用户名: 密码: 验证码:
碱渣回填提高地下盐腔稳定性的理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国,大约90%以上的盐岩资源采用钻井水溶采矿方法进行开采,目前已经形成了大量废弃的地下盐腔,这些废弃盐腔如果不进行妥善处置,容易诱发多种地质灾害,主要表现为形成大面积地表沉陷和卤水出冒污染地下水。同时,我国制碱工业产生的碱渣,长期以来采取地面堆放的处理方式,占用土地资源,破坏周围的生态环境。将碱渣回填到地下盐腔,把盐腔内的卤水置换出来,既能有效规避废弃盐腔造成的地质隐患,又能减小碱渣地面堆放对环境的污染破坏。本文以江苏矿区碱渣回填地下盐腔工程为依托,针对碱渣-卤水混合浆体的特性,系统展开了沉降和力学试验研究,根据碱渣-卤水混合浆体沉降后形成沉积层的变形规律,建立了考虑地下盐腔内碱渣沉积层强度变化的数值模型,结合数值模拟的手段对碱渣回填提高地下盐腔的稳定性进行了研究,主要研究内容及结论如下:
     1.模拟地下盐腔的温度条件和卤水环境,进行了不同初始浓度的碱渣-卤水混合浆体沉降试验,研究了碱渣浆体的沉降以及扩散特性。对比了不同初始浓度下的碱渣浆体沉降过程和沉降类型的区别,研究了初始浓度对碱渣浆体沉降以及扩散特性的影响。
     2.分析了碱渣-卤水混合浆体沉降后形成沉积层的结构特征。对碱渣沉积层进行了低压和高压固结试验,研究了碱渣沉积层的变形规律,得到了松散淤泥质碱渣沉积层在0.1kPa-3.2MPa压力范围内的固结曲线,对地下盐腔内回填碱渣的物理参数进行了初步预测。
     3.利用粉煤灰对碱渣沉积层的强度特性进行了改良。对掺入粉煤灰的复合碱渣沉积层进行了组成、力学和细观试验,研究了复合碱渣沉积层的力学强度特性,分析了粉煤灰提高碱渣沉积层强度特性的机理。
     4.分析了地下盐腔体积收缩变形的规律,研究了碱渣回填提高地下盐腔短期稳定性和长期稳定性的机理,揭示了碱渣回填抑制地下盐腔体积收缩的主要影响因素。
     5.考虑地下盐腔的体积收缩,基于固结试验的结果,建立了表征地下盐腔内回填碱渣强度特征的数值模型。对比分析了地下卤水溶腔和碱渣回填腔的长期蠕变结果,研究了碱渣回填对地下盐腔稳定性的影响。
     6.以江苏矿区碱渣回填地下盐腔为工程背景,进行了地下连通腔群稳定性的数值模拟分析,预测了不同参数的碱渣回填后地下盐腔长期稳定性和地面沉降的情况。
In China, more than90%of salt resources are explored with the method of solutionmining, leaving a large number of underground salt caverns. If these salt caverns are notabandoned appropriately, they will induce various geological hazards, mainly large-areasubsidence and pollution of underground water because of brine ooze out. At the sametime, alkali wastes generated from soda ash production are mostly accumulated aboveground, which not only occupy the land, but also deteriorate the surroundingenvironment. However, the project that alkali wastes are backfilled to undergroundcaverns and replace brine, is able to avoid the geological hazards which may be inducedby abandoned salt caverns, and eliminate the pollution by ground accumulation of alkaliwastes. According to the properties of the alkali wastes-brine mixed slurry, systematicsettling and mechanical tests have been conducted for backfilling alkali wastes intounderground salt caverns in Jiangsu. Considering the strength change of alkaliwastes sediments in underground salt caverns, a numerical model has been built basedon the deformation behavior of sediments. The stability of underground salt caverns hasbeen researched by numerical simulation method. The main contents and conclusionsare as follows:
     1. Considering the temperature and brine in underground salt caverns, settling testsof alkali wastes-brine mixed slurry with different initial concentration were carried outto study the settling and diffusion properties. The settling process and type of alkaliwastes were compared to investigate the influence of initial concentration on the settlingand diffusion properties.
     2. The sediments of alkali wastes-brine mixtures were investigated andlow-pressure and high-pressure consolidation tests were carried out to study thedeformation behavior of alkali wastes and the consolidation curve ranging from0.1kPato3.2MPa. The physical parameters of backfilled alkali wastes were predicted.
     3. Fly ash was used as adulterant to treat the alkali wastes sediments. Mineralcomponents, mechanics and microscopic tests were conducted to reveal the mechanicalproperties of compound alkali wastes sediments. The amelioration mechanism wasanalyzed.
     4. By analysis of the salt caverns volume shrinkage, the mechanism of enhancingthe short-term and long-term stability by alkali wastes backfilling was studied and the main influence factors were presented.
     5. Considering the volume shrinkage of underground salt caverns, a numericalmodel which represents strength properties of alkali wastes was built based onconsolidation tests. Based on the long-term creep of underground salt caverns, theinfluence of alkali wastes backfilling on the stability of salt caverns was studied.
     6. On the basis of backfilling alkali wastes into underground salt caverns in Jiangsu,the stability of underground salt cavern and the surface subsidence was predicted bynumerical simulation analysis.
引文
[1]李学锋,唐绍辉,范育青.水溶开采地面沉降的机理分析与控制措施[J].化学矿物与加工,2008(11):27-29.
    [2]严驰,李琳,孙月红.碱渣压缩变形特性[J].青岛建筑工程学院学报,2003,24(4):8-11.
    [3]王建成,朱文剑.国内外盐化工产业发展的现状[J].产业经济,2012,6:70-73.
    [4] K.Staudtmeister, R.B.Rokahr. Rock Mechanical Design of Storage Caverns for Natural Gas InRock Salt Mass [J]. International Journal of Rock Mechanics and Mining Sciences,34:3-4Paper No.300.1997.
    [5] Ph.Cosenza, M.Ghoreychi. Effects of very low permeability on the long-term evolution of astorage cavern in rock salt [J].International Journal of Rock Mechanics and Mining Sciences,2January,1999.
    [6] J.Li, D.C.Helm. A nonlinear viscous model for aquifer compression associated with ASRapplications[C]. In: Sixth International Symposium on Land Subsidence, September24-29,2000, Ravenna, Italy.
    [7] R.M.Yager. Simulation of land subsidence in glacial aquifer system above a salt mine collapsein New York[C].In: Sixth International Symposium on Land Subsidence, September24-29,2000, Ravenna, Italy.
    [8] Bell F G. Salt and subsidence in Cheshire, England [J]. Engineering Geology,1975,9(3):237-247.
    [9]林元雄.中国井盐科技史[M].成都:四川科学技术出版社,1987.
    [10]郭龙华.隔蒲盐田地下水污染源探讨[J].中国井矿盐,1994,4:15-17.
    [11]李汉宣,余贤斌,杨锦灿,等.乔后盐矿巷道变形收敛的观测及结果分析[J].昆明工学院学报,1994,19(5):11-16.
    [12]李纯义.应城盐矿二水采区基地地表塌陷监测结果的初步总结[J].中国井矿盐,1996,27(2):9-12.
    [13]黄卫安.盐矿水溶采空区及地面重要建筑设施的监控管理问题探讨[J].中国井矿盐,1997,28(3):27-29.
    [14]龙回仁,林宗圣.江西会昌地面沉降缘于盐矿采空[N].中国国土资源报,2011/01/01,002版.
    [15]徐贵义,孙树琪.氨碱厂的废液对渤海湾的环境污染[J].纯碱工业,1996,4:23-29.
    [16]徐汉光,杨波,关敏,等.碱渣对海洋生物的影响[J].海洋环境科学,1993,12(1):19-23.
    [17]李永祺,党志超,姜立晏,等.纯碱厂蒸氨废液兑合海水对几种海洋生物影响的试验[J].纯碱工业,1989,3:15-21.
    [18]刘广远,韩庚辰,于涛,等.碱渣海洋倾倒定点化学追踪试验[J].海洋环境科学,1995,14(2):61-67.
    [19]傅孟嘉.氨碱厂废液废渣治理和综合利用概况及有关建议[J].纯碱工业,1998,1:7-13.
    [20]刘心中,姚德,董凤芝,等.碱渣(白泥)综合利用[J].化学矿物与加工,2001,3:1-4.
    [21] Lampe F V,Hilmer W,Jost K H,et al. Synthesis, structure and thermal decomposition ofAlinite [J]. Cement and Concrete Research.1986,16(4):505-510.
    [22] Ftikos C H,Georgiades A,Philippou T H.Preparation and hydration study of Alinite cement[J].Cementt and Concrete Research,1991,21(6):1129-1136.
    [23] Neubauer J, Pollmann H. Alinite-Chemical composition. Solution and hydration behaviour[J].Cement and Concrete Research,1994,24(8):1413-142.
    [24]傅孟嘉.氨碱厂废液废渣治理和综合利用概况及有关建议[J].纯碱工业,1998,1:7-13.
    [25]王宝民.国内外碱渣治理与综合利用、进展及对策[J].国外建材科技,2003,2:47-48.
    [26]李国祥.国外氨碱厂废渣处置利用及我院钙镁肥研究工作[J].纯碱工业,1998,1:14-16.
    [27]段志癸.苏联及欧洲各国氨碱法蒸氨废渣废液的处理[J].环境科技,1991,5:52-57.
    [28]谢茂松,王学林,徐桂芬,等.碱渣淤泥加速干固造地工程[J].纯碱工业,1998,1:1-4.
    [29]娄性义,张焕云,闫慎杰.碱渣(白泥)综合利用途径的探讨[J].青岛建筑工程学院学报,1999,20(2):55-60.
    [30]张万钧,郭育文,黄明勇,等.三种固体废弃物综合利用的研究[J].中国工程科学,2002,4(10):62-66.
    [31] HOTHER H A, CHALLINOR D. The use of salt cavities for the disposal of wastes[C]//SMRIMeeting Paper, Hannover, Solution Mining Research Institute,1994.
    [32]郤保平,徐素国,赵阳升.盐岩溶腔尤其储气库建造研究[J].山西建筑,2006,3(1):28-31.
    [33] LANGER M. Underground disposal of wastes requiring special monitoring in salt rock masses[C]//Proceedings of3rd Conference on the Mechanical Behavior of Salt. Germany:Clausthal-Zellerfeld Press,1993:583-603.
    [34] VEIL J. Preliminary technical and legal evaluation of disposing of nonhazardous oil fieldwaste into salt caverns. Final Report. NM: Sandia National Laboratories,1996.
    [35] Wareen J K. Evaporites: Sediments, Resources and Hydrocarbons [M]. New York: Springer,2006.
    [36]刘业东,王伟.卤水净化钙镁泥注入井下的工艺改进[J].中国井矿盐,2002,33(2):28-30.
    [37]吴志刚,罗亮.利用纯碱废渣充填岩盐开采废弃溶腔的实践[J].化学矿物与加工,2011,11:29-31.
    [38] Veil J, Elcock D, Raivel M, et al. Preliminary technical and legal evaluation of disposing ofNonhazardous oil field waste into salt caverns. Report prepared for U.S. Department ofEnergy.,1996.
    [39] Veil J. Costs for off-site disposal of nonhazardous oil field wastes: salt caverns versus otherdisposal methods. Report prepared for U.S. Department of Energy,1997.
    [40] Veil J, Smith K P, Tomasko D, et al. Disposal of NORM-Contaminated oil field wastes in saltcavern. Report prepared for U.S. Department of Energy,1998.
    [41] Tomasko D, Elcock D, Veil J, et al. Risk analyses for disposing nonhazardous oil field wastesin salt cavern. Report prepared for U.S. Department of Energy,1997.
    [42] Hunsche U,Albrecht H. Results of true triaxial strength tests on rock salt [J]. EngineeringFracture mechanics,1990,35(4):867-877.
    [43] Hunsche U. A failure criterion for natural polycrystalline rock salt [C]. Advances inConstitutive laws for Engineering Materials.Proc.ICCIEM (Volume2)[C]. InternationalAcademic Publ,1989,:1043-1046.
    [44] Hunsche U. Fracture experiments on cubic rock salt samples[A]. The first Conference on theMechanical Behavior of Salt[C].Trans Tech publications,1984:71-83.
    [45] Hansen F D,Mellegard K D,Sensen P E. Elasticity and strength of ten natural rock salt[A].The first Conference on the Mechanical Behavior of Salt[C]. Trans Tech publications,1984:71-83.
    [46] Skrotzki W. An Estimate of the Brittle do ductile transition in salt[A].The first Conference onthe MechanicalBehavior of salt[C].Trans Tech publications,1984:381-388.
    [47] I.W.Farmer,M.J.Gilbert. Dependent strength reduction of rock salt[A].The first Conference onthe Mechanics Behavior of Salt[C]. Trans Tech publications,1984:4-18.
    [48] Hunsche U. Result and interpretation of creep experiments on rock salt[A]. The firstConference on the Mechanics Behavior of Salt[C]. Trans Tech publications,1984:159-167.
    [49] N.D.Cristescu,Paraschiv I. Creep and creep damage around large rectangular-like caverns[J].Mechanics of Cohesive-Frictional Materials,1996,1:165-197.
    [50] N.D.Cristescu. A general constitutive equation for transient and stationary creep of rock salt[J].International Journal of Rock Mechanics and Mining Sciences,1993,2(3):125-140.
    [51] Hampel A,Hunsche U,Weidinger P,et al. Description of the creep of rock salt with thecomposite model-II Steady-State creep[A]. The4thConference on the Mechanical Behavior ofSalt[C]. Trans Tech publications,1996:287-299.
    [52] Hunsche U. Uniaxial snd triaxial creep and failure tests on rock:Experimental technique andinterpretation[J].Visco-Plastic Behaviour of Geomaterials,1994.
    [53] P.E.Senseny. Determination of a constitutive law for salt at elevated temperature andpressure[J].Measurement of Rock Properties at Elevated Pressures and Temperature,1985,:55-71.
    [54] Aubertin.M. On the physical origin and modeling of kinematic and isotropic hardening ofsalt[C].The3rdConference on the Mechanical Behavior of salt,1996:3-17.
    [55] Munson.D, Wawersik.W. Constitutive modeling of salt behavior-state of thetechnology[C].Proceeding of the7thInternational Congress on Rock Mechanics,1993,3:1797-1810.
    [56] Passaris.E.K. The rheological behavior of rock salt as determined in an in situ pressured testcavity[C]. The5thcongress on the international society for rock mechanics,1979:257-264.
    [57] Musso.J,Vouille.G. A comparative study of creep,relaxation,cycle loading tests to determinethe rheological model of marl ang salt[C]. The3rdcongress on the international society forrock mechanics,1974:348-353.
    [58] Bergeron.W.J.The finite analysis of salt pillar model[D]. Luisiana state university,1968.
    [59] Winkel.B.V. Analysis of the tome dependent deformation in openings in salt media[J].International Journal of Rock Mechanics and Mining Sciences,1972,9(2):249-260.
    [60] Hampel.A.,Hunsche.U,Weidinger.P,et al. Description of the creep of rock salt with thecomposite model-II.Stead-State creep[C].Proceeding of the4thconference on the mechanicalBehavior of salt,1996.
    [61] Vogler.S, Blum.W. Micromechanical modeling of creep in term of the compositemodel[C].Proceeding of the4thInternational Conference on Creep and Fracture ofEngineering Materials and Structures,1990:67-79.
    [62] Wawersik.W. Determination of steady state creep rates and actuvation parameters for rocksalt[J].Measurement of Rock Properties at Elevated Pressure and Temperatures,1985:72-79.
    [63] Stead D,Szczpanik Z. Time dependent acoustic emission studies on potash[C]. The32ndU.S.Symposium on Rock Mechanics,1991.
    [64] K.S.Chan,S.R.Bodner,A.F.Fossum,et al. A constitutive model for inelastic flow and damageevolution in solids under triaxial compression[J]. Mechanics of Materials,1992,14:1-14.
    [65] K.S.Chan,S.R.Bodner,A.F.Fossum,et al. A damage mechanics treatment of creep failure inrock salt[J]. International Journal of Damage Mechanics,1997,6(1):121-152.
    [66] K.S.Chan,S.R.Bodner. Application of isochronous healing curves in predicting damageevolution in a salt structure [J]. International journal of damage mechanics,2000,9:130-153.
    [67] K.H.Lux,Z.M.Hou. New developments in mechanical safety analysis of repositories in rocksalt[C].Proceeding of international conference on radioactive waste disposal, disposaltechnologies and concepts,2000:281-286.
    [68]杨春和,李银平,屈丹安等.层状盐岩力学特性研究进展[J].力学进展,2008,38(4):484-494.
    [69]杨春和,高小平,吴文.盐岩时效特性试验研究与理论分析[J].辽宁工程技术大学学报,2004,23(6):764-766.
    [70]高小平,杨春和,吴文.盐岩时效特性试验研究[J].岩土工程学报,2005,27(5):558-561.
    [71]刘江、杨春和、吴文等.盐岩短期强度和变形特性试验研究[J].岩石力学与工程学报,2006,25(增1):3104-3109.
    [72]杨春和,殷建华,J.J.K.Daemen.盐岩应力松弛效应的研究[J].岩石力学与工程学报,1999,18(3):262-265.
    [73] Yang chunhe,J.J.K.Daemen,Yin Jianhua,et al. Experimental investigation of creep behaviorof salt rock [J]. International Journal of Rock Mechanics and Mining Sciences,1999,36:233-242.
    [74]杨春和,马洪岭,刘建峰.循环加、卸载下盐岩变形特性试验研究[J].岩土力学,2009,30(12):3562-3568.
    [75]杨春和,李银平.互层盐岩体的Cosserat介质扩展本构模型[J].岩土力学与工程学报,2005,24(23):4226-4232.
    [76]李银平,杨春和.层状盐岩体的三维Cosserat介质扩展本构模型[J].岩土力学,2006,27(4):509-514.
    [77]吴文,徐松林,杨春和等.盐岩冲击特性试验研究[J].岩土力学与工程学报,2004,23(21):3613-3620.
    [78]吴文,徐松林,杨春和等.岩盐冲击过程中本构关系和状态方程研究[J].岩土工程学报,2004,26(3):367-372.
    [79]陈剑文,杨春和,冒海军.升温过程中盐岩动力特性实验研究[J].岩土力学,2007,28(2):231-236.
    [80]纪文栋,杨春和,姚院峰,等.应变加载速率对盐岩力学性能的影响[J].岩石力学与工程学报,2011(12):2507-2513.
    [81]杨春和,曾义军,吴文等.深层盐岩本构关系及其在石油钻井工程中的应用研究[J].岩石力学与工程学报,2003,22(10):1678-1682.
    [82]杨春和,白世伟,吴益民.应力水平及加载路径对盐岩时效的影响[J].岩石力学与工程学报,2000,19(3):270-275.
    [83]刘江,杨春和,吴文等.盐岩蠕变特性和本构关系研究[J].岩土力学,2006,27(8):1267-1271.
    [84]陈锋,杨春和,白世伟.盐岩储气库蠕变损伤分析[J].岩土力学,2006,27(6):945-950.
    [85]胡其志,冯夏庭,周辉.考虑温度损伤的盐岩蠕变本构关系研究[J].岩土力学,2009,30(8):2245-2248.
    [86]杜超,杨春和,马洪岭等.深部盐岩蠕变特性研究[J].岩土力学,2012,33(8):2451-2456.
    [87]梁卫国,赵阳生.岩盐力学特性的试验研究[J].岩石力学与工程学报,2004,23(3):391-394.
    [88]梁卫国,徐素国,赵阳生等.盐岩蠕变特性的试验研究[J].岩石力学与工程学报,2006,25(7):1386-1391.
    [89]梁卫国,徐素国,刘江等.金坛储气库岩盐蠕变特性及其实用本构关系[J].辽宁工程技术大学学报,2007,26(3):354-356.
    [90]梁卫国,徐素国,莫江等.盐岩力学特性应变率效应的试验研究[J].岩石力学与工程学报,2010,29(1):43-50.
    [91]徐素国,梁卫国,郤保平等.钙芒硝盐岩蠕变特性的研究[J].岩石力学与工程学报,2008,27(增2):3516-3520.
    [92]邱贤德,姜永东,阎宗岭等.岩盐的蠕变损伤破坏分析[J].重庆大学学报(自然科学版),2003,5:106-109.
    [93]邱贤德,姜永东,东兰.岩盐流变特性与卸荷损伤本构关系研究[J].中国井矿盐,2003,34(4):21-24.
    [94]邱贤德,绍明康,张兰等.岩盐流变特性与工程应用研究[J].中国井矿盐,2004,36(6):16-20.
    [95]林元华,曾德智,施太和等.确定岩盐层力学参数的反演方法研究[J].天然气工业,2005,25(5):59-63.
    [96]林元华,曾德智,施太和等.岩盐层蠕变规律的反演方法研究[J].石油学报,2005,26(5):111-114.
    [97]任松,郭松涛,姜德义等.盐岩蠕变相似模型及相似材料研究[J].岩土力学,2011,32(S1):106-110.
    [98]郤保平.含高盐份泥岩夹层的盐岩蠕变特性及油气储库稳定性研究[D].太原:太原理工大学,2006.
    [99]吴文,杨春和,侯正猛.盐岩中能源(石油和天然气)地下储存力学问题研究现状及其发展[J].岩石力学与工程学报,2005,24(增2):5561-5568.
    [100] Dreyer W.E. The science of rock mechanics[M]. Tans Tech Publications,v.1,501pages,1972.
    [101] Dreyer W.E. Results of Recent studies on the Stability of Crude Oil and Gas Storage in SaltCaverns[C]. The Fourth International symposium on salt,1973:65-92.
    [102] Stephen Horseman,Evan Parraris. Creep tests for storage cavity closure prediction[C].Proceedings of the first conference on the mechanical behavior of salt. Clausthal-Zellerfeld:Trans Tech Publication,1981:119-157.
    [103] Robert L.T, Richard M.G. Survey of existing caverns in U.S. salt domes[C]. Proceedings ofthe second conference on the mechanical behavior of salt. Clausthal-Zellerfeld: Trans TechPublication,1984:703-717.
    [104] Berest P, Minh D N. Deep underground storage cavities in rock salt: interpretation of in situdata from French and foreign sites[C]. Proceedings of the first conference on the mechanicalbehavior of salt. Clausthal-Zellerfeld: Trans Tech Publication,1981:555-571.
    [105] Bruno H. Mechanical behavior of salt cavities in-situ tests model for calculating the cavityvolume evolution[C]. Proceedings of the second conference on the mechanical behavior of salt.Clausthal-Zellerfeld: Trans Tech Publication,1984:291-310.
    [106] Preece D.S,Foley J.T. Finite element analysis of salt caverns employed in the StrategicPetroleum reserve[C]. The Sixth International symposium on salt,1983:49-63.
    [107] Preece D.S, Foley J.T. Long-term performation predictions for SPR salt caverns[R].SAND83-2343, Sandia National Laboratories, Albuquerque, NM,1987.
    [108] Preece D S. Calculation of Creep Induced Volume Reduction of the Weeks Island SPR FacilityUsing3D Finite Element Methods[R]. SAND87-1694, Sandia National Laboratories,Albuquerque, NM,1987.
    [109] Ehgartner B.L. Effects of cavern spacing and pressure on subsidence and storage losses for theUS SPR[R]. SAND91-2575, Sandia National Laboratories, Albuquerque, NM,1991.
    [110] Hoffman E L. Effects of cavern depth on surface subsidence and storage loss of gas-filledstorage caverns[R]. SAND92-0053, Sandia National Laboratories, Albuquerque, NM,1992.
    [111] Hoffman E L. Effects of cavern spacing on the performance and stability of gas-filled storagecaverns[R]. SAND92-2575, Sandia National Laboratories, Albuquerque, NM,1992.
    [112] Hoffman E, Ehgartner B.L. Using three dimensional structural simulations to study theinteractions of multiple excavations in salt[R]. Sandia National Laboratories, Albuquerque,NM,1997.
    [113] Staudtmeister K, Rokahr R B. Rock mechanical design of storage caverns for natural gas inrock salt mass[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(3-4):300e1-300e13.
    [114]杨春和.岩盐溶腔稳定性及失稳控制研究[R].武汉:中国科学院武汉岩土力学所,2003.
    [115]尹雪英,杨春和,李银平.层状岩盐体三维Cosserat介质扩展本构模型的程序实现[J].岩土力学,2007,28(7):1415-1420.
    [116]王贵君.天然气盐岩洞室群长期存储能力[J].岩土工程学报,2004,26(1):62-66.
    [117]王贵君.盐岩层中天然气存储洞室围岩长期变形特征[J].岩土工程学报,2003,25(4):431-435.
    [118]王同涛.多夹层盐岩体重储气库围岩变形规律及安全性研究[D].山东:中国石油大学,2011.
    [119]姜德义,任松,刘新荣.岩盐溶腔顶板稳定性突变理论分析[J].岩土力学,2005,26(7):1099-1103.
    [120]尹雪英,杨春和,陈剑文.金坛盐矿老腔储气库长期稳定性分析数值模拟[J].岩土力学,2006,27(6):869-874.
    [121]纪文栋,杨春和,屈丹安等.盐穴地下储气库注采方案[J].油气储运,2012,31(2):121-125.
    [122]陈卫忠,伍国军,戴永浩等.废弃盐穴地下储气库稳定性研究[J].岩石力学与工程学报,2006,25(4):848-854.
    [123]丁春生,杨春和,张保平等.盐岩地下储库洞室收缩形变分析[J].地下空间与工程学报,2008,4(1):80-84.
    [124]刘新荣,姜德义,谭晓慧.岩盐溶腔覆岩沉降和变形规律的研究[J].化学矿物与加工,1999,17(7):23-27.
    [125]任松,姜德义,杨春和等.岩盐水溶开采沉陷新概率积分三维预测模型研究[J].岩土力学,2007,28(1):133-138.
    [126]屈丹安,杨春和,任松.金坛盐穴地下储气库地表沉降预测研究[J].岩石力学与工程学报,2010,29(增1):2705-2711.
    [127]王同涛,闫相祯,杨秀娟等.考虑盐岩蠕变的盐穴储气库地表动态沉降量预测[J].中国科学:技术科学,2011,41(5):687-692.
    [128]陈雨,李晓,侯正猛等.不同腔形下盐岩储库区地表最大变形预计新方法[J].岩土工程学报,2012,34(5):826-833.
    [129]陈雨,李晓,李守定.基于盐腔时效收敛特征的密集储库群地面变形动态预测[J].天然气工业,2012,32(9):80-84.
    [130]李银平,孔君凤,徐玉龙等.利用Mogi模型预测盐岩储气库地表沉降[J].岩石力学与工程学报,2012,31(9):1737-1745.
    [131]孔君凤,李银平,杨春和等.盐穴储气库群地表铁路路基变形及运输安全评价[J].岩石力学与工程学报,2012,31(9):1776-1784.
    [132]井文君,杨春和,孔君凤等.盐岩地下储备库引发地表沉陷事故的风险分析[J].岩土力学,2011,32(S2):544-550.
    [133]贾超,张强勇,张宁等.盐岩地下储气库风险分级机制初探[J].岩土力学,2009,30(12):3621-3626.
    [134]贾超,刘家涛,张强勇等.盐岩储气库运营期时变可靠度计算及风险分析[J].岩土力学,2011,32(5):1479-1484.
    [135]李媛,张强勇,贾超等.盐岩地下油气储库运营期风险的故障树分析[J].岩土力学,2011,32(4):1125-1130.
    [136] IMAI G. Settling behavior of clay suspensions[J]. Soils and Foundations,1980,20(2):61–76.
    [137] IMAI G. Experimental studies on sedimentation mechanism and sediment formation of claymaterials[J]. Soils and Foundations,1981,21(1):7–20.
    [138] BEEN K. Stress strain behavior of a cohesive soil deposited under water[D]. Oxford: OxfordUniversity,1980.
    [139] AZAM S, JEERAVIPOOLVARN S, SCOTT J D. Numerical modeling of tailings thickeningfor improved mine waste management[J]. Journal of Environmental Informatics,2009,13(2):111–118.
    [140] JEERAVIPOOLVARN S. Compression of oil sand tailings [M]. Edmonton: University ofAlbert,2005.
    [141] BLEWETT J, MCCARTER W J, CHRISP T M et. Monitoring sedimentation of a clayslurry[J]. Geotechnique,2001,51(8):723–728.
    [142]刘莹,肖树芳,王清.吹填土室内模拟试验研究[J].岩土力学,2004,25(4):518–528.
    [143]詹良通,童军,徐洁.吹填土自重沉积固结特性试验研究[J].水利学报,2008,39(2):201–205.
    [144]严驰,宋旭坤,朱平,等.高含水率碱渣的强度特性试验研究[J].岩土工程学报,2007,29(11):1683–1688.
    [145]闫澎旺,侯晋芳,刘润.碱渣与粉煤灰拌合物的岩土工程及环境特性研究[J].岩土力学,2006,27(12):2305-2308.
    [146]王芳,徐竹清,严丽雪,等.碱渣土工试验方法及其工程土特性研究[J].岩土工程学报,2007,29(8):1211–1214.
    [147] ELDER D M. Stress-strain and strength behaviour of very soft soil sediment [D]. Oxford:Oxford University,1985.
    [148]赵明.粘性泥沙的絮凝及对河口生态的影响研究[D].北京:清华大学,2010.
    [149]李富根.粘性泥沙悬浮体系絮凝特性的初步研究[D].北京:清华大学,2005.
    [150]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996.
    [151] GRICE T. Underground mining with backfill[C].//The2ndAnnual Summit-mine TailingsDisposal Systems, Brisbane,1998:1-14.
    [152] RANKINE K J, SIVAKUGAN N, COWLING R. Emplaced geotechnical characteristics ofhydraulic fills in a number of Australian mines[J]. Geotechnical and Geological Engineering,Springer,2006,24(1):1-14.
    [153] LI L, MITCHELL R. Effects of reinforcing elements on the behavior of weekly cementedsands[J]. Canadian Geotechnical Journal,1988,25(2):389-395.
    [154]李一帆,张建明,邓飞,等.深部采空区尾矿胶结充填体强度特性试验研究[J].岩土力学,2005,26(6):865-868.
    [155]吴文.添加絮凝药剂的尾矿砂浆充填材料的单轴抗压强度试验研究[J].岩土力学,2010,31(11):3367-3372.
    [156]闫澎旺,侯晋芳,刘润.碱渣与粉煤灰拌合物的岩土工程及环境特性研究[J].岩土力学,2006,27(12):2305-2308.
    [157]王清,王凤艳,肖树芳.土微观结构特征的定量研究及其在工程应用的新观点[J].成都理工学院学报,2001,28(2):148-153.
    [158]杨春和,李银平,陈锋.层状盐岩力学理论与工程[M].北京:科学出版社,2009.
    [159] Thiel WR. Precision methods for testing the integrity of solution mined underground storagecaverns[C]. In: Proceeding of the7thSymposium on salt,Vol.I.Amsterdam:Elsevier,1993:67-82.
    [160] Berest.P,Bergues.J,Brouard.B,et al. A salt cavern abandonment test [J]. International Journalof Rock Mechanics and Mining Sciences,2001,38:357-368.
    [161] Y L XU,C H YANG,Y P LI,et al. Preliminary study on the interaction behavior of backfilland surrounding rock salt mass[C]. In: Proceeding of the7thConference on MechanicalBehavior of Rock Salt.
    [162] VAN SAMBEEK LL. A simple method for modeling the pressure build up or flow of anabandoned solution well[C]. In: Proceedings of SMRI Spring Meeting, Austin,1990.
    [163]谢文兵,陈晓祥,郑百生.采矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700