用户名: 密码: 验证码:
澳大利亚昆士兰州北部Ernest Henry铁氧化物型铜金(IOCG)矿床物理化学特征及磁铁矿微量元素地球化学特征—对全球IOCG矿床成因的启示
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本次工作的目的是通过研究Ernest Henry IOCG矿床中一些特定矿物的微量元素地球化学特征和矿床的物理化学特征去认识ErnestHenry IOCG矿床的成矿条件和形成过程。在研究过程中,扫描电子显微镜耦合阴极发光(SEM-CL)被用来调查Ernest Henry矿床中不同地质环境中的石英的显微特征;激光剥蚀等离子质谱(LAICP-MS)被用于分析Ernest Henry及其周边弱矿化含铁岩石中的磁铁矿及相关的硫化物,在研究过程中,我们还用电子探针(EMPA)对矿床中的磁铁矿和硫化物进行面扫描分析,除此之外,我们还用电子探针耦合阴极发光(EMPA-XCL)去调查Ernest Henry矿床中矿体中和矿体周边的角砾岩中的钾长石。
     Ernest Henry是一个典型的IOCG矿床,在澳大利亚仅次于Olympic Dam,同时也是澳大利亚的第三大铜生产基地。物理化学成分特征对于认识Ernest Henry IOCG矿床是十分重要的。本论文中,在着手研究之前,我们对全球IOCG矿床的特征和发展以及在本项目中所讨论的矿物的发展做了一个详细的概述和总结。
     对于Ernest Henry矿床中矿体主要赋存于由多成分,像角砾,基质和充填物组成的变火山岩的角砾岩系统中。在Ernest Henry矿床中存在着两种类型的角砾岩,而且在角砾岩特征和矿石品位之间存在着一个明显的相关性。Ernest Henry IOCG矿床中的Cu-Au矿化与角砾岩密切相关,在成矿过程包括有多期次的热液活动,至少牵涉到了两种不同的成矿流体(岩浆流体和盆地流体)。早期的Na-Ca蚀变在整个Eastern Succession of Mount Isa Inlier区域广泛存在,在Ernest Henry IOCG矿床中尤为重要,它被后期的K-Mn-Fe-(Ba)蚀变和Cu-Au矿化所叠加。石英的微量元素特征和阴极发光特征以及钾长石的阴极面扫描也显示了成矿成分和成矿过程的复杂性,在来自矿体浅部的钾长石中,Na的含量相对较高,而钾长石中的Ba是通过晚期的的碳酸盐带进的。磁铁矿和黄铁矿的微量元素地球化学特征可被用于区分矿体和区域无矿化或弱矿化的含矿岩石。此次研究中还涉及到了钻孔中金属的分布。在第五章的结尾,我们对Ernest Henry IOCG矿床中金属的来源,成矿流体来源,成矿的物理化学条件(如温度,压力和其它控制Ernest Henry矿床形成的因素)进行了讨论并建立了可能的成矿模型。
     磁铁矿中微量元素含量在用磁铁矿作为指示标志进行矿床勘探时十分有用,我们用EMPA和LA ICP-MS去分析了调查了来自Eastern Succession of Mount Isa Inlier和Ernest Henry IOCG矿床中的磁铁矿的微量元素的分布和组成。电子探针面扫描表明磁铁矿中元素分布不具有环带性。高Mn/Ti比可用于区分Ernest Henry与Eastern Succession of Mount Isa Inlier其它IOCG矿床中的磁铁矿和其它的无矿化的富磁铁矿的角砾岩体。磁铁矿中微量元素的变化很大,在横穿矿床的样品中可达到2-3个数量级,甚至在一个在颗粒之间也有很大的变化。在所有分析了的48个样品中磁铁矿中的微量元素含量具有很大的变化,岩相学研究表明磁铁矿可以被划归到不同的成矿期次中,或者是相同成矿期次中含多个样品,但是这种现象被不同的后期沉淀过程所破坏。磁铁矿中微量元素的变化与矿床的的位置,成矿阶段,岩石类型和矿石品级之间都没有什么关系,但是它被一些局产的因素所控制,如结晶程度,变形程度,重新沉淀中氧化成为赤铁矿以及与之接触的硫化物的多少和磁铁故的来源,或是充填的或者交代围岩的。
     所有的这些控制因素都反映了磁铁矿中的微量元素受多种因素综合控制,这些因素主要由流体成分,温度,氧化状态和水岩反应。来自IOCG矿床中不同地质背景的的磁铁矿具有明显的微量元素指示特征,虽然我们也知道有很多因素控制磁铁矿中的微量元素,但是我们又真不知道到底是什么样的因素或者过程影响磁铁矿中的微量元素。
     除此之外,我们还建立和完善了一套使用LA ICP-MS去分析矿物(在这里主要是磁铁矿和硫化物)中的微量元素和稀土元素的方法。
The aims of this work are to investigate the formation of Ernest Henry IOCG and to understand the ore-forming process of Ernest Henry IOCG deposit by using trace element geochemistry of specific mineral and study on the physical and chemical characteristics of Ernest Henry IOCG deposit. SEM-CL is employed to investigate the characteristics of Quartz from a wide range of geological setting in Ernest Henry IOCG deposit. LA ICP-MS are used to determine the trace element concentration of both magnetite and related sulfides from Ernest Henry deposit and barren ironstone from regional area. Elemental mapping analysis on magnetite and sulfides were carried on the electron microprobe.electron microprobe coupled with a XCL were applied to investigate the trace element distribution in K-feldspar from the variety breccias within and around the Ernest Henry orebody.
     Ernest Henry, the second largest IOCG deposit after Olympic Dam and Third largest Cu producer in Australia, is a typical IOCG deposit. The physical and chemical characteristic is important components to recognize this deposit. Before the study, an extremely detailed review of the development of global IOCG and minerals discussed in this work were summarized in Chapter Ⅱ and Chapter Ⅲ. Ore body at Ernest Henry is hosted by meta-volcanic rocks which comprise a multiple-components such as clasts, matrix and infill and lies in a very large brecciated system. Two types of breccias are identified at Ernest Henry deposit. There is a clear relationship between grade and breccia characteristic. The Cu-Au mineralization at Ernest Henry IOCG is intimately associated with the brecciation and consists of multiple hydrothermal activities and involved in at least two different ore-forming fluids (magmatic fluids and basinal fluids) in the formation of Ernest Henry orebody. Earlier Na-Ca alteration are perversely spread in the Eastern Succession of Mount Isa Inlier, especially play an vital roles at Ernest Henry, which are overprinted by the later K-Mn-Fe-(Ba) alteration and Cu-Au mineralization.Quartz trace element and cathodoluminescence characteristics and feldspar cathodoluminescence also showing a very complex ore-forming components and process, for examples, in K-feldspar from the shallow part of the orebody, socid alteration are very strong, and the barium are more intensity with the latest carbonate flooding race element distribution in magnetite and pyrite are useful tool to distinguish the mineralized orebody from the regional unmineralized or barren mineralized ironstone at Ernest Henry IOCG deposit. The metal distribution along the downhole depth is studies as well in this study. At the end of chapter V, the source of metal, the source of ore-forming fluids, the temperature,pressure and other chemical-physical control on the ore-forming process of Ernest Henry IOCG deposit are discussed, and a potential ore forming models are presented.
     Trace element concentration and distribution of magnetite plays a vital role in mineral exploration using minerals as an indicator. We use EMPA and LA ICP-MS to mapping and analysis the trace element of magnetite from Eastern Succession of Mount Isa Inlier, especially concentrated on the magnetite from Ernest Henry IOCG deposit. Electron microprobe trace element mapping analysis indicates that magnetite is not zoned with respect to trace element distribution. High Mn/Ti ratios can be used to distinguish Ernest Henry and other regional Eastern Succession of Mount Isa Inlier IOCGs from unmineralized magnetite-rich breccia bodies in the region. Magnetite compositions vary widely across the deposit and most trace elements vary over two to three orders of magnitude among samples or even among grains within a single sample. In all48samples where large variations in magnetite trace element concentration exist among grains, petrography shows that the magnetite can be distinguished an may belong to a different paragenetic stage or multiple grains of the same paragenetic stage may have been affected by different post-precipitation processes. The trace element variations are not associated with location within the deposit, paragenesis, rock types and ore grade, but are controlled by many local factors such as the degree of crystallization; the degree of deformation; post-precipitation oxidation to hematite; the abundance of associated sulphides; the origin of the magnetite as infill or replacement of wall rock. The control factor of trace element in magnetite likely reflects a complex combination of fluid composition, temperature, redox conditions, and fluid rock interaction. Magnetite in IOCGs from different geological setting have markedly different trace element signatures.we really do not know what kind of factor have a impact on the trace element of magnetite although we know many factors.
     In addition, a set of procedure of analyzing the trace element and rare earth element in minerals (in this section, mainly focused on the magnetite and sulfides) have been made better.
引文
[1]Agnol, R.D., de Oliveira, D.C.,2007. Oxidized, magnetite-series, rapakivi-type granites of Carajas, Brazil:Implications for classification and petrogenesis of A-type granites. Lithos,93(3-4):215-233.
    [2]Ahrens, L.,1963. The significance of the chemical bond for controlling the geochemical distribution of the elements-part 1. Physics and Chemistry of The Earth,5:1-54.
    [3]Allegre, C.J., Minster, J.F.,1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters,38(1):1-25.
    [4]Allen, GC, Hallam, K.R.,1996. Characterisation of the spinels MxCo1-xFe2O4 (M=Mn, Fe or Ni) using X-ray photoelectron spectroscopy. Applied Surface Science,93(1):25-30.
    [5]ALPER, A.M., McNALLY, R.N., DOMAN, R.C. et al.,1964. Phase Equilibria in the System MgO;MgCr2CO4. Journal of the American Ceramic Society,47(1): 30-33.
    [6]Amundson, R., Richter, D.D., Humphreys, G.S. et al.,2007. Coupling between Biota and Earth Materials in the Critical Zone. ELEMENTS,3(5):327-332.
    [7]ANDERSON, H.U.,1974. Influence of Oxygen Activity on the Sintering of MgCr2O4. Journal of the American Ceramic Society,57(1):34-37.
    [8]Andreozzi, GB., Lucchesi, S.,2002. Intersite distribution of Fe 2+ and Mg in the spinel (sensu-stricto)-hercynite series by single-crystal X-ray diffraction. American Mineralogist,87(1113-1120).
    [9]Annels, A.E., Simmonds, J.R.,1984. Cobalt in the Zambian Copperbelt. Precambrian Research,25(1-3):75-98.
    [10]Annersten, H., Ekstrom, T.,1971. Distribution of major and minor elements in coexisting minerals from a metamorphosed iron formation. Lithos,4(2): 185-204.
    [11]Aragon, R., Harrison, H.R., McCallister, R.H. et al.,1983. Skull melter single crystal growth of magnetite (Fe3O4)-ulvospinel (Fe2TiO4) solid solution members. Journal of Crystal Growth,61(2):221-228.
    [12]Ata-Allah, S., Sayedahmed, F., Kaiser, M. et al.,2005. Crystallographic and low frequency conductivity studies of the spinel systems CuFe2O4 and Cu1-xZnxGa0.1Fe1.9O4. Journal of Materials Science,40:2923-2930.
    [13]Audetat, A., Gunther, D., Heinrich, C.A.,2000. Causes for Large-Scale Metal Zonation around Mineralized Plutons:Fluid Inclusion LA-ICP-MS Evidence from the Mole Granite, Australia. Economic Geology,95(8): 1563-1581.
    [14]Audetat, A., Pettke, T., Heinrich, C.A. et al.,2008. Special Paper:The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions. Economic Geology,103(5):877-908.
    [15]Bahadur, H.,1995. Hydroxyl defects in germanium-doped quartz:Defect dynamics and radiation effects. Physical Review B,52(10):7065.
    [16]Baker, T., Mustard, R., Fu, B. et al.,2008. Mixed messages in iron oxide-copper-gold systems of the Cloncurry district, Australia:insights from PIXE analysis of halogens and copper in fluid inclusions. Mineralium Deposita, 43(6):599-608.
    [17]Bakker, R.J.,2009. Reequilibration of fluid inclusions:Bulk-diffusion. Lithos,112(3-4):277-288.
    [18]Ban, Z., Sikirica, M.,1965. The crystal structure of ternary silicides ThM2Si2(M=Cr, Mn, Fe, Co, Ni and Cu). Acta Crystallographica, 18(4): 594-599.
    [19]Bartholome, P., Katekesha, F., Ruiz, J.L.,1971. Cobalt zoning in microscopic pyrite from Kamoto, Republic of the Congo (Kinshasa). Mineralium Deposita,6(3):167-176.
    [20]Barton, M.D., Johnson, D.A.,1996. Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology,24(3): 259-262.
    [21]Barton, M.D., Johnson, D.A.,2000. Alternative Brine Sources for Fe-Oxide (-Cu-Au) Systems:Implications for Hydrothermal Alteration and Metals. In: Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective. PGC Publishing, Adelaide, pp.43-60.
    [22]Barton, M.D., Johnson, D.A.,2004. Footprints of Fe-oxides(-Cu-Au) systems. SEG 2004:predictive Mineral Discovery under cover.Cetre for Global Metallogeny, Spec.Pub.33,The University of Western Australia:112-116.
    [23]Basta, E.Z.,1959. Some mineralogical relationships in the system Fe2O3-Fe3O4 and the composition of titanomaghemite. Economic Geology,54(4): 698-719.
    [24]Bastrakov, E.N., Skirrow, R.G., Davidson, GJ.,2007. Fluid Evolution and Origins of Iron Oxide Cu-Au Prospects in the Olympic Dam District, Gawler Craton, South Australia. Economic Geology,102(8):1415-1440.
    [25]Beaudoin, G, Dupuis, C.,2009a. Iron oxides trace element fingerprinting of mineral deposit types. In:Corriveau L and Mumin AH (eds) Exploring for iron oxide copper-gold deposits:Canada and global analogues. Geol Assoc Can, Short Course Notes No 20:111-126.
    [26]Beaudoin, G, Dupuis, C.,2009b. Iron oxides trace element fingerprinting of mineral deposit types. In:Corriveau L and Mumin AH (eds) Exploring for iron oxide copper-gold deposits:Canada and global analogues. Geol Assoc Can, Short Course Notes No 19, in press.
    [27]Bell, T.H.,1983. Thrusting and Duplex Formation at Mount-Isa, Queensland, Australia. Nature,304(5926):493-497.
    [28]Bell, T.H., Perkins, W.G., Swager, C.P.,1988. Structural Controls on Development and Localization of Syntectonic Copper Mineralization at Mount-Isa, Queensland. Economic Geology,83(1):69-85.
    [29]Belperio, A., Flint, R., Freeman, H.,2007. Prominent Hill:A Hematite-Dominated, Iron Oxide Copper-Gold System. Economic Geology, 102(8):1499-1510.
    [30]Benavides, J., Kyser, T.K., Clark, A.H. et al.,2008. Exploration guidelines for copper-rich iron oxide-copper-gold deposits in the Mantoverde area, northern Chile:the integration of host-rock molar element ratios and oxygen isotope compositions. Geochemistry-Exploration Environment Analysis,8:343-367.
    [31]Bendall, C., Lahaye, Y., Fiebig, J. et al.,2006. In situ sulfur isotope analysis by laser ablation MC-ICPMS. Applied Geochemistry,21(5):782-787.
    [32]Berger, J., Femenias, O., Ohnenstetter, D. et al.,2010. Origin and tectonic significance of corundum-kyanite-sapphirine amphibolites from the Variscan French Massif Central. Journal of Metamorphic Geology,28(3):341-360.
    [33]Berman, R.G.,1988. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J. Petrology, 29(2):445-522.
    [34]Bernet, M., Bassett, K.,2005. Provenance Analysis by Single-Quartz-Grain SEM-CL/Optical Microscopy. Journal of Sedimentary Research,75(3):492-500.
    [35]Bernstein, L.R.,1985. Germanium geochemistry and mineralogy. Geochimica et Cosmochimica Acta,49(11):2409-2422.
    [36]Bersani, D., Salvioli-Mariani, E., Mattioli, M. et al.,2009. Raman and micro-thermometric investigation of the fluid inclusions in quartz in a gold-rich formation from Lepaguare mining district (Honduras, Central America). Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,73(3): 443-449.
    [37]Bertani, L.E., Weko, J., Phillips, K.V. et al.,2001. Physical and genetic characterization of the genome of Magnetospirillum magnetotacticum, strain MS-1. Gene,264(2):257-263.
    [38]Bertelli, M., Baker, T.,2010. A fluid inclusion study of the Suicide Ridge Breccia Pipe, Cloncurry district, Australia:Implication for Breccia Genesis and IOCG mineralization. Precambrian Research,179(1-4):69-87.
    [39]Bessekhouad, Y., Robert, D., Weber, J.V.,2005. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catalysis Today, 101(3-4):315-321.
    [40]Betts, P.G., Giles, D.,2006. The 1800-1100 Ma tectonic evolution of Australia. Precambrian Research,144(1-2):92-125.
    [41]Betts, P.G., Giles, D., Foden, J. et al.,2009. Mesoproterozoic plume-modified orogenesis in eastern Precambrian Australia. Tectonics,28:
    [42]Betts, P.G., Giles, D., Lister, GS. et al.,2002. Evolution of the Australian lithosphere. Australian Journal of Earth Sciences,49(4):661-695.
    [43]Betts, P.G., Giles, D., Mark, G et al.,2006. Synthesis of the proterozoic evolution of the Mt Isa Inlier. Australian Journal of Earth Sciences,53(1): 187-211.
    [44]Betts, P.G., Giles, D., Schaefer, B.F. et al.,2007.1600-1500 Ma hotspot track in eastern Australia:implications for Mesoproterozoic continental reconstructions. Terra Nova,19(6):496-501.
    [45]Bierlein, F.P., Betts, P.G,2004. The proterozoic Mount Isa fault zone, northeastern Australia:is it really a ca.1.9 Ga terrane-bounding suture? (vol 225, pg 279,2004). Earth and Planetary Science Letters,228(1-2):213-213.
    [46]Binks, D.J., Grimes, R.W., Rohl, A.L. et al.,1996. Morphology and structure of ZnCr2O4 spinel crystallites. Journal of Materials Science,31(5):1151-1156.
    [47]Blake, D.H.,1987. Geology of the Mount Isa Inlier and environs.Queensland and Northern Territory.BMR Geol Geophys Bull. (225):83.
    [48]Blenkinsop, T.G, Huddlestone-Holmes, C.R., Foster, D.R.W. et al.,2008. The crustal scale architecture of the Eastern Succession, Mount Isa:The influence of inversion. Precambrian Research,163(1-2):31-49.
    [49]Bliss, N.W., MacLean, W.H.,1975. The paragenesis of zoned chromite from central Manitoba. Geochimica et Cosmochimica Acta,39(6-7):973-974, IN7-IN8,975-990.
    [50]Bodon, S.B.,1998. Paragenetic relationships and their implications for ore genesis at the Cannington Ag-Pb-Zn deposit, Mount Isa Inlier, Queensland, Australia. Economic Geology and the Bulletin of the Society of Economic Geologists,93(8):1463-1488.
    [51]Boggs, S., Jr., Kwon, Y.-I., Goles, GG et al.,2002. Is Quartz Cathodoluminescence Color a Reliable Provenance Tool? A Quantitative Examination. Journal of Sedimentary Research,72(3):408-415.
    [52]Boggs, S., Krinsley, D.H., Goles, GG. et al.,2001. Identification of shocked quartz by scanning cathodoluminescence imaging. Meteoritics & Planetary Science,36(6):783-791.
    [53]Bohor, B.F., Foord, E.E., Ganapathy, R.,1986. Magnesioferrite from the Cretaceous-Tertiary boundary, Caravaca, Spain. Earth and Planetary Science Letters,81(1):57-66.
    [54]Bookstrom, A. A.,1995. Magmatic Features of Iron-Ores of the Kiruna Type in Chile and Sweden-Ore Textures and Magnetite Geochemistry-a Discussion. Economic Geology and the Bulletin of the Society of Economic Geologists, 90(2):469-473.
    [55]Borrok, D.M., Kesler, S.E., Boer, R.H. et al.,1998. The Vergenoeg magnetite-fluorite deposit, South Africa:Support for a hydrothermal model for massive iron oxide deposits. Economic Geology and the Bulletin of the Society of Economic Geologists,93(5):564-586.
    [56]Bosi, F., Halenius, U., Skogby, H.,2009. Crystal chemistry of the magnetite-ulvospinel series. American Mineralogist,94(1):181-189.
    [57]Bosi, F., Halenius, U., Skogby, H.,2010. Crystal chemistry of the MgAl2O4-MgMn2O4-MnMn2O4 system:Analysis of structural distortion in spinel- and hausmannite-type structures. American Mineralogist,95(4):602-607.
    [58]Botinelly, T., Siems, D.F., Sanzolone, R.F.,1985. Trace elements in disseminated sulfides, magnetite, and massive sulfides, West Shasta District, California. Economic Geology,80(8):2196-2205.
    [59]Botis, S.M., Pan, Y,2009. Theoretical calculations of [AlO4/M+]0 defects in quartz and crystal-chemical controls on the uptake of Al. Mineral Mag,73(4): 537-550.
    [60]BRATTON, R.J.,1971. Sintering and Grain-Growth Kinetics of MgAl2O4. Journal of the American Ceramic Society,54(3):141-143.
    [61]Burke, E.A.J., Kieft, C.,1972. Franklinite from Langban, Sweden:a new occurrence. Lithos,5(1):69-72.
    [62]Burns, R.G.,1973. The partitioning of trace transition elements in crystal structures:a provocative review with applications to mantle geochemistry. Geochimica et Cosmochimica Acta,37(11):2395-2403.
    [63]Burns, R.G, Fyfe, W.S.,1964. Site of Preference Energy and Selective Uptake of Transition-Metal Ions from a Magma. Science,144(3621): 1001-1003.
    [64]Burns, R.G, Fyfe, W.S.,1966. Distribution of elements in geological processes. Chemical Geology,1:49-56.
    [65]Burns, R.G., Fyfe, W.S.,1967. Trace element distribution rules and their significance. Chemical Geology,2:89-104.
    [66]Cannell, J., Cooke, D.R., Walshe, J.L. et al.,2005. Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit. Economic Geology,100(5):979-1003.
    [67]Carew, M.J.,2004a. Controls on Cu-Au mineralisation and Fe oxide metasomatism in the Eastern Fold Belt, N.W. Queensland, Australia.Unpublished PhD thesis James Cook University, Townsville.
    [68]Carew, M.J.,2004b. Controls on Cu-Au mineralisation and Fe Oxide metsomatism in the Eastern Fold Belt,N.W.Queensland,Australia, James Cook Univeristy, Townsville,294 pp.
    [69]Carew, M.J., Mark, G, Oliver, N.H.S. et al.,2006. Trace element geochemistry of magnetite and pyrite in Fe oxide (+/-Cu-Au) mineralised systems:Insights into the geochemistry of ore-forming fluids. Geochimica Et Cosmochimica Acta,70(18):A83-A83.
    [70]Cartwright, I., Power, W.L., Oliver, N.H.S. et al.,1994. Fluid Migration and Vein Formation during Deformation and Greenschist Facies Metamorphism at Ormiston Gorge, Central Australia. Journal of Metamorphic Geology,12(4): 373-386.
    [71]Chateauneuf, J., Gruas-Cavagnetto, C.,1978. Bulletin du BRGM(deuxieme serie), Section Ⅱ,225-230 pp.
    [72]Chen, H.,2008. The Marcona-Mina Justa district, south-central Peru:Implications for the genesis and definition of the iron oide-copper (-gold) ore deposit clan. Unpublished PhD Thesis Thesis, Queen's University, Kingston,Ontario,Canada.
    [73]Chen, H.,2011. Mesozoic IOCG Mineralisation in the Central Andes-an Updated Review In:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits:A Global Perspective. PGC Publishing, Adelaide, pp. in press.
    [74]Chen, M., Shu, J., Mao, H.-k.,2008. Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chinese Science Bulletin,53(21):3341-3345.
    [75]Chervonnyi, A., Chervonnaya, N.,2010. Synthetic calcium aluminosilicate as a matrix for radioactive waste immobilization. Radiochemistry,52(1): 103-105.
    [76]Chhor, K., Bocquet, J.F., Pommier, C. et al.,1986. Heat capacity and thermodynamic behaviour of Mn3O4 and ZnMn2O4 at low temperatures. The Journal of Chemical Thermodynamics,18(1):89-99.
    [77]Chiaradia, M., Tripodi, D., Fontbote, L. et al.,2008. Geologic setting, mineralogy, and geochemistry of the Early Tertiary Au-rich volcanic-hosted massive sulfide deposit of La Plata, Western Cordillera, Ecuador. Economic Geology,103(1):161-183.
    [78]Chouinard, A., Paquette, J., Williams-Jones, A.E.,2005. Crystallographic Controls On Trace-Element Incorporation In Auriferous Pyrite From The Pascua Epithermal High-Sulfidation Deposit, Chile-Argentina. Can Mineral,43(3): 951-963.
    [79]Clark, T., Gobeil, A., David, J.,2005. Iron oxide-copper-gold-type and related deposits in the Manitou Lake area, eastern Grenville Province, Quebec: variations in setting, composition, and style. Canadian Journal of Earth Sciences, 42(10):1829-1847.
    [80]Cleverley, J.S.,2006. Using the chemistry of apatite to track fluids in Fe-oxide Cu-Au systems. Geochimica Et Cosmochimica Acta,70(18): A105-A105.
    [81]Cleverley, J.S., Oliver, N.H.S.,2005. Comparing closed system, flow-through and fluid infiltration geochemical modelling:examples from K-alteration in the Ernest Henry Fe-oxide-Cu-Au system. Geofluids,5(4): 289-307.
    [82]Cliff, R.A., Rickard, D.,1992. Isotope Systematics of the Kiruna Magnetite Ores, Sweden.2. Evidence for a Secondary Event 400 My after Ore Formation. Economic Geology and the Bulletin of the Society of Economic Geologists, 87(4):1121-1129.
    [83]Collier, P., Bryant, J.,2003. Successful mineral resource definition at the Ernest Henry copper-gold mine, NW Queensland, Proceedings Fifth International Mining Geology Conference. The Australian Institute of Mining and Metallurgy, Bendigo, pp.73-88.
    [84]Collins, L.G.,1969. Host Rock Origin of Magnetite in Pyroxene Skarn and Gneiss and Its Relation to Alaskite and Hornblende Granite. Economic Geology, 64(2):191-&.
    [85]Colombo, U., Fagherazzi, G., Gazzarrini, F. et al.,1968. Mechanism of Low Temperature Oxidation of Magnetites. Nature,219(5158):1036-1037.
    [86]Cook, N.J., Ciobanu, C.L., Pring, A. et al.,2009. Trace and minor elements in sphalerite:A LA-ICPMS study. Geochimica et Cosmochimica Acta,73(16): 4761-4791.
    [87]COOLEY, R.F., REED, J.S.,1972. Equilibrium Cation Distribution in NiAl2O4, CUAl2O4, and ZnAl2O4 Spinels. Journal of the American Ceramic Society,55(8):395-398.
    [88]Correa, J.R., Canetti, D., Castillo, R. et al.,2006. Influence of the precipitation pH of magnetite in the oxidation process to maghemite. Materials Research Bulletin,41(4):703-713.
    [89]Corriveau, L.,2005. Iron oxide copper-gold (±Ag±Nb±REE±U) deposits: A Canadian perspective. Geological Survey of Canada.
    [90]Corriveau, L.,2007. Iron Oxide Copper-Gold (+/-Ag,+/-Nb,+/-REE,+/-U) Deposits:A Canadian Perspective. In:Goodfellow, W. (Ed.), Mineral deposits of Canadian:a synthesis of major deposit-types,district metallogeny,the evolution of geological provinces, and exploration methods:. Gelogical Association of Canada-Mineral Deposits Division, pp.1171-1177.
    [91]Corriveau, L., J.Williams, P., Mumin, A.H.,2009. Alteration vectors to IOCG minerlization from uncharted terranes to deposit. In:Mumin, L.C.a.H. (Ed.), Exploraing for Iron Oxide Copper-Gold Deposits:Canada and Global Analogues. Geological Association of Canada Short Course Notes 20, pp. 89-110.
    [92]Corriveau, L., Mumin, A.H., Setterfield, T.,2011. IOCG Environments in Canada:Characteristics and Geological Vectors to Ore In:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits:A Global Perspective. PGC Publishing, Adelaide, pp. in press.
    [93]Costa, R.C.C., Lelis, M.F.F., Oliveira, L.C.A. et al.,2006. Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni):The role of M2+ species on the reactivity towards H2O2 reactions. Journal of Hazardous Materials,129(1-3):171-178.
    [94]Coward, M.,2001. Structural controls on ore formation and distribution at the Ernest Henry Cu-Au deposit, NW Queensland. BSc (Honours) Thesis. James Cook University, Townsville.
    [95]Craig, J.R., Vokes, F.M., Solberg, T.N.,1998. Pyrite:physical and chemical textures. Mineralium Deposita,34(1):82-101.
    [96]Cruz, M.D.R.,2010. Zoned Ca-amphibole as a new marker of the Alpine metamorphic evolution of phyllites from the Jubrique unit, Alpujarride Complex, Betic Cordillera, Spain. Mineral Mag,74(4):773-796.
    [97]Curtis, C.D.,1964. Applications of the crystal-field theory to the inclusion of trace transition elements in minerals during magmatic differentiation. Geochimica et Cosmochimica Acta,28(3):389-403.
    [98]Czamanske, G.K., Roedder, E., Burns, F.C.,1963. Neutron Activation Analysis of Fluid Inclusions for Copper, Manganese, and Zinc. Science, 140(3565):401-403.
    [99]Dall'Agnol, R., Teixeira, N.P., Ramo, O.T. et al.,2005. Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajas metallogenic province, Brazil. Lithos,80(1-4):101-129.
    [100]Dasgupta, S., Bhattacharya, P.K., Chattopadhyay, G. et al.,1987. Genetic reinterpretation of crystallographicintergrowths of jacobsite andhausmannite from natural assemblages. Mineralogy and Petrology,37(2):109-116.
    [101]Davidson, G.J.,1992. Hydrothermal Geochemistry and Ore Genesis of Sea-Floor Volcanogenic Copper-Bearing Oxide Ores. Economic Geology and the Bulletin of the Society of Economic Geologists,87(3):889-912.
    [102]Davidson, GJ.,1994. Hostrocks to the Stratabound Iron-Formation-Hosted Starra Gold-Copper Deposit, Australia. Mineralium Deposita,29(3):237-249.
    [103]Davidson, G.J.,1998. Variation in copper-gold styles through time in the Proterozoic Cloncurry Goldfield, Mt Isa Inlier:a reconnaissance view. Australian Journal of Earth Sciences,45(3):445-462.
    [104]Davidson, G.J., Dixon, GH.,1992.2 Sulfur Isotope Provinces Deduced from Ores in the Mount Isa Eastern Succession, Australia. Mineralium Deposita,27(1): 30-41.
    [105]Davis, B.K., Pollard, P.J., Lally, J.H. et al.,2001. Deformation history of the Naraku Batholith, Mt Isa Inlier, Australia:implications for pluton ages and geometries from structural study of the Dipvale Granodiorite and Levian Granite. Australian Journal of Earth Sciences,48(1):113-129.
    [106]De Argollo, R., Schilling, J.G.,1978. Ge---Si and Ga---Al fractionation in Hawaiian volcanic rocks. Geochimica et Cosmochimica Acta,42(6, Part 1): 623-630.
    [107]de Jong, G, Williams, P.J.,1995. Giant metasomatic systems formed during exumation of mid-crustal Proterozoic rocks in the vicinity of teh Cloncurry fault, northwest Queensland. Australian Journal of Earth Sciences,42:281-290.
    [108]Deditius, A.P., Utsunomiya, S., Ewing, R.C. et al.,2009a. Nanoscale "liquid" inclusions of As-Fe-S in arsenian pyrite. American Mineralogist,94(2-3): 391-394.
    [109]Deditius, A.P., Utsunomiya, S., Wall, M.A. et al.,2009b. Crystal chemistry and radiation-induced amorphization of P-coffinite from the natural fission reactor at Bangombe, Gabon. American Mineralogist,94(5-6):827-837.
    [110]Deer, W.A., Howie, R.A.,1992. An introduction to the rock-forming minerals. Pearson Education Limited,Essex.696.
    [111]Deer, W.A., Howie, R.A., Zussman, J.,1992. An introduction to the rock-forming minerals. Pearson Education Limited,Essex.696.
    [112]Dennen, W.H.,1964. Impurities in quartz. Geological Society of America Bulletin,75(3):241-246.
    [113]Dennen, W.H.,1966. Stoichiometric substitution in natural quartz. Geochimica et Cosmochimica Acta,30(12):1235-1241.
    [114]Dennen, W.H.,1967. Trace elements in quartz as indicators of provenance. Geological Society of America Bulletin,78(1):125-130.
    [115]Devine, J.D., Rutherford, M.J., Norton, G.E. et al.,2003. Magma storage region processes inferred from geochemistry of Fe-Ti oxides in andesitic magma, Soufriere Hills Volcano, Montserrat, WI. Journal of Petrology,44(8):1375-1400.
    [116]Dickinson, W.W., Milliken, K.L.,1995. The Diagenetic Role of Brittle Deformation in Compaction and Pressure Solution, Etjo Sandstone, Namibia The Journal of Geology,103(3):339-347
    [117]Direen, N.G, Lyons, P.,2007. Regional Crustal Setting of Iron Oxide Cu-Au Mineral Systems of the Olympic Dam Region, South Australia:Insights from Potential-Field Modeling. Economic Geology,102(8):1397-1414.
    [118]Dold, B., Fontbote, L.,2002. A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu-Au deposits from the Punta del Cobre belt, northern Chile. Chemical Geology,189(3-4):135-163.
    [119]Dreher, A.M., Xavier, R.P., Taylor, B.E. et al.,2008. New geologic, fluid inclusion and stable isotope studies on the controversial Igarape Bahia Cu-Au deposit, Carajas Province, Brazil. Mineralium Deposita,43(2):161-184.
    [120]Duncan, A.R., Hitzman, M.W., Nelson, E. et al.,2009. Re-Os Molybdenite Ages for the Southern Cloncurry IOCG District, Queensland, Australia: Protracted Mineralization Over 210 myr. In:Williams, P.J. (Editor),11th binnial meeting of SGA. James Cook Univeristy, Townsivlle, pp.626-628.
    [121]Duncan, A.R., Taylor, S.R.,1968. Trace element analyses of magnetites from andesitic and dacitic lavas from Bay of Plenty, New Zealand. Contributions to Mineralogy and Petrology,20(1):30-33.
    [122]Duncan, R.J., Allen, C.A., Wilde, A.R.,2006a. U-Pb zircon geochronology of quartz-sealed faults at Mount Isa, northern Australia. Geochimica Et Cosmochimica Acta,70(18):A151-A151.
    [123]Duncan, R.J., Wilde, A.R., Bassano, K. et al.,2006b. Geochronological constraints on tourmaline formation in the Western Fold Belt of the Mount Isa Inlier, Australia:Evidence for large-scale metamorphism at 1.57 Ga? Precambrian Research,146(3-4):120-137.
    [124]Dunn, P.J., Peacor, D.R., Criddle, A.J. et al.,1988. Filipstadite, a new Mn-Fe3+-Sb derivative of spinel, from Langban, Sweden American Mineralogist,73:413-419.
    [125]Dupuis, C., Beaudoin, G,2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita:1-17.
    [126]Espinoza, J.I.,2002. Fe Oxide-Cu-Au Deposits in Peru, an Integrated View In:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits:A Global Perspective. PGC Publishing, Adelaide, pp.97-113.
    [127]Essene, E.J., Peacor, D.R.,1983. Crystal chemistry and petrology of coexisting galaxite and jacobsite and other spinel solutions and solvi American Mineralogist,68:449-455.
    [128]Evans, B.J., Hafner, S., Kalvius, G.M.,1966. The hyperfine fields of 57Fe at the A and B sites in copper ferrite (CuFe2O4). Physics Letters,23(1):24-25.
    [129]Evans, J., Hogg, A.J.C., Hopkins, M.S. et al.,1994. Quantification of quartz cements using combined SEM, CL, and image analysis. Journal of Sedimentary Research,64(2a):334-338.
    [130]Feltz, A., Lindner, F.,1991. Herstellung keramischer Pulver. IX. Zur Bildung von NiMn2 O4 und ZnMn2O4 durch Zersetzung von [Ni(H2O)6] (MnO4)2 und [Zn(H2O)6] (MnO4)2. Zeitschrift fur anorganische und allgemeine Chemie, 605(1):117-123.
    [131]Ferguson, J., Wood, D.L., Van Uitert, L.G.,1969. Crystal-Field Spectra of d[sup 3,7] Ions. V. Tetrahedral Co 2+in ZnAl2O4 Spinel. The Journal of Chemical Physics,51(7):2904-2910.
    [132]Finch, G.I., Sinha, A.P.B., Sinha, K.P.,1957. Crystal Distortion in Ferrite-Manganites. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,242(1228):28-35.
    [133]Fisher, L.A., Kendrick, M.A.,2008. Metamorphic fluid origins in the Osborne Fe oxide-Cu-Au deposit, Australia:evidence from noble gases and halogens. Mineralium Deposita,43(5):483-497.
    [134]Flem, B., Larsen, R.B., Grimstvedt, A. et al.,2002. In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chemical Geology,182(2-4):237-247.
    [135]Florinio, L., Tamal, P.,2009. The Merlin Mo-Re zone,,a new discovery in the Cloncurry district, Australia. Smart sciences for exploration and mining-Proceedings of the 10th Biennial SGA meeting.Townsville.
    [136]Foster, A.R., Williams, P.J., Ryan, C.G,2007. Distribution of Gold in Hypogene Ore at the Ernest Henry Iron Oxide Copper-Gold Deposit, Cloncurry District, NW Queensland. Exploration and Mining Geology,16(3-4):125-143.
    [137]Frietsch, R.,1978. Magmatic Origin of Iron-Ores of Kiruna Type. Economic Geology,73(4):478-485.
    [138]Frietsch, R.,1982. On the chemical composition of the ore breccia at Luossavaara, northern Sweden. Mineralium Deposita,17(2):239-243.
    [139]Frietsch, R.,1984. On the Magmatic Origin of Iron-Ores of the Kiruna Type-a Reply. Economic Geology,79(8):1949-1951.
    [140]Frietsch, R., Perdahl, J.-A.,1995a. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geology Reviews,9(6):489-510.
    [141]Frietsch, R., Perdahl, J.A.,1995b. Rare-Earth Elements in Apatite and Magnetite in Kiruna-Type Iron-Ores and Some Other Iron-Ore Types. Ore Geology Reviews,9(6):489-510.
    [142]Frondel, Clifford, Heinrich, E.W.,1942. New data on hetaerolite, hydrohetaerolite coronadite, and hollandite. American Mineralogist:48-56.
    [143]Fryer, B.J., Jackson, S.E., Longerich, H.P.,1993. The Application of Laser-Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry (Lam-Icp-Ms) to in-Situ (U)-Pb Geochronology. Chemical Geology,109(1-4): 1-8.
    [144]Gotze, J.,2009. Chemistry, textures and physical properties of quartz-geological interpretation and technical application. Mineral Mag,73(4): 645-671.
    [145]Gotze, J., Kempe, U.,2008. A comparison of optical microscope- and scanning electron microscope-based cathodoluminescence (CL) imaging and spectroscopy applied to geosciences. Mineral Mag,72(4):909-924.
    [146]Gotze, J., Lewis, R.,1994. Distribution of REE and trace elements in size and mineral fractions of high-purity quartz sands. Chemical Geology,114(1-2): 43-57.
    [147]Gotze, J., Plotze, M.,1997. Investigation of trace-element distribution in detrital quartz by electron paramagnetic resonance (EPR). European Journal of Mineralogy,9(3):529-537.
    [148]Gotze, J., Plotze, M., Graupner, T. et al.,2004. Trace element incorporation into quartz:A combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochimica et Cosmochimica Acta,68(18):3741-3759.
    [149]Gotze, J., Plotze, M., Habermann, D.,2001a. Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz-A review. Mineralogy and Petrology,71(3-4):225-250.
    [150]Gotze, J., Plotze, M, Tichomirowa, M. et al.,2001b. Aluminium in quartz as an indicator of the temperature of formation of agate. Mineral Mag,65(3): 407-413.
    [151]Gahlan, H.A., Arai, S., Ahmed, A.H. et al.,2006. Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, Anti-Atlas, Morocco:An implication for mobility of iron during serpentinization. Journal of African Earth Sciences,46(4):318-330.
    [152]Galarza, M.A., Macambira, M.J.B., Villas, R.N.,2008. Dating and isotopic characteristics (Pb and S) of the Fe oxide-Cu-Au-U-REE Igarape Bahia ore deposit, Carajas mineral province, Para state, Brazil. Journal of South American Earth Sciences,25(3):377-397.
    [153]Gauthier, L., Hall, G., Stein, H. et al.,2001. The Osborne deposit, Cloncurry district:a 1595 Ma Cu-Au skarn deposit. James Cook University EGRU Contributions Series. no.59.58-59.
    [154]Geier, B.H., Ottemann, J.,1970. New primary vanadium-, germanium-, gallium-, and tin-minerals from the Pb-Zn-Cu-deposit Tsumeb, South West Africa. Mineralium Deposita,5(1):29-40.
    [155]Gelcich, S., Davis, D.W., Spooner, E.T.C.,2005. Testing the apatite-magnetite geochronometer:U-Pb and Ar-40/Ar-39 geochronology of plutonic rocks, massive magnetite-apatite tabular bodies, and IOCG mineralization in Northern Chile. Geochimica Et Cosmochimica Acta,69(13): 3367-3384.
    [156]Gerler, J.,1990. Geochemische untrsuchungen an hydrothermalen, metamorphengranitischen und pegmatitischen quarzen und deren Flussigkeitseinschliissen. Unpublished PhD thesis. University Gottingen.
    [157]Gerler, J., Schnier, C.,1989. Neutron activation analysis of liquid inclusions exemplified by a quartz sample from the Ramsbeck Mine, FRG. Nucl. Geophys, 3:41-48.
    [158]Ghiorso, M.S., Sack, R.O.,1991. Fe-Ti Oxide Geothermometry Thermodynamic Formulation and the Estimation of Intensive Variables in Silicic Magmas. Contributions to Mineralogy and Petrology,108(4):485-510.
    [159]Giles, D., Betts, P., Lister, G,2002. Far-field continental backarc setting for the 1.80-1.67 Ga basins of northeastern Australia. Geology,30(9):823-826.
    [160]Giles, D., Nutman, A.P.,2002. SHRIMP U-Pb monazite dating of 1600-1580 Ma amphibolite facies metamorphism in the southeastern Mt Isa Block, Australia. Australian Journal of Earth Sciences,49(3):455-465.
    [161]Giles, D., Nutman, A.P.,2003. SHRIMP U-Pb zircon dating of the host rocks of the Cannington Ag-Pb-Zn deposit, southeastern Mt Isa Block, Australia. Australian Journal of Earth Sciences,50(3):295-309.
    [162]Gillen, D.,2010. A study of IOCG-related hydrothermal fulids in the Wernecke Mountains, Yukon Territory,Canada, James Cook Univeristy, Townsville.
    [163]Ginibre, C., Worner, G., Kronz, A.,2007. Crystal Zoning as an Archive for Magma Evolution. ELEMENTS,3(4):261-266.
    [164]Gnos, E., Peters, T.,1995. Tephroite-hausmannite-galaxite from a granulite-facies manganese rock of the United Arab Emirates. Contributions to Mineralogy and Petrology,120(3):372-377.
    [165]Goad, R.E., Mumin, A.H., Duke, N.A. et al.,2000. The NICO and Sue-Dianne Proterozoic,Iron Oxide-Hosted,Polymetallic Deposits,Northwest Territories:Application of the Olympic Dam Model in Exploration. Exploration and Mining Geology,9:123-140.
    [166]Gow, P.A., Wall, V.J., Oliver, N.H.S. et al.,1994. Proterozoic Iron-Oxide (Cu-U-Au-Ree) Deposits-Further Evidence of Hydrothermal Origins. Geology, 22(7):633-636.
    [167]Graham, J.,1978. Manganochromite, palladium antimonide, and some unusual mineral associations of the Nairne pyrite deposit,south Australia. American Mineralogist,63:1166-114.
    [168]Grainger, C.J., Groves, D.I., Tallarico, F.H.B. et al.,2008. Metallogenesis of the Carajas Mineral Province, Southern Amazon Craton, Brazil:Varying styles of Archean through Paleoproterozoic to Neoproterozoic base- and precious-metal mineralisation. Ore Geology Reviews,33(3-4):451-489.
    [169]Grant, F.S.,1985a. Aeromagnetics, geology and ore environments, I. Magnetite in igneous, sedimentary and metamorphic rocks:An overview. Geoexploration,23(3):303-333.
    [170]Grant, F.S.,1985b. Aeromagnetics, geology and ore environments, Ⅱ. Magnetite and ore environments. Geoexploration,23(3):335-362.
    [171]Grew, E.S., Halenius, U., Kritikos, M. et al.,2001. New data on welshite, e.g. Ca2Mg3.8Mn2+0.6Fe2+0.1Sb5+1.5O2[Si2.8Be1.7Fe3+0.65Al0.7As0.17O18], an aenigmatite-group mineral. Mineral Mag,65(5):665-674.
    [172]Grohmann, H.,1965. Beitrag zur Geochemie osterreichischer Granitoide. Mineralogy and Petrology,10(1):436-474.
    [173]Groves, D.I., Bierlein, F.P., Meinert, L.D. et al.,2010. Iron Oxide Copper-Gold (IOCG) Deposits through Earth History:Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits. Economic Geology,105(3):641-654.
    [174]Gunther, D., Audetat, A., Frischknecht, R. et al.,1998. Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry,13(4):263-270.
    [175]Gupta, M.P., Mathur, H.B.,1975. The cation distribution in the ferrite FeV2O4:Mossbauer and X-ray diffraction studies. Journal of Physics C:Solid State Physics,8(3):370.
    [176]Hamaguchi, H., Kuroda, R., Okuma, N. et al.,1964. The geochemistry of tin. Geochimica et Cosmochimica Acta,28(7):1039-1053.
    [177]Hand, M., Reid, A., Jagodzinski, L.,2007. Tectonic Framework and Evolution of the Gawler Craton, Southern Australia. Economic Geology,102(8): 1377-1395.
    [178]Harlov, D.E., Andersson, U.B., Forster, H.-J. et al.,2002a. Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chemical Geology,191(1-3):47-72.
    [179]Harlov, D.E., Andersson, U.B., Forster, H.J. et al.,2002b. Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chemical Geology,191(1-3):47-72.
    [180]Harrison, R.J., Putnis, A.,1999. Determination of the mechanism of cation ordering in magnesioferrite (MgFe2O4) from the time- and temperature-dependence of magnetic susceptibility. Physics and Chemistry of Minerals,26(4):322-332.
    [181]Haruta, M., Tsubota, S., Kobayashi, T. et al.,1993. Low-Temperature Oxidation of CO over Gold Supported on TiO2, [alpha]-Fe2O3, and CO3O4. Journal of Catalysis,144(1):175-192.
    [182]Hastings, J.M., Corliss, L.M.,1956. Neutron Diffraction Study of Manganese Ferrite. Physical Review,104(2):328.
    [183]Hatton, O.J., Davidson, GJ.,2004. Soldiers Cap Group iron-formations, Mt Isa Inlier, Australia, as windows into the hydrothermal evolution of a base-metal-bearing Proterozoic rift basin. Australian Journal of Earth Sciences, 51(1):85-106.
    [184]Hawley, J.E., Nichol, I.,1961. Trace elements in pyrite, pyrrhotite and chalcopyrite of different ores. Economic Geology,56(3):467-487.
    [185]Haynes, D.W., Cross, K.C., Bills, R.T. et al.,1995. Olympic Dam ore genesis; a fluid-mixing model. Economic Geology,90(2):281-307.
    [186]Heinrich, C.A., Bain, J.H.C., Mernagh, T.P. et al.,1995. Fluid and Mass-Transfer during Metabasalt Alteration and Copper Mineralization at Mount-Isa, Australia. Economic Geology and the Bulletin of the Society of Economic Geologists,90(4):705-730.
    [187]Heinrich, C.A., Pettke, T., Halter, W.E. et al.,2003. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochimica et Cosmochimica Acta,67(18):3473-3497.
    [188]Hem, J.D., Roberson, C.E., Lind, C.J.,1987. Synthesis and stability of hetaerolite, ZnMn2O4, at 25℃. Geochimica et Cosmochimica Acta,51(6): 1539-1547.
    [189]Hitzman, M.,2000a. Iron oxide-Cu-Au deposits. What, where,when and Why. In:Porter TM (ed) Hydrothermal Iron OxideCopper-Gold and Related Deposits:A Global Perspective. AMF, Adelaide, pp.9-26.
    [190]Hitzman, M.W.,2000b. Iron Oxide-Cu-Au Deposits:What, Where, When, and Why? In:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits:A Global Perspective. PGC Publishing, Adelaide, pp.9-25.
    [191]Hitzman, M.W., Oreskes, N., Einaudi, M.T.,1992. Geological characteristics and tectonic setting of proterozoic iron oxide (Cu---U---Au---REE) deposits. Precambrian Research,58(1-4):241-287.
    [192]Hitzman, M.W., Valenta, R.K.,2005. Uranium in iron oxide-copper-gold (IOCG) systems. Economic Geology,100(8):1657-1661.
    [193]Hoeller, W., Stumpfl, E.F.,1995. Cr-V oxides from the Rampura Agucha Pb-Zn-(Ag) deposit, Rajasthan, India. Can Mineral,33(4):745-752.
    [194]Holtstam, D.,1993. A second occurrence of filipstadite in Varmland, Sweden. Geologiska Foereningan i Stockholm. Foerhandlingar,115(3):239-240.
    [195]Holtstam, D., Larsson, A.-K.,2000. Tegengrenite, a new, rhombohedral spinel-related Sb mineral from the Jakobsberg Fe-Mn deposit, Varmland, Sweden. American Mineralogist,85(9):1315-1320.
    [196]Horn, I., Hinton, R.W., Jackson, S.E. et al.,1997. Ultra-Trace Element Analysis of NIST SRM 616 and 614 using Laser Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS):a Comparison with Secondary Ion Mass Spectrometry (SIMS). Geostandards and Geoanalytical Research,21(2):191-203.
    [197]Horn, I., von Blanckenburg, F., Schoenberg, R. et al.,2006. In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes. Geochimica Et Cosmochimica Acta,70(14):3677-3688.
    [198]Horstman, E.L.,1957. The distribution of lithium, rubidium and caesium in igneous and sedimentary rocks. Geochimica et Cosmochimica Acta,12(1-2): 1-28.
    [199]Hu, J., Lo, Chen, G.,2005. Fast Removal and Recovery of Cr(VI) Using Surface-Modified Jacobsite (MnFe2O4) Nanoparticles. Langmuir,21(24): 11173-11179.
    [200]Hu, S., Gao, S., Lin, S. et al.,2001. Trace Elements Analysis of Geological Samples by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of China University of Geosciences 12(3).
    [201]Huang, W., An assessment of the Fe-Mn system. Calphad,13(3):243-252.
    [202]Hudson, D.R., Travis, G.A.,1981. A native nickel-heazlewoodite-ferroan trevorite assemblage from Mount Clifford, Western Australia. Economic Geology,76(6):1686-1697.
    [203]Hunt, J., Baker, T., Thorkelson, D.,2005. Regional-scale Proterozoic IOCG-mineralized breccia systems:examples from the Wernecke Mountains, Yukon, Canada. Mineralium Deposita,40(5):492-514.
    [204]Hunt, J.A., Baker, T., Thorkelson, D.J.,2007. A Review of Iron Oxide Copper-Gold Deposits, with Focus on the Wernecke Breccias, Yukon, Canada, as an Example of a Non-Magmatic End Member and Implications for IOCG Genesis and Classification. Exploration and Mining Geology,16(3-4):209-232.
    [205]Huston, D.L., Sie, S.H., Suter, G.F. et al.,1995a. Trace-Elements in Sulfide Minerals from Eastern Australian Volcanic-Hosted Massive Sulfide Deposits.1. Proton Microprobe Analyses of Pyrite, Chalcopyrite, and Sphalerite, And.2. Selenium Levels in Pyrite-Comparison with Delta-S-34 Values and Implications for the Source of Sulfur in Volcanogenic Hydrothermal Systems. Economic Geology and the Bulletin of the Society of Economic Geologists, 90(5):1167-1196.
    [206]Huston, D.L., Sie, S.H., Suter, G.F. et al.,1995b. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology,90(5):1167-1196.
    [207]Ikeda, K., Nakamura, Y, Masumoto, K. et al.,1997. Optical Spectra of Synthetic Spinels in the System MgA2O4;MgCr2O4. Journal of the American Ceramic Society,80(10):2672-2676.
    [208]Ivor Roberts, F.,1982. Trace element chemistry of pyrite:A useful guide to the occurrence of sulfide base metal mineralization. Journal of Geochemical Exploration,17(1):49-62.
    [209]Jackson, S.E., Longerich, H.P., Dunning, G.R. et al.,1992a. The application of laser-ablation microprobe; inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ trace-element determinations in minerals. Can Mineral, 30(4):1049-1064.
    [210]Jackson, S.E., Longerich, H.P., Dunning, G.R. et al.,1992b. The application of laser-ablation microprobe; inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ trace-element determinations in minerals. The Canadian Mineralogist,30(4):1049-1064.
    [211]Jackson, S.E., Longerich, H.Y.P., Duning, GR. et al.,1992c. The Applicatioon of Laser-ablation Microprobe-inductively Coupled Plasma-Mass Spectometry(LAM-ICP-MS) to in situ trace-element determinations in minerals. Canadian Mineralogist,30:1049-1064.
    [212]Jackson, S.E., Pearson, N.J., Griffin, W.L. et al.,2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology,211(1-2):47-69.
    [213]Jacobs, I.S., Kouvel, J.S.,1961. Exchange Anisotropy in Mixed Manganites with the Hausmannite Structure. Physical Review,122(2):412.
    [214]Jacqueline, V.A., Guy Bologne, Iwan Roelandts et al.,1998. Inductively coupled plasma-mass spectrometric(ICP-MS) analysis of silicate rocks and minerals. Geologica Belgica,1998(1):49-53.
    [215]Jami, M., Dunlop, A.C., Cohen, D.R.,2007. Fluid inclusion and stable isotope study of the esfordi apatite-magnetite deposit, Central Iran. Economic Geology,102(6):1111-1128.
    [216]Jarosch, D.,1987. Crystal structure refinement and reflectance measurements of hausmannite, Mn3O4. Mineralogy and Petrology,37(1):15-23.
    [217]Jensen, G.B., Nielsen, O.V.,1974. The magnetic structure of Mn 3 O4 Hausmannite between 4.7K and Neel point,41K. Journal of Physics C:Solid State Physics,7(2):409.
    [218]Jiang, J.Z., Goya, G.F., Rechenberg, H.R.,1999. Magnetic properties of nanostructured CuFe2O4. Journal of Physics:Condensed Matter,11(20):4063.
    [219]Jourdan, A.-L., Vennemann, T.W., Mullis, J. et al.,2009. Oxygen isotope sector zoning in natural hydrothermal quartz. Mineral Mag,73(4):615-632.
    [220]Jung L.,1992. High Purity Natural Quartz, part Ⅰ:" High Purity Natural Quartz for Industrial Uses".Part Ⅱ:High purity Natural Quartz Markets for Suppliers and Users. Quartz Technology.
    [221]Keller, P.,2001. Ekatite, (Fe3+, Fe2+, Zn)12(OH)6[AsO3]6[AsO3HOSiO3]2, a new mineral from Tsumeb, Namibia, and its crystal structure. Eur J Mineral, 13(4):769-777.
    [222]Kendrick, M.A., Honda, M., Gillen, D. et al.,2008. New constraints on regional brecciation in the Wernecke Mountains, Canada, from He, Ne, Ar, Kr, Xe, Cl, Br and I in fluid inclusions. Chemical Geology,255(1-2):33-46.
    [223]Kendrick, M.A., Mark, G, Phillips, D.,2007. Mid-crustal fluid mixing in a Proterozoic Fe oxide-Cu-Au deposit, Ernest Henry, Australia:Evidence from Ar, Kr, Xe, Cl, Br, and I. Earth and Planetary Science Letters,256(3-4):328-343.
    [224]Kim, S.J., Lee, H.K., Yin, J.W. et al.,2005. Chemistry and origin of monazites from carbonatite dikes in the Hongcheon-Jaeun district, Korea. Journal of Asian Earth Sciences,25(1):57-67.
    [225]Kin, F.D., Prudencio, M.I., Gouveia, M.A. et al.,1999. Determination of Rare Earth Elements in Geological Reference Materials:A Comparative Study by INAA and ICP-MS. Geostandards and Geoanalytical Research,23(1):47-58.
    [226]Klein, C., Hurlbut, C.S., Dana, J.D.,1998. Manual of Mineralogy (after James D. Dana),. John Wiley & Sons.
    [227]Klemme, S., Van Miltenburg, J.C.,2004. The entropy of zinc chromite (ZnCr2O4). Mineral Mag,68(3):515-522.
    [228]Kotzeva, B.G, Guillong, M., Stefanova, E. et al.,2009. LA-ICP-MS analysis of single fluid inclusions in a quartz crystal--A methodological survey. Journal of Geochemical Exploration,101(1):55-55.
    [229]Kouzmanov, K., Pettke, T., Heinrich, C.A.,2010. Direct Analysis of Ore-Precipitating Fluids:Combined IR Microscopy and LA-ICP-MS Study of Fluid Inclusions in Opaque Ore Minerals. Economic Geology,105(2):351-373.
    [230]Kuleshov, N.V., Mikhailov, V.P., Scherbitsky, V.G et al., Absorption and luminescence of tetrahedral Co2+ion in MgAl2O4. Journal of Luminescence, 55(5-6):265-269.
    [231]Kurosawa, M., Ishii, S., Sasa, K.,2008. Quantitative PIXE analyses of single fluid inclusions in quartz crystals with a 1.92-MeV tandetron. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,266(16):3633-3642.
    [232]Kurosawa, M., Shimano, S., Ishii, S. et al.,2003. Quantitative trace element analysis of single fluid inclusions by proton-induced X-ray emission (PIXE): application to fluid inclusions in hydrothermal quartz. Geochimica et Cosmochimica Acta,67(22):4337-4352.
    [233]Landtwing, M.R., Pettke, T.,2005. Relationships between SEM-cathodoluminescence response and trace-element composition of hydrothermal vein quartz. American Mineralogist,90(1):122-131.
    [234]Laneyrie, T.,2004. Correlation of brecciation and grade at Ernest Henry Fe-oxide-Cu-Au deposit. Honours Thesis, James Cook University, Townsville, 107 pp.
    [235]Large, D.J., MacQuaker, J., Vaughan, D.J. et al.,1995. Evidence for low-temperature alteration of sulfides in the Kupferschiefer copper deposits of southwestern Poland. Economic Geology,90(8):2143-2155.
    [236]Large, R.R., Maslennikov, V.V., Robert, F. et al.,2007. Multistage Sedimentary and Metamorphic Origin of Pyrite and Gold in the Giant Sukhoi Log Deposit, Lena Gold Province, Russia. Economic Geology,102(7): 1233-1267.
    [237]Larsen, R.B.,2002. The distribution of rare-earth elements in K-feldspar as an indicator of petrogenetic processes in granitic pegmatites:Examples from two pegmatite fields in southern Norway. Canadian Mineralogist,40(1):137-151.
    [238]Larsen, R.B., Jacamon, F., Kronz, A.,2009. Trace element chemistry and textures of quartz during the magmatic hydrothermal transition of Oslo Rift granites. Mineral Mag,73(4):691-707.
    [239]Lascelles, D.F.,2006. The genesis of the Hope Downs iron ore deposit, Hamersley Province, western Australia. Economic Geology,101(7):1359-1376.
    [240]Lavina, B., Reznitskii, L.Z., Bosi, F.,2003. Crystal chemistry of some Mg, Cr, V normal spinels from Sludyanka (Lake Baikal, Russia):the influence of V 3+on structural stability. Physics and Chemistry of Minerals,30(10):599-605.
    [241]Leccabue, F., Pelosi, C., Agostinelli, E. et al.,1986. Crystal growth, thermodynamical and structural study of CoGa2O4 and ZnCr2O4 single crystals. Journal of Crystal Growth,79(1-3):410-416.
    [242]Liebermann, R.C., Schreiber, E.,1969. Critical thermal gradients in the mantle. Earth and Planetary Science Letters,7(1):77-81.
    [243]Liu, Y., Hu, Z., Gao, S. et al.,2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,257(1-2):34-43.
    [244]Longerich, H.P., Jackson, S.E., Gunther, D.,1996. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry,11(9):899-904.
    [245]Lu, Q.-x.,2000. Siliceous cathoduluminescence and analysis of origion of ore materials for micro-fine disseminated gold deposits. Geoctectonica et Metalogenia,24(1):75-80.
    [246]Lucchesi, S., Russo, U., Della Giusta, A.,1999. Cation distribution in natural Zn-spinels; franklinite. Eur J Mineral,11(3):501-511.
    [247]Muller, A., WIEDENBECK, M., KERKHOF, A.M.V.D. et al.,2003a. Trace elements in quartz-a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. European Journal of Mineralogy,15(4):747-763.
    [248]Miiller, B., Axelsson, M.D., Ohlander, B.,2003b. Trace elements in magnetite from Kiruna, northern Sweden, as determined by LA-ICP-MS. GFF, 125(1):1-5.
    [249]Maas, R., McCulloch, M.T., Campbell, I.H. et al.,1987. Sm-Nd isotope systematics in uranium rare-earth element mineralization at the Mary Kathleen uranium mine, Queensland. Econ Geol,82(7):1805-1826.
    [250]Magalhaes, F., Pereira, M.C., Botrel, S.E.C. et al.,2007. Cr-containing magnetites Fe3-xCrxO4:The role of Cr3+ and Fe2+on the stability and reactivity towards H2O2 reactions. Applied Catalysis A:General,332(1):115-123.
    [251]Maier, W.D.,2005. Platinum-group element (PGE) deposits and occurrences: Mineralization styles, genetic concepts, and exploration criteria. Journal of African Earth Sciences,41(3):165-191.
    [252]Maqueen, K.G, Cross, A.J.,1998. Magnetite as a geochemical sampling medium:Application to skarn deposits. In:Eggleton, R.A. (Ed.), The state of the Regolith.Proceedings of the second Australian Conference on Landscape Evolution and Mineral Exploration, Special Publication No.20. Geological Society of Australia, Brisbane, pp.194-199.
    [253]Mark, D.B., David, A.J.,2000. Alternative brine sources for Fe-Oxide(-Cu-au) systems:implications for hydrothermal alteration and metals. Hydrothermal Iron Oxide Copper-Gold & Related Deposits:A Global Perspective,1. PGC Publishing, Adelide.
    [254]Mark, G,1999. Petrogenesis of Mesoproterozoic K-rich granitoids, southern Mt Angelay igneous complex, Cloncurry district, northwest Queensland. Australian Journal of Earth Sciences,46(6):933-949.
    [255]Mark, G,2001. Nd isotope and petrogenetic constraints for the origin of the Mount Angelay igneous complex:implications for the origin of intrusions in the Cloncurry district, NE Australia. Precambrian Research,105(1):17-35.
    [256]Mark, G, Carew, M., N.H.S.Oliver,2001. Fe Oxide and Cu-Au mineralisation in the Cloncurry district:implications for the nature and origin of Fe oxide Cu-Au mineralisation. In Mark, G, Oliver, N.H.S., Foster, D.R.W. (eds), Mineralisation, alteration and magmatism in the Eastern Fold Belt, Mont Isa Block, Australia:Geological Review and Field Guide. Geological Society of Australia Specialist Group in Economic Geology Publication,5:85-102.
    [257]Mark, G., Crookes, R.A.,1999. Epigeneti alteraion at the Ernest Henr Fe-oxide-(Cu-Au) deposit Australia. In Stanley et al.,(eds) Proceedings of the Fifth Biennial SGA meeting and the Tenth quadrennial IAGOD symposium,Mineral deposit;Processes to Proessing 5:185-188.
    [258]Mark, G., Crookes, R.A., Oliver, N.H.S. et al.,1999. Unpublished Results of the 1999 collaborative SPIRT research project:Characteristics and origin of the Ernest Henry Iron-oxide copper-gold hydrothermal system., Economic Geology Research Unit,School of Earth Sciences,James Cook University of North Queensland, Townsville.
    [259]Mark, G., Foster, D.R.W.,2000. Magmatic-hydrothermal albite-actinolite-apatite-rich rocks from the Cloncurry district, NW Queensland, Australia. Lithos,51(3):223-245.
    [260]Mark, G., Foster, D.R.W., Pollard, P.J. et al.,2004a. Stable isotope evidence for magmatic fluid input during large-scale Na-Ca alteration in the Cloncurry Fe oxide Cu-Au district, NW Queensland, Australia. Terra Nova,16(2):54-61.
    [261]Mark, G., Oliver, N., Williams, P.,2006a. Mineralogical and chemical evolution of the Ernest Henry Fe oxide-Cu-Au ore system, Cloncurry district, northwest Queensland, Australia. Mineralium Deposita,40(8):769-801.
    [262]Mark, G., Oliver, N.H.S., Carew, M.J.,2006b. Insights into the genesis and diversity of epigenetic Cu-Au mineralisation in the Cloncurry district, Mt Isa Inlier, northwest Queensland. Australian Journal of Earth Sciences,53(1): 109-124.
    [263]Mark, G., Oliver, N.H.S., J.williams, P. et al.,2000. The evolution of the Ernest Henry Fe-oxide-(Cu-Au) hydrothermal system. In:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold & Related Deposits:A Global Perspective. PGC Publishing, Adelide.
    [264]Mark, G., Oliver, N.H.S., Williams, P.J.,2006c. Mineralogical and chemical evolution of the Ernest Henry Fe oxide-Cu-Au ore system, Cloncurry district, northwest Queensland, Australia. Mineralium Deposita,40(8):769-801.
    [265]Mark, G., Pollard, P.,2006. Episodic, potassic, 'A-type' Mesoproterozoic magmatism in the mount isa inlier, NE Australia:A syn-tectonic origin? Geochimica Et Cosmochimica Acta,70(18):A393-A393.
    [266]Mark, G., Wilde, A., Oliver, N.H.S. et al.,2005a. Modeling outflow from the Ernest Henry Fe oxide Cu-Au deposit:implications for ore genesis and exploration. Journal of Geochemical Exploration,85(1):31-46.
    [267]Mark, G, Williams, P.J., Oliver, N.H.S. et al.,2005b. Fluid inclusion and stable isotope geochemistry of the Ernest Henry iron oxide-copper-gold deposit, Queensland, Australia. In, Mao, J. and Bierlien, F.P. eds., Mineral Deposit Research:Meeting the Global Challenge, Journal of Geochemical Exploration. Springer, Berlin, pp.785-788.
    [268]Mark, G, Williams, P.J., Ryan, C. et al.,2004b. A coupled microanalytical approach to resolving the origin of fluids and the genesis of ore formation in hydrothermal deposits.. Geological Soceity of Australia Abstracts,73:97.
    [269]Marschik, R., Fontbote, L.,2001a. The Candelaria-Punta del Cobre Iron Oxide Cu-Au (-Zn-Ag) deposits,Chile. Economic Geology,96:1799-1826.
    [270]Marschik, R., Fontbote, L.,2001b. The Candelaria-Punta del Cobre Iron Oxide Cu-Au(-Zn-Ag) Deposits, Chile. Economic Geology,96(8):1799-1826.
    [271]Marschik, R., Leveille, R.A., Martin, W.,2000. La Candelaria and the Punta del Cobre District,Chile:Early Cretaceous Iron-Oxide Cu-Au (-Zn-Ag) mineralization. In:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold & related deposits:A global perspective,Australian Mineral Foundation, Adelaide, pp.163-175.
    [272]Marshall, D.J.,1988. Cathodoluminescence of Geological Materials. Springer, Unwin Hyman.
    [273]Marshall, L.J.,2003. Brecciation within the Mary Kathleen Group of the Easterrn Succession, Mt Isa Block, Australia:implications of district-scale structural and metasoomatic processes for Fe-oxide-Cu-Au mineralisation. PhD Thesis, James Cook University, Townsville,323 pp.
    [274]Marshall, L.J., Oliver, N.H.S.,2004a. Examples of Dilational Fault Zone Brecciation and Veining in the Eastern Succession, Mt Isa Block, and Discussion of Genetic Mechanisms. Econ. Geol., in press.
    [275]Marshall, L.J., Oliver, N.H.S.,2004b. Examples of Dilational Fault Zone Brecciation and Veining in the Eastern Succession, Mt Isa Block, and Discussion of Genetic Mechanisms;. Economic geology, in press.
    [276]Marshall, L.J., Oliver, N.H.S.,2006. Monitoring fluid chemistry in iron oxide-copper-gold-related metasomatic processes, eastern Mt Isa Block, Australia. Geofluids,6(1):45-66.
    [277]Marshall, L.J., Oliver, N.H.S., Davidson, GJ.,2006. Carbon and oxygen isotope constraints on fluid sources and fluid-wallrock interaction in regional alteration and iron-oxide-copper-gold mineralisation, eastern Mt Isa Block, Australia. Mineralium Deposita,41(5):429-452.
    [278]Maslennikov, V.V., Maslennikova, S.P., Large, R.R. et al.,2009. Study of Trace Element Zonation in Vent Chimneys from the Silurian Yaman-Kasy Volcanic-Hosted Massive Sulfide Deposit (Southern Urals, Russia) Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). Economic Geology,104(8):1111-1141.
    [279]Mathison, C.I.,1975. Magnetites and ilmenites in the Somerset dam layered basic intrusion, southeastern Queensland. Lithos,8(2):93-111.
    [280]Mathur, S., Veith, M., Haas, M. et al.,2001. Single-Source Sol-Gel Synthesis of Nanocrystalline ZnAl2O4:Structural and Optical Properties. Journal of the American Ceramic Society,84(9):1921-1928.
    [281]McDonald, G.D., Collerson, K.D., Kinny, P.D.,1997. Late Archean and Early Proterozoic crustal evolution of the Mount Isa block, northwest Queensland, Australia. Geology,25(12):1095-1098.
    [282]Menini, L., da Silva, M.J., Lelis, M.F.F. et al.,2004. Novel solvent free liquid-phase oxidation of [beta]-pinene over heterogeneous catalysts based on Fe3-xMxO4 (M=Co and Mn). Applied Catalysis A:General,269(1-2):117-121.
    [283]Michel, J.,2009. Use of Breccias in IOCG (U) exploration. In:Mumin, L.C.a.H. (Ed.), Exploraing for Iron Oxide Copper-Gold Deposits:Canada and Global Analogues. Geological Association of Canada Short Course Notes 20, pp. 79-87.
    [284]Milliken, K., Laubach, S.,2000. Brittle deformation in sandstone diagenesis as revealed by scanned cathodoluminescence imaging with application to characterization of fractured reservoirs. In:Pagel, M., V.Barbin, P.Blanc, Ohnenstetter, D. (Eds.), Cathodoluminescence in geosciences. Springer-Verlag, Berlin, pp.225-244.
    [285]Miyoshi, N., Yamaguchi, Y, Makino, K.,2005. Successive zoning of Al and H in hydrothermal vein quartz. American Mineralogist,90(2-3):310-315.
    [286]Mokgalaka, N.S., Gardea-Torresdey, J.L.,2006. Laser Ablation Inductively Coupled Plasma Mass Spectrometry:Principles and Applications. Applied Spectroscopy Reviews,41(2):131-150.
    [287]Monecke, T., Bombach, G, Klemm, W. et al.,2000. Determination of Trace Elements in the Quartz Reference Material UNS-SpS and in Natural Quartz Samples by ICP-MS. Geostandards and Geoanalytical Research,24(1):73-81.
    [288]Monecke, T., Kempe, U., Gotze, J.,2002. Genetic significance of the trace element content in metamorphic and hydrothermal quartz:a reconnaissance study. Earth and Planetary Science Letters,202(3-4):709-724.
    [289]Monteiro, L., Xavier, R., de Carvalho, E. et al.,2008a. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajas Mineral Province, Brazil:paragenesis and stable isotope constraints. Mineralium Deposita,43(2):129-159.
    [290]Monteiro, L.V.S., Xavier, R.P., de Carvalho, E.R. et al.,2008b. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Caraja's Mineral Province, Brazil:paragenesis and stable isotope constraints. Mineralium Deposita,43(2):129-159.
    [291]Monteiro, L.V.S., Xavier, R.P., Hitzman, M.W. et al.,2008c. Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide-copper-gold deposit, Carajas Mineral Province, Brazil. Ore Geology Reviews,34(3):317-336.
    [292]Morey, A.A., Tomkins, A.G., Bierlein, F.P. et al.,2008. Bimodal Distribution of Gold in Pyrite and Arsenopyrite:Examples from the Archean Boorara and Bardoc Shear Systems, Yilgarn Craton, Western Australia. Economic Geology, 103(3):599-614.
    [293]Mortimer, GE., Cooper, J.A., Paterson, H.L. et al.,1988. Zircon U-Pb dating in the vicinity of the Olympic Dam Cu-U-Au deposit, Roxby Downs, South Australia. Economic Geology,83(4):694-709.
    [294]Mudd, G.M.,2000. Mound Springs of the Great Artesian Basin in South Australia:a case study from Olympic Dam. Environmental Geology,39(5): 463-476.
    [295]Mulaba-Bafubiandi, A.F., Pollak, H., Mashlan, M. et al.,2001. Technical note a fast determination of ratio in industrial minerals. Minerals Engineering, 14(4):445-448.
    [296]Muller, A., Welch, M.D.,2009. Frontiers in Quartz Research:Preface. Mineral Mag,73(4):517-518.
    [297]Muller, A., Wiedenbeck, M., Kerkhof, A.M.V.D. et al.,2003a. Trace elements in quartz-a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. Eur J Mineral,15(4):747-763.
    [298]Muller, B., Axelsson, M.D., Ohlander, B.,2003b. Trace elements in magnetite from Kiruna, northern Sweden, as determined by LA-ICP-MS. Gff, 125:1-5.
    [299]Mumme, W.G., Sparrow, GJ., Walker, G.S.,1988. Roxbyite, a new copper sulphide mineral from the Olympic Dam deposit, Roxby Downs, South Australia. Mineralogical Magazine,52:323-330.
    [300]Nadoll, P.,2009. Advances in LA-ICP-MS Analyses on Magnetite. Geoanalysis 2009:Abstract book and final programme.
    [301]Nadoll, P.,2010. Geochemistry of magnetite from hydrothermal ore deposits and host rocks- case studies from the Proterozoic Belt Supergroup, Cu-Mo-porphyry+ skarn and Climax-Mo deposits in the western United States. Unpublished PhD thesis Thesis, The Uiversity of Auckland, Auckland.
    [302]Nejad, M.A., Jonsson, M.,2004. Reactivity of hydrogen peroxide towards Fe3O4, Fe2CoO4 and Fe2Ni04. Journal of Nuclear Materials,334(1):28-34.
    [303]Nickel, E.H.,1973. The new mineral cuprospinel (CuFe2O4) and other spinels from an oxidized ore dump at Baie Verte, Newfoundland. Can Mineral, 11(5):1003-1007.
    [304]Niiranen, T.,2005. Iron Oxide-Copper-Gold Deposits in Finland:case studies from the Perapohja Schist belt and the Central Lapland greenstone belt, Univeristy of Helsinki,27 pp.
    [305]Niiranen, T., Manttari, I., Poutiainen, M. et al.,2005. Genesis of Palaeoproterozoic iron skarns in the Misi region, northern Finland. Mineralium Deposita,40(2):192-217.
    [306]Niiranen, T., Poutiainen, M., Manttari. I.,2007. Geology, geochemistry, fluid inclusion characteristics, and U-Pb age studies on iron oxide-Cu-Au deposits in the Kolari region, northern Finland. Ore Geology Reviews,30(2):75-105.
    [307]NIST, Standard Reference Materials
    [308]Nitta, T., Terada, Z., HAYAKAWA, S.,1980. Humidity-Sensitive Electrical Conduction of MgCr2O4-TiO2 Porous Ceramics. Journal of the American Ceramic Society,63(5-6):295-300.
    [309]Nockolds, S.E.,1966. The behaviour of some elements during fractional crystallization of magma. Geochimica et Cosmochimica Acta,30(3):267-278.
    [310]Norman, J.C., Haskin, L.A.,1968. The geochemistry of Sc:A comparison to the rare earths and Fe. Geochimica et Cosmochimica Acta,32(1):93-108.
    [311]Norman, M., Pearson, N., Sharma, A. et al.,1996. Quantitative analysis of trace elements in geological materials by laser ablation icpms:instrumental operating conditions and calibration values of NIST glasses. Geostandards and Geoanalytical Research,20(2):247-261.
    [312]Norman, M.D., Griffin, W.L., Pearson, N.J. et al.,1998. Quantitative analysis of trace element abundances in glasses and minerals:a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. Journal of Analytical Atomic Spectrometry,13:477-482.
    [313]Nystrom, J.O., Billstrom, K., Henriquez, F. et al.,2008. Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden. Gff,130:177-188.
    [314]Nystrom, J.O., Henriquez, F.,1994. Magmatic Features of Iron-Ores of the Kiruna Type in Chile and Sweden-Ore Textures and Magnetite Geochemistry. Economic Geology and the Bulletin of the Society of Economic Geologists, 89(4):820-839.
    [315]Nystrom, J.O., Henriquez, F.,1995. Magmatic Features of Iron-Ores of the Kiruna Type in Chile and Sweden-Ore Textures and Magnetite Geochemistry-a Reply. Economic Geology and the Bulletin of the Society of Economic Geologists,90(2):473-475.
    [316]O'Driscoll, E.S.T.,1986. Observations of the Lineament-Ore Relation. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,317(1539):195-218.
    [317]O'Horo, M.P., Frisillo, A.L., White, W.B.,1973. Lattice vibrations of MgAl2O4 spinel. Journal of Physics and Chemistry of Solids,34(1):23-28.
    [318]O'Neill, H.S.C.,1992. Temperature dependence of the cation distribution in zinc ferrite (ZnFe2O4) from powder XRD structural refinements. Eur J Mineral, 4(3):571-580.
    [319]O'Neill, H.S.C., Annersten, H., Virgo, D.,1992. The temperature dependence of the cation distribution in magnesioferrite (MgFe2O4) from powder XRD structural refinements and Moessbauer spectroscopy. American Mineralogist, 77(7-8):725-740.
    [320]O'Neill, H.S.C., Dollase, W.A.,1994. Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4. Physics and Chemistry of Minerals,20(8):541-555.
    [321]O'Neill, H.S.C., Redfern, S.A.T., Kesson, S. et al,2003. An in situ neutron diffraction study of cation disordering in synthetic qandilite Mg2TiO4 at high temperatures. American Mineralogist,88(5-6):860-865.
    [322]O'Reilly, W.,1976. Magnetic minerals in the crust of the Earth. Reports on Progress in Physics,39(9):857.
    [323]O'Reilly, W.,1983. The identification of titanomaghemites:Model mechanisms for the maghemitization and inversion processes and their magnetic consequences. Physics of The Earth and Planetary Interiors,31(1):65-76.
    [324]Obermayer, H.A., Dachs, H., Schrocke, H.,1973. Investigations concerning the coexistence of two magnetic phases in mixed crystals (Fe, Mn)W04. Solid State Communications,12(8):779-784.
    [325]Oliveira, L.C.A., Fabris, J.D., Rios, R.R.V.A. et al.,2004. Fe3-xMnxO4 catalysts:phase transformations and carbon monoxide oxidation. Applied Catalysis A:General,259(2):253-259.
    [326]Oliver, N.H.S.,1995. Hydrothermal History of the Mary-Kathleen Fold Belt, Mt Isa-Block, Queensland. Australian Journal of Earth Sciences,42(3):267-279.
    [327]Oliver, N.H.S., Butera, K.M., Rubenach, M.J. et al.,2008. The protracted hydrothermal evolution of the Mount Isa Eastern Succession:A review and tectonic implications. precambrian Research,163(1-2):108-130.
    [328]Oliver, N.H.S., Cleverley, J.S., Mark, G. et al.,2004. Modeling the Role of Sodic Alteration in the Genesis of Iron Oxide-Copper-Gold Deposits, Eastern Mount Isa Block, Australia. Economic Geology,99(6):1145-1176.
    [329]Oliver, N.H.S., Cleverley, J.S., Mark, G, Pol-lard, P.J., Fu, B., Marshall, L.J., Rubenach, M.J., Williams, P.J., Baker, T,2004. Mode-ling the role of sodic alteration in the genesis of iron oxide-copper-gold deposits, Eastern Mount Isa Block, Australia. Economic Geology,99:1145-1176.
    [330]Oliver, N.H.S., Dickens, G.R., Dipple, GM.,2006a. Oxygen isotope study of infiltration of heated meteoric water to form giant Hamersley iron ores. Geochimica Et Cosmochimica Acta,70(18):A457-A457.
    [331]Oliver, N.H.S., J.Rubenach, M., Centre, P.M.D.C.R.,2009a. Distunguishing Basinal- and Magmatic-Hydrothermal IOCG deposits, Cloncurry District,Northern Australia. Smart sciences for exploration and mining-Proceedings of the 10th Biennial SGA meeting.Townsville,2:647-649.
    [332]Oliver, N.H.S., McLellan, J.G., Hobbs, B.E. et al.,2006b. Numerical models of extensional deformation, heat transfer, and fluid flow across basement-cover interfaces during basin-related mineralization. Economic Geology,101(1):1-31.
    [333]Oliver, N.H.S., Pearson, P.J., Holcombe, R.J. et al.,1999. Mary Kathleen metamorphic-hydrothermal uranium-rare-earth element deposit:ore genesis and numerical model of coupled deformation and fluid flow. Australian Journal of Earth Sciences,46(3):467-483.
    [334]Oliver, N.H.S., Rubenach, M.J., Fu, B. et al.,2006c. Granite-related overpressure and volatile release in the mid crust:fluidized breccias from the Cloncurry District, Australia. Geofluids,6(4):346-358.
    [335]Oliver, N.H.S., Rusk, B.G., Ryan, L. et al.,2009b. The 10th Biennial SGA Meeting Field Guide:Copper-and Iron-Oxide-Cu-Au deposits, and Their Associated Alteration and Brecciation, Mount Isa Block. Economic Geology Research Unit, James Cook University, Townsville.
    [336]Oreskes, N., Einaudi, M.T.,1990. Origin of rare earth element-enriched hematite breccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia. Economic Geology,85(1):1-28.
    [337]Oreskes, N., Einaudi, M.T.,1992. Origin of hydrothermal fluids at Olympic Dam; preliminary results from fluid inclusions and stable isotopes. Economic Geology,87(1):64-90.
    [338]Orihashi, Y., Nakai, S., Hirata, T.,2008. U-Pb Age Determination for Seven Standard Zircons using Inductively Coupled Plasma-Mass Spectrometry Coupled with Frequency Quintupled Nd-YAG (γ=213 nm) Laser Ablation System:Comparison with LA-ICP-MS Zircon Analyses with a NIST Glass Reference Material. Resource Geology,58(2):101-123.
    [339]Otake, T., Wesolowski, D.J., Anovitz, L.M. et al.,2010. Mechanisms of iron oxide transformations in hydrothermal systems. Geochimica Et Cosmochimica Acta,74(21):6141-6156.
    [340]Ozdemir, O.,1987. Inversion of titanomaghemites. Physics of The Earth and Planetary Interiors,46(1-3):184-196.
    [341]P.J.Williams, Kendrick, M.A., Xavier, R.P.,2010. Sources of ore fluid components in IOCG deposits; in Porter,T.M.,(ed),Hydrothermal Iron Oxide Coper-Gold &Related deposits:A Global Perspective V3-Advances in the understanding of IOCG deposits;PGC Bublihing, Adelaide, in press.
    [342]Page, R.W.,1983. Timing of Superposed Volcanism in the Proterozoic Mount Isa Inlier, Australia. Precambrian Research,21(3-4):223-245.
    [343]Page, R.W., Sun, S.-S.,1998a. Aspects of geochronology and crustal evolution in the Eastern Fold Belt, Mt Isa Inlier. Australian Journal of Earth Sciences:An International Geoscience Journal of the Geological Society of Australia,45(3):343-361.
    [344]Page, R.W., Sun, S.S.,1998b. Aspects of geochronology and crustal evolution in the Eastern Fold Belt, Mt Isa Inlier. Australian Journal of Earth Sciences,45(3):343-361.
    [345]Palin, E.J., Walker, A.M., Harrison, R.J.,2008. A computational study of order-disorder phenomena in Mg2TiO4 spinel (qandilite). American Mineralogist, 93(8-9):1363-1372.
    [346]Pan, Y., Nilges, M.J., Mashkovtsev, R.I.,2009. Radiation-induced defects in quartz:a multifrequency EPR study and DFT modelling of new peroxy radicals. Mineral Mag,73(4):519-535.
    [347]Papike, J.J., Karner, J.M., Shearer, C.K.,2004. Comparative planetary mineralogy:V/(Cr+Al) systematics in chromite as an indicator of relative oxygen fugacity. American Mineralogist,89(10):1557-1560.
    [348]Parnell, J., Carey, P.F., Monson, B.,1996. Fluid inclusion constraints on temperatures of petroleum migration from authigenic quartz in bitumen veins. Chemical Geology,129(3-4):217-226.
    [349]Parsons, I.,2010. Feldspars defined and described:a pair of posters published by the Mineralogical Society. Sources and supporting information. Mineral Mag,74(3):529-551.
    [350]Parsons, I., Magee, C.W., Allen, C.M. et al.,2009. Mutual replacement reactions in alkali feldspars Ⅱ:trace element partitioning and geothermometry. Contributions to Mineralogy and Petrology,157(5):663-687.
    [351]Pearce, N.J., Perkins, W.T., Westgate, J.A. et al.,1997a. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards and Geoanalytical Research, 21(1):115-144.
    [352]Pearce, N.J.G., Perkins, W.T., Westgate, J.A. et al.,1997b. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter-the Journal of Geostandards and Geoanalysis,21(1):115-144.
    [353]Pearson, N.J., Alard, O., Griffin, W.L. et al.,2002. In situ measurement of Re-Os isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry:analytical methods and preliminary results. Geochimica et Cosmochimica Acta,66(6):1037-1050.
    [354]Peng, H.-j., Wang, X.-w., Tang, J.-x. et al.,2010. The application of quartz cathodoluminescence in study of igneous rock. Rock and Mineral Analysis, 29(2):153-160.
    [355]Perkins, W.G., Bell, T.H.,1998. Stratiform replacement lead-zinc deposits:A comparison between Mount Isa, Hilton, and McArthur River. Economic Geology and the Bulletin of the Society of Economic Geologists,93(8): 1190-1212.
    [356]Perring, C.S., Pollard, P.J., Dong, G. et al.,2000a. The Lightning Creek sill complex, Cloncurry district, northwest Queensland:A source of fluids for Fe oxide Cu-Au mineralization and sodic-calcic alteration. Economic Geology and the Bulletin of the Society of Economic Geologists,95(5):1067-1089.
    [357]Perring, C.S., Pollard, P.J., Dong, G. et al.,2000b. The Lightning Creek Sill Complex, Cloncurry District, Northwest Queensland:A Source of Fluids for Fe Oxide Cu-Au Mineralization and Sodic-Calcic Alteration. Economic Geology, 95(5):1067-1089.
    [358]Perring, C.S., Pollard, P.J., Nunn, A.J.,2001. Petrogenesis of the Squirrel Hills granite and associated magnetite-rich sill and vein complex:Lightning creek prospect, Cloncurry district, Northwest Queensland, precambrian Research, 106(3-4):213-238.
    [359]Petric, A., Jacob, K.T.,1982. Thermodynamic Properties of Fe3O4-FeV2O4 and Fe3O4-FeCr2O4 Spinel Solid Solutions. Journal of the American Ceramic Society,65(2):117-123.
    [360]Pettke, T., Diamond, L.W.,1995. RbSr isotopic analysis of fluid inclusions in quartz:Evaluation of bulk extraction procedures and geochronometer systematics using synthetic fluid inclusions. Geochimica et Cosmochimica Acta, 59(19):4009-4027.
    [361]Piekarczyk, W.,1988. Thermodynamic model of chemical vapour transport and its application to some ternary compounds:II. Application of the model to the complex oxides:ZnCr2O4, Y3Fe5O12 and Fe2TiO5. Journal of Crystal Growth, 89(2-3):267-286.
    [362]Pimentel, M.M., Lindenmayer, Z.G., Laux, J.H. et al.,2003. Geochronology and Nd isotope geochemistry of the Gameleira Cu-Au deposit, Serra dos Carajais, Brazil:1.8-1.7 Ga hydrothermal alteration and mineralization. Journal of South American Earth Sciences,15(7):803-813.
    [363]Pinckney, D.M., Haffty, J.,1970. Content of zinc and copper in some fluid inclusions from the Cave-in-Rock District, southern Illinois. Economic Geology, 65(4):451-458.
    [364]Polito, P.A., Kyser, T.K., Stanley, C.,2009. The Proterozoic, albitite-hosted, Valhalla uranium deposit, Queensland, Australia:a description of the alteration assemblage associated with uranium mineralisation in diamond drill hole V39. Mineralium Deposita,44(1):11-40.
    [365]Pollard, D.P.,2000. Evidence of a Magmatic Fluid Source for Iron Oxide-Cu-Au Mineralisation. In:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits:A Global Perspective. PGC Publishing, Adelaide, pp.27-41.
    [366]Pollard, P., McNaughton, N.,1997. U/Pb geochronology and Sm/Nd isotope characterization of Proterozoic intrusive rocks in the Cloncurry district, Mount Isa inlier, Australia. AMIRA Project P438 Cloncurry Base Metals and Gold Annual Report, September 1997;Section 4.
    [367]Pollard, P.J.,2001. Sodic(-calcic) alteration in Fe-oxide-Cu-Au districts:an origin via unmixing of magmatic H2O-CO2-NaCl+/-CaCl2-KCl fluids. Mineralium Deposita,36(1):93-100.
    [368]Pollard, P.J.,2006. An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold (IOGG) provinces. Mineralium Deposita,41(2): 179-187.
    [369]Pollard, P.J., Mark, G., Mitchell, L.C.,1998. Geochemistry of post-1540 Ma granites in the Cloncurry district, northwest Queensland. Economic Geology and the Bulletin of the Society of Economic Geologists,93(8):1330-1344.
    [370]Porter,2000a. In:Porter, T.M. (Ed.), Hydrothermal iron oxide copper-gold & related topics:a global perspective PGC Publishing, Adelaide, pp.349.
    [371]Porter,2002. In:Porter, T.M. (Ed.), Hydrothermal iron oxide copper-gold & related topics:a global perspective PGC Publishing, Adelaide, pp.377.
    [372]Porter, T.M.M.,2000b. Hydrothermal iron-oxide Copper-gold and related ore deposits. In:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits:A Global Perspective. PGC Publishing, Adelaide, pp.3-6.
    [373]Prichard, H.M., Hutchinson, D., Fisher, P.C.,2004. Petrology and Crystallization History of Multiphase Sulfide Droplets in a Mafic Dike from Uruguay:Implications for the Origin of Cu-Ni-PGE Sulfide Deposits. Economic Geology,99(2):365-376.
    [374]Rosler, H.J.,1981. Lehrbuch der mineralogie.2.aufl., VEB Deutscher Verlag Fur Grundstoffindustrie, Leipzig, Germany.833.
    [375]Raiswell, R., Plant, J.,1980. The incorporation of trace elements into pyrite during diagenesis of black shales, Yorkshire, England. Economic Geology,75(5): 684-699.
    [376]Raju, P.V.S., Barnes, S.-J., Savard, D.,2010. Using Magnetite as an Indicator Mineral,Step 1:Calibration of LA-ICP-MS,11th International Platinum Symposium.
    [377]Ramankutty, C.G., Sugunan, S., Thomas, B.,2002. Study of cyclohexanol decomposition reaction over the ferrospinels, A1-xCuxFe2O4 (A=Ni or Co and x=0,0.3,0.5,0.7 and 1), prepared by [']soft' chemical methods. Journal of Molecular Catalysis A:Chemical,187(1):105-117.
    [378]Ray, G.E., Dick, L.A.,2002. The Productora prospect in north-central Chile: An example of an intrusion-related, Candelaria type Fe-Cu-Au hydrothermal system. In:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits:A Global Perspective. PGC Publishing, Adelaide, pp.131-151.
    [379]Reeder, R.J.,1996. Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochimica et Cosmochimica Acta, 60(9):1543-1552.
    [380]Rehkamper, M., Schonbachler, M., Stirling, C.H.,2001. Multiple Collector ICP-MS:Introduction to Instrumentation, Measurement Techniques and Analytical Capabilities. Geostandards and Geoanalytical Research,25(1):23-40.
    [381]Requia, K., Fontbote, L.,2000. The Salobo Iron Oxide Copper-Gold deposit,Carajas,Nothern Brasil. In:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold & related deposits:A global perspective,Australian Mineral Foundation, Adelaide, pp.225-236.
    [382]Ribeiro, A.A., Suita, M.T.F., Sial, A.N. et al.,2009. Lithogeochemistry and stable isotopic geology (C,S,O) of the Cristalino Cu(Au) Deposit, an archean IOCGtype, Carajas Province, Para, Brazil, Goldschmidt Conference, pp. A1096.
    [383]Ringwood, A.E.,1955. The principles governing trace element distribution during magmatic crystallization Part Ⅰ:The influence of electronegativity. Geochimica et Cosmochimica Acta,7(3-4):189-202.
    [384]Roberts, D.E., Hudson, G.R.T.,1983. The Olympic Dam copper-uranium-gold deposit, Roxby Downs, South Australia. Economic Geology,78(5):799-822.
    [385]Ross, V.F.,1957. Geochemistry, crystal structure and mineralogy of the sulfides. Economic Geology,52(7):755-774.
    [386]Rossiter, M.J., Clarke, P.T.,1965. Cation Distribution in Ulvospinel Fe2Ti04. Nature,207(4995):402-402.
    [387]Rossman, G.R., Weis, D., Wasserburg, GJ.,1987. Rb, Sr, Nd and Sm concentrations in quartz. Geochimica et Cosmochimica Acta,51(9):2325-2329.
    [388]Rotherham, J.F.,1997. A metasomatic origin for the iron-oxide Au-Cu Starra orebodies, Eastern Fold Belt, Mount Isa Inlier. Mineralium Deposita,32(3): 205-218.
    [389]Rotherham, J.F., Blake, K.L., Cartwright, I., and Williams, P.J.,1998. Stable isotope evidence for the origin of the Starra Au-Cu deposit,Cloncurry district. Economic Geology,93:1435-1449.
    [390]Rubenach, M.J.,2005. Relative timing of albitization and chlorine enrichment in biotite in Proterozoic schists, Snake Creek Anticline, Mount Isa Inlier, northeastern Australia. Canadian Mineralogist,43:349-366.
    [391]Rubenach, M.J., Barker, A.J.,1998. Metamorphic and metasomatic evolution of the Snake Creek Anticline, Eastern Succession, Mt Isa Inlier. Australian Journal of Earth Sciences,45(3):363-372.
    [392]Rubenach, M.J., Foster, D.R.W., Evins, P.M. et al.,2008. Age constraints on the tectonothermal evolution of the Selwyn Zone, Eastern Fold Belt, Mount Isa Inlier. precambrian Research,163(1-2):81-107.
    [393]Rubenach, M.J., Lewthwaite, K.A.,2002. Metasomatic albitites and related biotite-rich schists from a low-pressure polymetamorphic terrane, Snake Creek Anticline, Mount Isa Inlier, north-eastern Australia:microstructures and P-T-d paths. Journal of Metamorphic Geology,20(1):191-202.
    [394]Rusk, B., Oliver, N., Blenkinsop, T. et al.,2011. Physical and Chemical Characteristics of the Ernest Henry Iron Oxide Copper Gold Deposit, Cloncurry, Queensland, Australia; Implications for IOCG Genesis In:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits:A Global Perspective. PGC Publishing, Adelaide, pp. in press.
    [395]Rusk, B., Oliver, N., Blenkinsop, T. et al.,2010a. Physical and Chemical Characteristics of the Ernest Henry Iron Oxide Copper Gold Deposit, Cloncurry, Queensland, Australia; implications for IOCG Genesis In:Porter, T.M.E. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits:A Global Perspective, volume 3, Advances in the Understanding of IOCG Deposits. PGC Publishing, Adelaide, pp. in press.
    [396]Rusk, B., Reed, M.,2002. Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology, 30(8):727-730.
    [397]Rusk, B.G., Lowers, H.A., Reed, M.H.,2008. Trace elements in hydrothermal quartz:Relationships to cathodoluminescent textures and insights into vein formation. Geology,36(7):547-550.
    [398]Rusk, B.G., Oliver, N.H.S., BROWN, A.,2009a. Barren magntite breccias in the Cloncurry region,Australia;comparisons to IOCG deposits.In Geological Society of America Abstracts with Programs, Portland.Vol.41, No.7, p.85. Smart sciences for exploration and mining-Proceedings of the 10th Biennial SGA meeting.Townsville,2:656-658.
    [399]Rusk, B.G, Oliver, N.H.S., Brown, A. et al.,2009b. Barren magntite breccias in the Cloncurry region,Australia;comparisons to IOCG deposits Smart sciences for exploration and mining-Proceedings of the 10th Biennial SGA meeting.Townsville, pp.656-658.
    [400]Rusk, B.G, Oliver, N.H.S., Brown, A. et al.,2009c. Barren magntite breccias in the Cloncurry region,Australia;comparisons to IOCG deposits Smart sciences for exploration and mining-Proceedings of the 10th Biennial SGA meeting.Townsville,2:656-658.
    [401]Rusk, B.G, Oliver, N.H.S., Feltrin, L. et al.,2009d. From exploration to mining:new geological strategies for sustaining high levels of copper production from the Mount Isa district, Economic Geology Research Unit, School of Earth & Environmental Sciences, James Cook University, Townsville.
    [402]Rusk, B.G., Oliver, N.H.S., Feltrin, L. et al.,2010b. From exploration to mining:new geological strategies for sustaining high levels of copper production from the Mount Isa district, Townsville.
    [403]Rusk, B.G, Reed, M.H., Dilles, J.H. et al.,2006. Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. American Mineralogist,91(8-9):1300-1312.
    [404]Rusk, B.G, Reed, M.H., Dilles, J.H. et al.,2004. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT. Chemical Geology, 210(1-4):173-199.
    [405]Ryall, W.R.,1977. Anomalous trace elements in pyrite in the vicinity of mineralized zones at Woodlawn, N.S.W., Australia. Journal of Geochemical Exploration,8(1-2):73-83.
    [406]Ryan, A.,1998. Ernest Henry copper-gold deposit.. In:Berkman, D., Mackenzie, D. (Eds.), Geology of Australian and Papua New Guinean Mineral Deposits. Australasian Inst Mining Metal pp.759-768
    [407]Sack, R.O.,1982. Spinels as petrogenetic indicators:Activity-composition relations at low pressures. Contributions to Mineralogy and Petrology,79(2): 169-186.
    [408]Saric, N., Kreft, C., Huete, C.,2003. Geology of Lo Aguirre copper deposit, Chile. Revista Geologica De Chile,30(2):317-331.
    [409]Sartale, S.D., Lokhande, C.D.,2001. Electrochemical deposition and oxidation of CuFe2 alloy:a new method to deposit CuFe2O4 thin films at room temperature. Materials Chemistry and Physics,70(3):274-284.
    [410]Scott, K.M., Taylor, GF.,1987. The Oxidized Profile of Bif-Associated Pb-Zn Mineralization-Pegmont, Northwest Queensland, Australia. Journal of Geochemical Exploration,27(1-2):103-124.
    [411]Selvan, R.K., Augustin, C.O., Berchmans, L.J. et al.,2003. Combustion synthesis of CuFe2O4. Materials Research Bulletin,38(1):41-54.
    [412]Sener, A.K., Grainger, C.J., Groves, D.I.,2002. Epigenetic gold-platinum-group element deposits:examples from Brazil and Australia. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science,111:B65-B73.
    [413]Seyedolali, A., Krinsley, D.H., Boggs, S. et al.,1997. Provenance interpretation of quartz by scanning electron microscope-cathodoluminescence fabric analysis. Geology,25(9):787-790.
    [414]Shaw, D.M.,1961. Element distribution laws in geochemistry. Geochimica et Cosmochimica Acta,23(1-2):116-134.
    [415]Sileo, E.E., Alvarez, M., Rueda, E.H.,2001. Structural studies on the manganese for iron substitution in the synthetic goethite-jacobsite system. International Journal of Inorganic Materials,3(4-5):271-279.
    [416]Sillitoe, R.H.,2003. Iron oxide-copper-gold deposits:an Andean view. Mineralium Deposita,38(7):787-812.
    [417]Sillitoe, R.H., Burrows, D.R.,2002. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Economic Geology and the Bulletin of the Society of Economic Geologists,97(5):1101-1109.
    [418]Sillitoe, R.H., Burrows, D.R.,2003. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile-A reply. Economic Geology and the Bulletin of the Society of Economic Geologists,98(7): 1501-1502.
    [419]Sim, F., Catlow, C.R.A.,1989. Mott-littleton calculations on defects in a-quartz. International Journal of Quantum Chemistry,36(S23):651-675.
    [420]Simmons, S.F., Browne, P.R.L.,2000. Hydrothermal Minerals and Precious Metals in the Broadlands-Ohaaki Geothermal System:Implications for Understanding Low-Sulfidation Epithermal Environments. Economic Geology, 95(5):971-999.
    [421]Singer, D.A.,1995. World-Class Base and Precious-Metal Deposits-a Quantitative-Analysis. Economic Geology and the Bulletin of the Society of Economic Geologists,90(1):88-104.
    [422]Singletary, S.J., Grove, T.L.,2008. Experimental petrology of the Mars Pathfinder rock composition:Constraints on the interpretation of Martian reflectance spectra. Journal of Geophysical Research-Planets,113(E11):-.
    [423]Singoyi, B., Danyushevsky, L., Davidson, G. et al.,2006. Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique., SEG Keystone Conference. CD-ROM, Denver,USA.
    [424]Skirrow, R.G., Bastrakov, E.N., Baroncii, K. et al.,2007. Timing of iron oxide Cu-Au-(U) hydrothermal activity and Nd isotope constraints on metal sources in the Gawler craton, south Australia. Economic Geology,102(8): 1441-1470.
    [425]Slaby, E., Gotze, J.,2004. Feldspar crystallization under magma-mixing conditions shown by cathodoluminescence and geochemical modelling-a case study from the Karkonosze pluton (SW Poland). Mineral Mag,68(4):561-577.
    [426]Slaby, E., Lensch, G, Mihm, A.,1989. Alkali Metasomatism of Plagiaplites from Tholey (Saarland, W-Germany).2. Fe-Ti Oxides. Neues Jahrbuch Fur Mineralogie-Abhandlungen,160(1):83-91.
    [427]Slaby, E., Seltmann, R., Kober, B. et al.,2007. LREE distribution patterns in zoned alkali feldspar megacrysts from the Karkonosze pluton, Bohemian Massif implications for parental magma composition. Mineral Mag,71(2):155-178.
    [428]Slonczewski, J.C.,1958. Origin of Magnetic Anisotropy in Cobalt-Substituted Magnetite. Physical Review,110(6):1341-1348.
    [429]Smith, J.V.,2005. Geochemical Influences on Life's Origins and Evolution. ELEMENTS,1(3):151-156.
    [430]Smith, M., Chengyu, W.,2000. The Geology and Genesis of the Bayan Obo Fe-Ree-Nb Deposit:A Review. In:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits:A Global Perspective. PGC Publishing, Adelaide, pp.271-281.
    [431]Smith, M., Coppard, J., Herrington, R. et al.,2007. The geology of the Rakkurijarvi Cu-(Au) prospect, Norrbotten:A new iron oxide-copper-gold deposit in northern Sweden. Economic Geology,102(3):393-414.
    [432]Smith, M.P., Storey, C.D., Jeffries, T.E. et al.,2009a. In Situ U-Pb and Trace Element Analysis of Accessory Minerals in the Kiruna District, Norrbotten, Sweden:New Constraints on the Timing and Origin of Mineralization. Journal of Petrology,50(11):2063-2094.
    [433]Smith, M.P., Storey, C.D., Jeffries, T.E. et al.,2009b. In Situ U-Pb and Trace Element Analysis of Accessory Minerals in the Kiruna District, Norrbotten, Sweden:New Constraints on the Timing and Origin of Mineralization. Journal of Petrology,50(11):2063-2094.
    [434]So, C.S.,1978. Geochemistry and Origin of Amphibolite and Magnetite from Yangyang Iron Deposit in Gyeonggi Metamorphic Complex, Republic-of-Korea. Mineralium Deposita,13(1):105-117.
    [435]Spikings, R.A., Foster, D.A., Kohn, B.P. et al.,2001. Post-orogenic (<1500 Ma) thermal history of the proterozoic Eastern Fold Belt, Mount Isa Inlier, Australia. Precambrian Research,109(1-2):103-144.
    [436]Spry, P.G.,1987. Compositional zoning in zincian spinel. Can Mineral,25(1): 97-104.
    [437]Stavast, W.J.A., Keith, J.D., Christiansen, E.H. et al.,2006. The Fate of Magmatic Sulfides During Intrusion or Eruption, Bingham and Tintic Districts, Utah. Economic Geology,101(2):329-345.
    [438]Stevens-Kalceff, M.A.,2009. Cathodoluminescence microcharacterization of point defects in{alpha}-quartz. Mineral Mag,73(4):585-605.
    [439]Suk, D.W., Vandervoo, R., Peacor, D.R.,1993. Origin of Magnetite Responsible for Remagnetization of Early Paleozoic Limestones of New-York-State. Journal of Geophysical Research-Solid Earth,98(B1):419-434.
    [440]Suttner, L.J., Leininger, R.k.,1972. Comparison of the Trace Element Content of Plutonic, Volcanic, and Metamorphic Quartz from Southwestern Montana. Geological Society of America Bulletin,83(6):1855-1862.
    [441]Sutton, S.R., Delaney, J.S., Smith, J.V. et al.,1987. Copper and nickel partitioning in iron meteorites. Geochimica et Cosmochimica Acta,51(10): 2653-2662.
    [442]Sylvester, P.J.,2008. LA-(MC)-ICP-MS Trends in 2006 and 2007 with Particular Emphasis on Measurement Uncertainties. Geostandards and Geoanalytical Research,32(4):469-488.
    [443]Tallarico, F.H.B., Figueiredo, B.R., Groves, D.I. et al.,2005. Geology and SHRIMP U-Pb geochronology of the Igarape Bahia deposit, Carajas Copper-Gold belt, Brazil:An Archean (2.57 Ga) example of iron-oxide Cu-Au-(U-REE) mineralization. Economic Geology,100(1):7-28.
    [444]Tazava, E., Oliveira, C.Gd.,2000. The Igarape Bahia Au-Cu-(REE-U) Deposit, Carajas Mineral Province, Northern Brazil. In:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits:A Global Perspective. PGC Publishing, Adelaide, pp.203-212.
    [445]Tischendorf, G., Forster, H.-J., Gottesmann, B.,2001. Minor- and trace-element composition of trioctahedral micas:a review. Mineral Mag,65(2): 249-276.
    [446]Torab, F.M., Lehmann, B.,2007. Magnetite-apatite deposits of the Bafq district, Central Iran:apatite geochemistry and monazite geochronology. Mineralogical Magazine,71(3):347-363.
    [447]Twyerould, S.C.,1997. The geology and genesis of the Ernest Henry Fe-Cu-Au deposit, Northwest Queensland, Australia:Unpublished PhD thesis thesis, University of Oregon.
    [448]Ulrich, T., Gunther, D., Heinrich, C.A.,2002. Evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions:Bajo de la Alumbrera, Argentina (vol 96, pg 1743,2001). Economic Geology and the Bulletin of the Society of Economic Geologists,97(8):1863-+.
    [449]Ulrich, T., Heinrich, C.A.,2002. Geology and alteration geochemistry of the porphyry Cu-Au deposit at Bajo de la Alumbrera, Argentina (vol 96, pg 1719, 2001). Economic Geology and the Bulletin of the Society of Economic Geologists,97(8):1863-+.
    [450]Ulrich, T., Kamber, B.S., Jugo, P.J. et al.,2009. Imaging element-distribution patterns in minerals by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The Canadian Mineralogist,47(5):1001-1012.
    [451]V.M. Goldschmidt,1937. The principles of distribution of chemical elements in minerals and rocks. Journal of the Chemical Society 655.
    [452]v.M.Goldschmidt,1937. The principles of distribution of chemical elements in minerals and rocks. Journal of chemical society:655-72.
    [453]van Vuuren, C.P.J., Stander, P.P.,1995. The oxidation kinetics of FeV2O4 in the range 200-50O℃. Thermochimica Acta,254:227-233.
    [454]Verwey, E.J., Haayman, P.W., Romeijn, F.C.,1947. Physical Properties and Cation Arrangement of Oxides with Spinel Structures II. Electronic Conductivity. The Journal of Chemical Physics,15(4):181-187.
    [455]Vienna, J.D., Hrma, P., Crum, J.V. et al.,2001. Liquidus temperature-composition model for multi-component glasses in the Fe, Cr, Ni, and Mn spinel primary phase field. Journal of Non-Crystalline Solids,292(1-3): 1-24.
    [456]W.S., F.,1951. Isomorphism and bond-type. American mineralogist,36: 538-542.
    [457]Wada, T., Kinoshita, H., Kawata, S.,2003. Preparation of chalcopyrite-type CuInSe2 by non-heating process. Thin Solid Films,431-432:11-15.
    [458]Wager, L.R., Mitchell, R.L.,1951. The distribution of trace elements during strong fractionation of basic magma--a further study of the Skaergaard intrusion, East Greenland. Geochimica et Cosmochimica Acta,1(3):129-144, IN1-IN2, 145-174, IN3-IN5,175-208.
    [459]Wakihara, M., Shimizu, Y., Katsura, T.,1971. Preparation and magnetic properties of the FeV2O4---Fe3O4 system. Journal of Solid State Chemistry,3(4): 478-483.
    [460]Walshe, J.L., Cleverley, J.S.,2009. Gold Deposits:Where, When and Why. ELEMENTS,5(5):288-.
    [461]Wark, D.A., Hildreth, W., Spear, F.S. et al.,2007. Pre-emption recharge of the Bishop magma system. Geology,35(3):235-238.
    [462]Wasilewski, P., Warner, R.D.,1988. Magnetic petrology of deep crustal rocks--Ivrea Zone, Italy. Earth and Planetary Science Letters,87(3):347-361.
    [463]Weihed, P., Arndt, N., Billstrom, K. et al.,2005. Precambrian geodynamics and ore formation:The Fennoscandian Shield. Ore Geology Reviews,27(1-4): 273-322.
    [464]Weil, J.A.,1984. A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Physics and Chemistry of Minerals,10(4):149-165.
    [465]Willams, P.J., Pollard, P.J.,2001. Australian Proterozoic Iron Oxide-Cu-Au Deposits:An Overview with New Metallogenic and Exploration Data from the Cloncurry District, Northwest Queensland. Exploration and Mining Geology, 10(3):191-213.
    [466]Williams, H.A., Betts, P.G.,2009. The Benagerie Shear Zone:1100 Myr of reactivation history and control over continental lithospheric deformation. Gondwana Research,15(1):1-13.
    [467]Williams, P., Beach, M., Xavier, R.,2011. Sources of Ore Fluid Components in IOCG Deposits In:Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits:A Global Perspective. PGC Publishing, Adelaide, pp. in press.
    [468]Williams, P., Pollard, P.,2003. Australian Proterozoic iron oxide-Cu-Au deposits:an overview with new metallogenic and exploration data from the Cloncurry district, northwest Queensland. Explor Mining Geol 10:191-213
    [469]Williams, P.J.,1998. Metalliferous economic geology of the Mt Isa Eastern Succession, Queensland. Australian Journal of Earth Sciences,45(3):329-341.
    [470]Williams, P.J.,2009. "Magnetite-group" IOCGs with special refernce to Cloncurry (NW Queensland) and Northern Sweden:settings,alteration,deposit characteristics,fluid sources,and their relationship to Apatite-rich iron ores. In: Mumin, L.C.a.H. (Ed.), Exploraing for Iron Oxide Copper-Gold Deposits: Canada and Global Analogues. Geological Association of Canada Short Course Notes 20, pp.23-38.
    [471]Williams, P.J., Barton, M.D., A, D. et al.,2005a. Iron Oxide Copper-Gold Deposits:Geology, Space-Time Distribution, and Possible Modes of Origin. ECONOMIC GEOLOGY and the Bulletin of the Society of Economic Geologists, One Hundredth Anniversary Volume 1905-2005:371-406.
    [472]Williams, P.J., Barton, M.D., Johnson, D.A. et al.,2005b. Iron oxide copper-gold deposits:geology, space-time distribution, and possible modes of origin. Economic Geology, Economic Geology and theBulletin of the Society of Economic Geologists:One Hundredth Anniversary Volume 1905-2005: 371-405.
    [473]Williams, P.J., Dong, GY., Ryan, C.G. et al.,2001. Geochemistry of hypersaline fluid inclusions from the Starra (Fe oxide)-Au-Cu deposit, Cloncurry district, Queensland. Economic Geology and the Bulletin of the Society of Economic Geologists,96(4):875-883.
    [474]Williams, P.J., Kendrick, M.A., Xavier, R.P.,2010. Sources of ore fluid components in IOCG deposits; in Porter,T.M.,(ed),Hydrothermal Iron Oxide Coper-Gold &Related deposits:A Global Perspective V3-Advances in the understanding of IOCG deposits;PGC Bublihing, Adelaide, in press.
    [475]Williams, P.J., Skirrow, R.G.,2000. Overview of iron oxide-copper-gold deposits in the Curnamona Province and Cloncurry district (Eastern Mount Isa Block), Australia. In:Porter T. M. ed. Hydrothermal Iron Oxide Copper-Gold and Related Deposits:a Global Perspective. Australian Mineral Foundation, Adelaide.
    [476]Williams, R.J., Gibson, E.K.,1972. Origin and Stability of Lunar Goethite, Hematite and Magnetite. Earth and Planetary Science Letters,17(1):84-88.
    [477]Wilson, B.K., Hrma, P., Alton, J. et al.,2002. The effect of composition on spinel equilibrium and crystal size in high-level waste glass. Journal of Materials Science,37(24):5327-5331.
    [478]WIRTZ, G.P., FINE, M.E.,1968. Precipitation and Coarsening of Magnesioferrite in Dilute Solutions of Iron in MgO. Journal of the American Ceramic Society,51(7):402-406.
    [479]Woodall, R.,1994. Empiricism and Concept in Successful Mineral Exploration. Australian Journal of Earth Sciences,41(1):1-10.
    [480]Wu, C.Y.,2008. Bayan Obo Controversy:Carbonatites versus Iron Oxide-Cu-Au-(REE-U). Resource Geology,58(4):348-354.
    [481]Xavier, R.P., Wiedenbeck, M., Trumbull, R.B. et al.,2008. Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide copper-gold deposits, Carajas Mineral Province (Brazil). Geology, 36(9):743-746.
    [482]Xu, J.S., Yang, GM., Li, G.W. et al.,2008. Dingdaohengite-(Ce) from the Bayan Obo REE-Nb-Fe Mine, China:Both a true polymorph of perrierite-(Ce) and a titanic analog at the C1 site of chevkinite subgroup. American Mineralogist,93(5-6):740-744.
    [483]Yang, Y, Chen, N.-s.,2003. UV-cathodoluminescene Mechanism of secondary Enlarged quartz and its importance. Rock and Mineral Analysis,22(1): 1-4.
    [484]Youles, I.P.,1984. The Olympic Dam copper-uranium-gold deposit, Roxby Downs, South Australia; discussion. Economic Geology,79(8):1941-1944.
    [485]Yuan, H., Gao, S., Liu, X. et al.,2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research,28(3): 353-370.
    [486]Yumashev, K.V., Denisov, I.A., Posnov, N.N. et al.,2000. Nonlinear absorption properties of Co2+:MgAl2O4 crystal. Applied Physics B:Lasers and Optics,70(2):179-184.
    [487]Zabicky, J., Frage, N., Kimmel, G et al.,1997. Metastable magnesium titanate phases synthesized in nanometric systems. Philosophical Magazine Part B,76(4):605-614.
    [488]Zakrzewski, M.A., Burke, E.A.J., Lustenhouwer, W.J.,1982. Vuorelainenite, a new spinel, and associated minerals from the Satra (Doverstorp) pyrite deposit, central Sweden. Can Mineral,20(2):281-290.
    [489]Zhang, D., Dai, T., Rusk, B.,2011. Advances in quartz research. Acta Petrologic et Mineralogic,30(2):333-341.
    [490]Zhang, D., Rusk, B.G., Oliver, N.H.S.,2009a. Trace elements in sulfides and magnetite from the Ernest Henry Iron Oxide-copper-gold deposit,Australia.In Geological Society of America Abstracts with Programs, Portland., pp.85.
    [491]Zhang, D., Rusk, B.G., Oliver, N.H.S.,2009b. Trace elements in sulfides and magnetite from the Ernest Henry Iron Oxide-copper-gold deposit,Australia.In Geological Society of America Abstracts with Programs, Portland. Vol.41, No.7, p.85, pp.85.
    [492]Zhang, S.-p., Dun, T.-j.,1989. Application of the cathodoluminescence microscope in the mineral identification. Journal of Xi'an college of geology, 11(1):40-49.
    [493]Zhang, Y.B., Sun, S.H., Xu, C.Y. et al.,2003. Carbonatitic volcanic genesis of Hetaoqing Fe-Cu deposit in central Yunnan, China. Resource Geology,53(4): 261-272.
    [494]Zhou, W., Peacor, D.R., Van der Voo, R. et al.,1999. Determination of lattice parameter, oxidation state, and composition of individual titanomagnetite/titanomaghemite grains by transmission electron microscopy. J. Geophys. Res.,104(B8):17689-17702.
    [495]Zingernagel, V,1978. Cathodoluminescence of quartz and its application to sandstone petrology. Contribution to Sedimentology,8(1-69).
    [496]Ziolo, R.F., Giannelis, E.P., Weinstein, B.A. et al.,1992. Matrix-Mediated Synthesis of Nanocrystalline ggr-Fe2O3:A New Optically Transparent Magnetic Material. Science,257(5067):219-223.
    [497]方维萱,柳玉龙,张守林等,2009.全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式.西北大学学报(自然科学版),39(3):404-413.
    [498]毛景文,余金杰,袁顺达等.,2008.铁氧化物-铜-金(IOCG)型矿床:基本特征、研究现状和打矿勘查.矿床地质,27(3):267-278.
    [499]王绍伟,2004.重视近20年认识的一类重要热液矿床——铁氧化物-铜-金(-铀)-稀土矿床.《国土资源情报》(2):45-52.
    [500]朱志敏,曾令熙,周家云等.,2009.四川拉拉铁氧化物铜金矿床(IOCG)形成的矿相学证据高校地质学报(4).
    [501]李泽琴,2002.中国首例铁氧化物-铜-金-铀-稀土型矿床的厘定及其成矿演化.矿物岩石地球化学通报,4(21):3.
    [502]柳小明,高山,袁洪林等.,2002.193nmLA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析.岩石学报,18(3):408-418.
    [503]胡圣虹,胡兆初,刘勇胜等.,2002.单个流体包裹体元素化学组成分析新技术-激光剥蚀电感耦等离子体质谱(LA-ICP-MS).地学前缘,8:434-440.
    [504]第五春荣,柳小明,袁洪林等.,2007.193 nm ArF准分子激光剥蚀等离子体质谱法测定熔融玻璃中微量铌和钽.岩矿测试,26(1):1-3.
    [505]彭惠娟,汪雄武,唐菊兴等.,2010.石英阴极发光在火成岩研究中的应用.岩矿测试,29(2):153-160.
    [506]卢秋霞,2000.微细浸染型金矿的硅质阴极发光与成矿物源分析.大地构造与成矿学,24(1):75-80.
    [507]张兴春,2003.国外铁氧化物铜-金矿床的特征及其研究现状.地球科学进展,18(4):551-559.
    [508]张绍平,顿铁军,1989.阴极发光显微镜在岩矿鉴定方面的应用.西安地质学院学报,11(1):40-49.
    [509]杨勇,陈能松,2003.次生石英的紫外阴极发光机理及意义.岩矿测试,22(1):1-4.
    [510]罗志高,王岳军,张菲菲,张爱梅,张玉芝,2010.金滩和白马山印支期花岗岩体LA-ICPMS锆石U-Pb定年及其成岩启示.大地构造与成矿学,34(2):282-290.
    [511]聂凤军,江思宏,路彦明,2008.氧化铁型铜一金(IOCG)矿床的地质特征、成因机理与找矿模型.中国地质,35(6):1074-1087.
    [512]许德如,肖勇,马驰,等2007.石碌铁-钴-铜(金)多金属矿床:一个IOCG型层控矽卡岩矿床?矿物学报,27((增刊)):307-308.
    [513]顾晟彦,华仁民,戚华文,2006.广西姑婆山花岗岩单颗粒锆石LA-ICP-MS U-Pb定年及全岩Sr-Nd同位素研究.地质学报,80(4):543-553.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700