med Rehabil,2003,84(4):551-558
    [24]Bernhardt J, Dewey H, Thrift A, et al. A very early rehabilitation trial for stroke(AVERT): phase Ⅱ safety and feasibility. Stroke,2009, (6):390-396
    [25]Langhome P. on behalf of the stroke unit trialists'collaboration. The effect of different types of organized inpatient(stroke unit) care:an updated shytematic review and meta-analysis. Cerebrovasc Dis,2005,19:17
    [26]Karges J, Smallfied S. A description of the outcomes,frequency, duration,and intensity of occupational,physical, and speech therapy in inpatient stroke rehabilitation. Allied Health, 2009,38(1):El-E10
    [27]Kwakkel G, Wagenaar RC,Twisk JW, et al. Intensity of leg and arm training after primary middle-cerebral -artery stroke:a randomized trial. Lancet,1999,354:191-196
    [1]Tanaka F, Vines D, Tsuchida T, et al. Normal patterns on 99mTc-ECD brain SPECT scans in adults. J Nucl Med.2000,41(9):1456-1464
    [2]尹勇,谷震,杨波,等.运动再学习对猴脑缺血损伤后脑血流量的影响[J].中国康复, 2012,27(2):83-85
    [3]Ling F. Cerebralvascular disease therory and practice. Peking:People's Medical Publishing House.2007
    [4]邵天民,贾云.运动再学习方案改善对脑卒中患者平衡功能的疗效观察[J].中国康复理论与实践,2006,12(12):1093-1094
    [5]Chan DY, Chan CC, Au DK. Motor relearning programme for stroke patients:a randomized controlled trial[J]. Clin Rehabil,2006,20,191-200
    [6]郭文玲,张弘娟,冯玉琴,等.运动再学习方案对脑卒中患者运动功能恢复的影响[J].中国实用神经疾病杂志,2009,12(6):91-92
    [7]余茜,李晓红,覃波,等.运动再学习对缺血性脑卒中患者运动功能及其认知电位P300的影响[J].中国卒中杂志,2009,4(10):824-827
    [8]秦大伟,郭天龙.运动再学习对脑卒中患者下肢功能的影响[J].中国康复理论与实践,2010,16(4):372-373
    [9]费国强,朱文炳,马昱.早期神经康复治疗前后单侧大脑半球脑梗死患者SPECT-rCBF对比研究[J].中国临床医学,2002,9(6):649-651
    [10]张翼,张学勤SPECT观察脑梗死患者脑血流变化的研究现状[J].中国实用医药,2009,4(4):649-65]
    [11]Purvis T, Cadilhac D, Donnan G, et al. Systematic review of process indicators:including early rehabilitation interventions used to measure quality of acute stroke care. Int.1 Stroke, 2009,4(2):72-80
    [1]Uchidal A, Brown A. Arrival, reversal and departure of neurofilament at the tips of growing axons. Mol Biol Cell,2004,15(9):4215-4225
    [2]Grant P, Pant HC. Neurofilament protein synthesis and phosphorylation. J Neurocytol,2000, 29(11-12):843-872
    [3]Sjogren M, Blomberg, M, Jonsson, M, et al. Neurofilament protein in cerebrospinal fluid:a marker of white matter changes. J Neurosci Res,2001,66(3):510-516
    [4]Norgren N, Rosengren L, Stigbrand T. Elevated neurofilament levels in neurological diseases. Brain Res,2003,987(1):25-31
    [5]Rosengren, LE, Karlsson, JE, Sjogren, M, et al. Neurofilament protein levels in CSF are increased in dementia. Neurology,1999,52(5):1090-1090
    [6]Gomes FC, Paulin D, Moura Neto V. Glial fibrillary acidic protein (GFAP):modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res,1999, 32(5):619-631
    [7]Foerch C, Curdt I, Yan B, et al. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J Neurol Neurosurg Psychiatry. 2006,77(2):181-184
    [8]Lumpkins KM, Bochicchio GV, Keledjian K, et al. Glial fibrillary acidic protein is highly correlated with brain injury. J Trauma,2008,65(4):778-784
    [9]Shen Y, Yu HM. Protective effect of erythropoietin on white matter damage in neonatal rat brain after intrauterine infection. Hangzhou:Zhejiang University.2009
    [10]Xu XH, Zhang SM, Yang WM, et al. Development of cerebral infarction apoptotic cell death and expression of X-chromosome-linked inhibitor of apoptosis protein following focal cerebral ischemiain rats. Life Sci,2006,78(7):704-712
    [11]Carulli D, Buffo A, Strata P. Reparative mechanisms in the cerebellar Cortex. Neurobiol, 2004,72(6):373-398
    [12]Fabel K, Tam B, Kaufer D, et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci,2003,18(10):2803-2812
    [13]Storkebaum E, Carmeliet P. VEGF:a critical player in neurodegeneration. J Clin Invest, 2004,113(1):14-18
    [14]Yasuhara T, Shingo T, Date I. The potential role of vascular endothelial growth factor in the central nervous system. Rev Neurosci,2004,15(4):293-307
    [15]Shih S, Ju M, Liu N, et al. Transforming growth factor induction of vascular endothelial . growth factor receptor 1:Mechanism of pericyte inducted vascular survival in vivo. Proc Natl Acad Sci USA,2003,100(26):15859-15864
    [16]Burger PE, S Coetee,WL Mckeehan, et al. Fibroblast growth factor receptor-1 is expressed by endothelial progenito cells. Blood 100,2002,10:3257
    [17]Del-Zoppo GJ. The neurovascular unit in the setting of stroke. J Intern Med.2010, 267(2):156-171
    [18]Rosenbrock H, Koros E, Bloching A, et al. Effect of chronic intermittent restraint stress on hippocampal ex-pression of marker proteins for synaptic plasticity andprogenitor cell proliferation in rats. Brain Res,2005,1040(1-2):55-63
    [19]Ang ET, Wong PT, Moochhala S, et al. Neuroprotection associated with running:is it a result of increased endogenous neurotrophic factors. Neuroscience.2003,118(2):335-345
    [20]Fanny W, Silke K, Albrecht K, et al. Effects of skilled forelimb training on hippoeampal neurogenesis and spatial learning after focal cortical infarcts in the adult rat brain. Stroke, 2007,38:2833-2840
    [21]Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke:making waves. Ann Neurol,2006,59:735-742
    [22]Purvis T, Cadilhac D, Donnan G, et al. Systematic review of process indicators:including early rehabilitation interventions used to measure quality of acute stroke care. Int J Stroke, 2009,4:72-80
    [23]Neumann S, Bradke F, Tessier-Lavige M, et al. Regeneration of sensory axons with the injured spinal cord induced by intraganglionic cAMP elevation. Neuron,2002, 34(6):885-893
    [24]Filbin MT. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci,2003,4(9):703-713
    [25]Moore DL, Blackmore MG, Hu Y, et al. KLF family member regulate intrinsic axon regeneration ability. Science,2009,326(5950):298-301
    [1]贾建平,崔丽英,王伟.神经病学.第六版.北京:人民卫生出版社,2008年.171-209
    [2]Zhao D. Epidemiological studies of stroke in Chinese population. Chin J Epidemiol, 2003,24(3):236-239
    [3]Thorsen AM, Holmqvist LW, de Pedro-Cuesta J, et al. A randomized controlled trial of early supported discharge and continued rehabilitation at home after stroke:five-year follow-up of patient outcome. Stroke,2005,36(2):297-303
    [4]Ostwald SK, Davis S, Hersch G, et al. Evidence-Based Educational Guidelines for Stroke Survivors After Discharge Home [J]. J Neurosci Nurs,2008,40(3):173-191
    [5]黄永禧,王宁华.中风患者运动再学习方法的原理与应用[J].中国康复医学杂志, 1996,11(4):183-186
    [6]黄永禧,王宁华.中风患者运动再学习方法的原理与应用[J].中国康复医学杂志,1996,11(5):232-234
    [7]黄永禧,王宁华,李燕文,等.应用MAS法评测脑卒中偏瘫患者的运动功能[J].中国康复医学杂志,1993,8(2):53-56
    [8]Carr JH, Shepherd RB. A motor relearning program for stroke. Beijing:Peking University Press.1999
    [9]Carr JH, Shepherd R. Stroke rehabilitation-guidelines for exercise and training to optimize motor skill. Beijing:Peking University Press.2007
    [10]Carr JH, Sepherd RB, Nordholm L, et al. A motor assessment scale for stroke. Physical Therapy,1985,65:175-180
    [11]Carr JH, Sepherd RB, Nordholm L, et al. Investigation of a new motor assessment scale for stroke patients. Physical Therapy,1985,65(2):175-180
    [12]Carr JH, Sepherd RB. A motor relearning programme for stroke. London:Heinemann Physiotherapy,1987
    [13]Canning C., Carr JH, Sepherd RB. A Kinematic analysis of standing up. Proceedings of Australian physiotherapy assonciation conference, Brisbane.1985
    [14]Carr JH, Sepherd RB. A motor learning model for stroke rehabilitation. Physiotherapy,1989, 75(7):372-380
    [15]Carr JH, Mungovan, SF, Shepherd, RB, et al. Physiotherapy in stroke rehabilitation:bases for Australian physiotherapists'choice of treatment. Physiotherapy Theory and Practice, 1997,10(4):201-209
    [16]Carr JH, Sepherd RB. Stroke rehabilitation:guidelines for exercise and training to optimize motor skill. Butterworth-Heinemann London,2003
    [17]Carr JH, Sepherd RB. Neurological rehabilitation:optimizing motor performance. Elsevier India,2010
    [18]Gustavsen M, Jansen R, Kjendahl, et al. Motor relearning program approach improves short-term motor outcomes and reduces hospital stay after stroke. Austn J Physiother,2002, 48(1):59-66
    [19]张弛,金珍珍,董海欣,等.早期运动再学习方案对脑梗死患者平衡和下肢运动功能 的影响[J].中华物理医学与康复杂志,2011,33(4):300-302
    [20]陈龙伟,王钰,李红霞,等.三维步态分析对评价运动再学习法治疗脑卒中后偏瘫步行能力的意义[J].陕西医学杂志,2010,39(10):1279-1280
    [21]符俏,孙畅,文国强,等.运动再学习疗法对脑卒中偏瘫患者上肢运动功能的影响步行[J].中国热带医学,2009,9(7):1293-1294
    [22]毕家香,李泽云.运动再学习方案训练脑卒中吞咽障碍[J].中国康复,2004,19(1)36-37
    [23]周燕,俞珊珊,张青,等.MRP对脑卒中后吞咽功能恢复的影响[J].中华全科医学,2011,9(1):19-20
    [24]余茜,李晓红,黄林,等.运动再学习对脑梗死患者事件相关电位的影响[J].中国康复理论与实践,2009,15(12):1111-1113
    [25]中华医学会神经病学分会神经康复学组,中华医学会神经病学分会脑血管病学组,卫生部脑卒中筛查与防治工程委员会.中国脑卒中康复治疗指南(2011完全版)[J].中国康复理论与实践医学杂志,2012,18(4):301-318
    [26]Snels IA K, Beckerman H, Lankhorst GJ. Risk factors for hemiplegic shoulder pain:A systematic review. Phys Rehabi Med,2002,14(3-4):223-230
    [27]Ada I, Foongchomcheay A, Canning C. Supportive devices for preventing or reducing subluxation of the shoulder after stroke [J]. Cochrane Databases Syst Rev,2005, (1): CD003863. Review
    [28]Pertoldi S, Benedetto P. Shoulder-hand syndrome after stroke. A complex regional pain Syndrome. Eura Medicophys,2005,41(4):283-292. Review
    [29]Vestergaard K, Andersen G, Gottrup H, et al. Lamotrigine for central poststroke pain:a Randomized controlled trial. Neurology,2001,56(2):184-189
    [30]Sackley C, Brittle N, Patel S, et al. The prevalence of joint contractures, pressure sores, painful shoulder, other pain, falls, and depression in the year after a severely disabling stroke. Stroke,2008,39(12):3329-3334
    [31]张庆元,王耀光,黄建平,等.103例脑卒中患者急性期心理障碍的研究[J].中国神经精神疾病杂志,2006,(1):83-84
    [32]Wang Q, Zhang T. Advance in research establishment and neurological Behavioral assessment of non-human primate local cerebral ischemic model (review). Zhongguo Kangfu Lilun yu Shijian,2008,14(6):539-541
    [33]Chan DY, Chan CC, Au DK. Motor relearning programme for stroke patients:a randomized controlled trial. Clin Rehabil,2006,20(3):191-200
    [34]Pandian S, Arya KN, Davidson EW. Comparison of brunnstrom movement therapy and motor relearning program in rehabilitation of post-stroke hemiparetic hand:a randomized trial. J Bodyw Mov Ther,2012,16(3):330-337
    [35]Langhammer B, Stanghelle JK. Can physiotherapy after stroke based on the Bobath concept result in improved quality of movement compared to the motor relearning programme. Physiother Res Int,2011,16(2):69-80
    [36]Guo WL, Zhang HJ, Feng YQ, et al. Effect of motor relearning program on recovery of motor ability with stroke patients. Chin J Pract Neuro Dis,2009,12(6):91-92
    [37]Yu Q, Li XL, Tan B, et al. Effect of motor relearning program on recovery of motor ability and P300 potential of the cerebral infarction patients. Zhongguo Zuzhong Zazhi,2009, 4(10):824-827
    [38]Qing D, Guo T. Effect of motor relearning programme on lower limbs function of stroke patients. Zhongguo Kangfu Lilun yu Shijian,2010,16(4):372-373
    [39]Wurm F, Keiner S, Kunze A, et al. Effects of skilled forelimb training on hippoeampal neurogenesis and spatial learning after focal cortical infarcts in the adult rat brain. Stroke, 2007,38(10):2833-2840
    [40]Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke:making waves. Ann Neurol,2006,59(5):735-742
    [41]Johansson BB. Brain plasticity and stroke rehabilitation. Stroke,2000,31:223-239
    [42]Shen Y, Yu HM. Protective effect of erythropoietin on white matter damage in neonatal rat brain after intrauterine infection. Hangzhou:Zhejiang University, China.2009
    [43]Uchidal A, Brown A. Arrival, reversal, and departure of neurofilament at the tips of growing axons. Mol Biol Cell.2004,15(9):4215-4225
    [44]Gomes FC, Paulin D, Moura Neto V. Glial fibrillary acidic protein (GFAP):modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res,1999, 32(5):619-631
    [45]Rosengren, LE, Karlsson, JE, Sjogren, M, et al. Neurofilament protein levels in CSF are increased in dementia. Neurology,1999,52(5):1090-1090
    [46]Dirnagl, Ulrich, Iadecola, Costantino, Moskowitz, Michael A. Pathobiology of ischaemic stroke:an integrated view. Trends in neurosciences,1999,22(9):391-397
    [47]Grant, Philip, Pant, Harish C. Neurofilament protein synthesis and phosphorylation. J Neurocytol,2000,29(11-12):843-872
    [48]Sjogren, M, Blomberg, M, Jonsson, M, et al. Neurofilament protein in cerebrospinal fluid:a marker of white matter changes. J Neurosci Res,2001,66(3):510-516
    [49]Norgren N, Rosengren L, Stigbrand T. Elevated neurofilament levels in neurological diseases. Brain Res,2003,987(1):25-31
    [50]Foerch C, Curdt 1, Yan B, et al. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J Neurol Neurosurg Psychiatry, 2006,77(2):181-184
    [51]Lumpkins, KM, Bochicchio, GV, Keledjian, et al. Glial fibrillary acidic protein is highly correlated with brain injury. J Trauma and Acute Care Surgery,2008,65(4):778-784
    [52]Hayashi T, Abe K, Itoyama Y. Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow Metab. 1998,18(8):887-895
    [53]Cobbs, CS, Chen, J, Greenberg, DA. et al. Vascular endothelial growth factor expression in transient focal cerebral ischemia in the rat. Neurosci Lett,1998,249(2):79-82
    [54]Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int.1999,56(3):794-814
    [55]Issa R, Krupinski J, Bujny T, et al. Vascular endothelial growth factor and its receptor, KDR, in human brain tissue after ischemic stroke. Lab Invest,1999,79(4):417
    [56]Slevin M, Krupinski J, Slowik A, et al. Serial measurement of vascular endothelial growth factor and transforming growth factor-β1 in serum of patients with acute ischemic stroke. Stroke,2000,31(8):1863-1870
    [57]Marti HJ, Bernaudin M, Bellail A, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J pathol. 2000,156(3):965-976
    [58]Jin, KL, Mao, XO, Greenberg, DA. Vascular endothelial growth factor:direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA,2000,97(18): 10242-10247
    [59]Osthuyse B, Moons L, Storkebaum, E, et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat genet.2001,28(2):131-138
    [60]Zhang R, Wang L, Zhang L, et, al. Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ Res.2003,92(3): 308-313
    [61]Mu, D, Jiang X, Sheldon R, et al. Regulation of hypoxia-inducible factor la and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis,2003, 14(3):524-534
    [62]Jin K, Zhu Y, Sun Y, et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA,2002,99(18):11946-11950
    [63]Henry, TD, Annex, BH, McKendall, GR, et al. The VIVA Trial Vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation,2003,107(10):1359-1365
    [64]Ferrara N. Vascular endothelial growth factor:basic science and clinical progress. Endocr Rev,2004,25(4):581-611
    [65]Taube E. Somatosensory deafferentation research with monkey:Implication for rehabilitation medicine [A]. In:Ince L. P. Behavioral Psychology in Rehabilitation Medicine:Clinical application[M]. New York:Williams & Wilkins,1980:371-401
    [66]Taube E, Uswatte G, Pikiditi RD, et al. Constrain-induced movement therapy:a new family techniques with broad application to physical rehabilitation:a clinical review. J Rehabil Res Dev,1999,36:237-251
    [67]李贞兰,赵节绪,TAUBE,等.强制性使用运动疗法对脑卒中偏瘫患者上肢使用能力的恢复作用[J].吉林大学学报(医学版),2008,34(3):511-514
    [68]王文清,勾丽洁,杨晓莲,等.强制性使用运动疗法对脑卒中偏瘫患者肢体运动功能的影响[J].中国康复医学杂志,2007,22(11):1007-1010
    [69]Pulvermuller F, Neininger B, Elbert T, et al. Constrain-Induced Therapy of chronic aphasia after stroke. Stroke,2001,32:1621-1626
    [70]Liepert J, Miltner WHR, Bauder H, et al. Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci Lett,1998,250:5-8
    [71]Levy CE, Giuffrida C, Richards L, et al. Botulinum toxin a, evidence-based exercise therapy, and constrain-induced movement therapy for upper-limb hemiparesis attributable to stroke:a preliminary study. Am J Phys Med Rehabil,2007,86(9):696-706
    [72]温博,马林,瓮长水,等.脑卒中患者强制性使用运动治疗的fMRI研究[J].中国康复理论与实践,2008,14(4):366-367
    [73]Gauthier LV, Taub E, Perkins C, et al. Remodeling the brain:plastic structural brain changes produced by different motor therapies after stroke. Stroke,2008,9(5):1520-1525
    [74]翟志永,聂莹雪,赵传胜,等.强制性运动疗法对大鼠脑缺血再灌注后神经修复及Rho激酶表达的影响[J].中国医科大学学报,2008,37(3):295-298
    [75]Wolf SL, Winstein CJ, Miller JP, et al. Retention of upper limb function in stroke survivors who have received constrain-induced movement therapy:the EXCIMT randomized clinical trial. Lancet Neurol,2008,7(1):33-40
    [76]Wolf SL, Winstein CJ, Miller JP, et al. Effect of constrain-induced movement therapy on Upper extremity function 3 to 9 months after stroke:the EXCIMT randomized clinical trial. JAMA,2006,296(17):2095-2104
    [77]刘西花,高杰,岳寿伟.强制性使用运动疗法训练脑卒中后上肢运动功能之疗效的Meta分析[J].中华物理医学与康复杂志,2010,32(11):857-860
    [78]Muller K, Butefisch CM, Seitz RJ, et al. Mental practice improves hand function after hemiparetic stroke. Restor Neurol Neurosci,2007,25(5-6):501-511
    [79]Celine C, Chantal van der G, Frits C.L, et al. Determining specificity of motor imagery training for upper limb improvement in chronic stroke patients:a training protocol and pilot results. Int J Rehabil Res,2010,33(4):359-362
    [80]闫彦宁,赵斌,贾了善,等.运动想象在脑卒中偏瘫患者步态恢复中的应用[J].中国康复医学杂志,2008,23(1):57-59
    [81]Anke V, Jeanine A. V, Sascha R, et al. Motor imagery in patients with a right hemisphere Stroke and unilateral neglect. Brain Inj,2011,25(4):387-393
    [82]Magdalena L, Marie J, H.Chris D, et al. Mental practice with motor imagery in stroke Recovery:randomized controlled trial efficacy. Brain,2011,134:1373-1386
    [83]王朴,郭毅,张君梅,等.运动想象疗法对脑卒中后患者上肢运动功能康复效果的系 统评价[J].中国循证医学杂志,2011,11(5):529-539
    [84]Barbeau H, Rossignol S.Recovery of locomotion after chronic spinalization in the adult cat. Brain Res,1987,412(1):84-95
    [85]Stephanie A.C, Ellen W. M. Effect of a short-burst of gait training with body weight-supported treadmill training a person with chronic stroke:a single-subject study. Physiother Theory Pract,2011,27(3):223-230
    [86]杨雅琴,张通.减重步行训练对脑卒中后偏瘫步态康复的影响[J].中国康复医学杂志,2004,19(10):731-733
    [87]佟剑平,赵春艳,邓雪奇,等.脑卒中偏瘫患者早期介入减重训练对提高下肢步行能力的影响的临床研究[J].中国康复理论与实践,2010,16(10):958-960
    [88]龚守会,丁志刚,罗韵文,等.减重平板步行训练对脑卒中后抑郁的影响[J].中华物理医学与康复杂志,2008,30(9):611-612
    [89]刘罡,吴毅,胡永善,等.跑台训练对脑缺血大鼠脑卒中超微机构及突触素表达的影响[J].中国康复医学杂志,2008,23(10):872-874
    [90]贾杰,胡永善,吴毅,等.跑台运动训练促进脑梗死大鼠外源性移植的神经干细胞迁移分化的实验研究[J].中国康复医学杂志,2008,23(7):594-597

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700