用户名: 密码: 验证码:
仓储粮堆湿热传递过程的数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现粮食的安全储藏,需要监控仓内温度、水分的变化。结合数值模拟的方法预测仓内水分与温度的未来变化,可制定出更具前瞻性的方案。因此,本文建立了描述仓储粮堆温度和水分变化的三维六参数的湿热传递数学模型。主要工作如下:
     (1)针对粮堆的特点,以小麦为研究对象,确定了描述小麦粮堆多孔介质的结构参数,包括孔隙率、渗透率、当量直径、比表面积等,并给出了这些参数的试验测定方法。通过对粮堆中水分的存在形式和传递机理进行分析,确定了通风干燥模型和静态储藏模型应该考虑的水分传递途径和热量传递途径。
     (2)采用虚拟连续介质的方法,在粮堆中选取代表性单元体,采用局部非平衡法,依据质量守恒、能量守恒和动量守恒定律,建立了由气体的质量和热量控制方程、谷物相的质量和热量控制方程、连续性方程和达西定律组成的三维六参数通风干燥模型,模型中的热量与质量是相互耦合的;采用局部热平衡法,对通风干燥模型简化,引入气体流动的体积力,建立了粮堆的静态储藏模型。
     (3)利用小型试验仓进行了小麦的固定床干燥试验,测定了小麦和空气在干燥过程中不同位置、不同高度处的水分含量和温度,测定了小麦密度、孔隙率、颗粒尺寸等参数;利用彩钢板储粮仓进行了小麦的短期储藏试验,通过温度传感器采集了不同位置、不同高度处的粮食温度。
     (4)利用有限元软件COMSOL Multiphysics求解数学模型,只要输入建立的数学模型,设定初始条件和边界条件,便可实现快速求解,为复杂系统数值模拟的工程应用提供了可能。利用建立的模型分别对小麦静态储藏和通风干燥过程进行了模拟,并结合试验数据进行了分析。结果表明,模拟结果与试验结果较吻合,静态储藏模型能够较好地描述储粮仓内的温度分布,并可模拟仓内空气的自然对流情况:通风干燥模型可以较好地模拟通风干燥过程中的各个参数的变化。
     (5)利用湿热传递模型对静态储藏和通风干燥过程进行了分析,还分析了通风方式、孔隙率、谷物比热容等对干燥过程的影响。模拟结果表明:1)加入垂直隔膜,可减弱静态储藏期间外温变化对仓内温度的影响。2)固定床干燥有明显的干燥前沿,干燥不均匀度较大,且干燥前沿附近的温度梯度最大。3)环型通风方式由于通风死角面积小、压力损失小,其干燥速率比U型通风大。4)粮堆孔隙率越大,气体的流动阻力越小,孔隙中的空气湿度越低,干燥速率越大。5)谷物比热容随温度和水分变化较大,采用非恒定的比热容建立模型,模拟值更接近试验值。
For safe storage of grain, the temperature and moisture content of grain must be monitored frequently. Based on the data, the prospective solutions can be made by numerical simulation of the future change of heat and moist transfer in the grain pile. Therefore, a three dimensional heat and moist transfer model with six parameters is built. The main works are as follows:
     (1) Considering the character of grain pile and taking wheat as the research object, the parameters describing the grain pile are confirmed, including porosity, permeability, equivalent diameter and specific surface area. Also, the methods are given to measure these parameters. The form of moisture existence is demonstrated, and the heat and moist transfer path is determined for the heat and mass transfer model and the static storage model.
     (2) Based on the hypothesis of virtual continuous continuum, the three dimensional heat and moist transfer model is built with the application of laws for the conservation of energy, mass and momentum. The model employs the method of local non-equilibrium and contains six equations including mass conservation in the air, mass conservation in the grain, energy conservation in air, energy conservation in grain, equation of continuity and Darcy law. The mass and heat transfer in the model is coupled. Also, a heat and moist transfer model for static storage is built by employing local thermal equilibrium, and it is simplified by the non-equilibrium model. The static storage model could simulate the natural convection of air in the bin due to the consideration of volume force.
     (3) The fixed bed drying experiment of wheat is operated in the test bin. Four parameters, in different height and position, is determined during the drying process, including the temperature and humidity of air and grain. Also, the porosity, permeability, equivalent radius and density are determined, respectively. Besides, the storage test is carried out in the steel silo, and the grain temperature at different height and position is monitored by the temperature sensor.
     (4) The models are solved by COMSOL Multiphysics with given initial conditions and boundary conditions, which are the same as the drying experiments. Drying process and wheat storage process are simulated with the above models. The results of numerical simulation are in good agreement with the experiments. The equilibrium model can simulate the temperature distribution and natural convection, and the non-equilibrium model can simulate the changes of heat and moist in the drying process.
     (5) Based on the above two models, the drying and static storage process are simulated and analyzed in various conditions. The results indicated that:1) By adding vertical membrane in the steel silo, the grain temperature is less affected by the temperature changes of environment.2) There is an obvious drying front in fixed bed drying. Moisture non-uniformity is serious and temperature gradient is big near the drying front.3) The drying rate of loop duct method is bigger than the U type duct method for the reason of less ventilation dead zone and pressure loss.4) Bigger porosity makes less air resistance and higher drying rate.5) The specific heat, which is changed with the grain temperature and moisture content, makes the simulated results closer to the experimental results.
引文
[1]王若兰.粮食仓储工艺与设备.北京市:中国财政经济出版社,2002.
    [2]彭威,张忠杰,任广跃,等.仓储粮堆温度场CFD模拟应用研究.粮油食品科技,2011,19(6):5-8.
    [3]薛传平,吴梅松,李元明.高度重视粮食储藏损耗确保国家粮食安全.粮油仓储科技通讯,2009(2):12-13.
    [4]丁建武,兰盛斌,张华昌.减少粮食产后损失对确保我国粮食安全的重要性.粮食储藏,2005,34(2):49-50.
    [5]吕建华,王殿轩,赵英杰,等.中国农村储粮损失的原因与对策.粮食科技与经济,2008(1):43-50.
    [6]李佳,赵旭,李玉,等.微生物对粮食储藏的影响及预防措施.农业科技与装备,2010(9):18-19.
    [7]兰盛斌,郭道林,·严晓平,等.我国粮食储藏的现状与未来发展趋势.粮油仓储科技通讯,2008(4):2-6.
    [8]成军虎,周显青,张玉荣.粮食干燥过程水分迁移变化及模型研究进展.粮食与饲料工业,2011(7):13-16.
    [9]尚哲峰.粮食仓储中害虫防治研究.湖南农机,2011(5):221-227.
    [10]曹崇文论文选编.农产品干燥机理、工艺与技术.北京市:中国农业大学出版社,1998.
    [11]曹崇文,朱文学.农产品干燥工艺过程的计算机模拟.北京市:中国农业出版社,2001.
    [12]Plourde F, Prat M. Pore network simulations of drying of capillary porous media. Influence of thermal gradients. International Journal of Heat and Mass Transfer,2003,46(7):1293-1307.
    [13]Laurindo J B, Prat M. Numerical and experimental network study of evaporation in capillary porous media. Drying rates. Chemical Engineering Science,1998,53(12):2257-2269.
    [14]Daian J F, Saliba J. Determining a representative random pore-network for moisture sorption and migration in cement mortar. International Journal of Heat and Mass Transfer,1991, 34(8):2081-2096.
    [15]Yiotis A G, Stubos A K, Boudouvis A G. A pore network model for drying processes in porous media:European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona,2000.
    [16]杨彬彬.多孔介质干燥分形孔道网络模拟及试验研究:[博士学位论文]北京:中国农业大学,2006.
    [17]丁小明.多孔介质干燥的孔道网络模拟及试验研究:[硕士学位论文]北京:中国农业大学,2003.
    [18]袁越锦.非固结多孔介质干燥的多尺度孔道网络模拟与试验研究:[博士学位论文]北京:中国农业大学,2007.
    [19]Lewis W K. The rate of drying of solid materials. Journal of Industrial and Engineering Chemistry, 1921,13(5):427-432.
    [20]Buckingham E A. Studies on the movement of soil moisture. Washington:Washington, Govt. Print. Off.,1907.
    [21]Henry P S H. Diffusion in absorbing media. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,1939,171 (945):215-241.
    [22]Luikov A V. Heat and mass transfer in capillary-porous bodies. Oxford:Pergamon,1966.
    [23]Philip R J, De Vries D A. Moisture movement in porous materials under temperature gradients. Transactions American Geophysical Union,1957,38(2):222-232.
    [24]Berger D, Pei D C T. Drying and hygroscopic capillary porous solids-A theoretical approach. International Journal of Heat and Mass Transfer,1973,16(2):293-302.
    [25]Fortes M, Okos R. Drying theories:Their bases and limitations applied to food and grain. Advances in Drying,1980(1):119-154.
    [26]Whitaker S. Simultaneous heat, mass and momentum transfer in porous media-A theory of drying. Advances in Heat Transfer,1977,13:119-203.
    [27]Hougen O A, McCauley H J, Marshall W R. Limitations of diffusion equations in drying. Transactions of the American Institute of Chemical Engineers,1940,36(2):183-210.
    [28]Babbitt J D. On the differential equations of diffusion. Canadian Journal of Research,1950, 28a(4):449-474.
    [29]Sherwood T K. The air drying of solids. Transactions of the American Institute of Chemical Engineers,1936,32:150-168.
    [30]Ceaglske N H, Hougen O A. Drying granular solids. Industrial and Engineering Chemistry,1937, 29(7):805-813.
    [31]Miller E E, Miller R D. Theory of capillary flow:Ⅰ. Practical implications. Soil Science Society of America Journal,1955,19(3):267-271.
    [32]Miller R D, Miller E E. Theory of capillary flow:Ⅱ. Experimental information. Soil Science Society of America Journal,1955,19(3):271-275.
    [33]Gurr C G, Marshall T J, Hutton J T. Movement of water in soil due to a temperature gradient. Soil Science,1952,74(5):335-346.
    [34]Wang J. Theory of drying:[PhD thesis] Michigan State University,1958.
    [35]Cenkowski S, Jayas D S, Pabis S. Deep bed grain drying-A review of particular theories. Drying Technology,1993,11(7):1553-1582.
    [36]Aregba A W, Sebastian P, Nadeau J P. Stationary deep-bed drying:A comparative study between a logarithmic model and a non-equilibrium model. Journal of Food Engineering,2006,77(1):27-40.
    [37]杨洲,罗锡文,李长友.稻谷干燥风量与谷物质量比的优化研究.农业机械学报,2007,38(5):122-125.
    [38]曹崇文,俞微微.小麦薄层干燥的试验研究.北京农业工程大学学报,1987,7(1):47-54.
    [39]Smith E A. Pressure and velocity of air during drying and storage of cereal grains. Transport in Porous Media,1996,23(2):197-218.
    [40]Peng W, Smith E A, de Ville A. Airflow and temperature distribution in two-dimensional drying bins. Journal of Engineering Mathematics,1999,36(3):241-254.
    [41]Goudie J M, Smith E A, De Ville A. Modeling the velocity of air through beds of cereal grains. IMA Journal of Management Mathematics,1993,5(1):325-335.
    [42]Boyce D S. Heat and moisture transfer in ventilated grain. Journal of Agricultural Engineering Research,1966,11(4):255-265.
    [43]Bakker-Arkema F W, Bickert W G. A deep-bed computational cooling procedure for biological products. Transactions of the ASABE,1966,9(6):834-836.
    [44]Khatchatourian O A, de Oliveira F A. Mathematical modelling of airflow and thermal state in large aerated grain storage. Biosystems Engineering,2006,95(2):159-169.
    [45]Sun D, Woods J L. Deep-bed simulation of the cooling of stored grain with ambient air:a test bed for ventilation control strategies. Journal of Stored Products Research,1997,33(4):299-312.
    [46]Sun Y, Pantelides C C, Chalabi Z S. Mathematical modelling and simulation of near-ambient grain drying. Computers and Electronics in Agriculture,1995,13(3):243-271.
    [47]Abbouda S K, Al-Amri A M S. Application of heat transfer model for prediction of temperature distribution in stored wheat. Agricultural Mechanization in Asia, Africa and Latin America, 2001,32(3):46-50.
    [48]Abbouda S K, Chung D S, Seib P A, et al. Heat and mass transfer in stored milo. Part Ⅰ. Heat transfer model. Transactions of the ASABE,1992,35(5):1569-1573.
    [49]Abbouda S K, Chung D S, Seib P A, et al. Heat and mass transfer in stored milo. Part Ⅱ. Mass Transfer Model. Transactions of the ASABE,1992,35(5):1575-1580.
    [50]王补宣.多孔介质中的对流传热传质.西安交通大学学报,1994,28(5):51-58.
    [51]Jia C C, Sun D W, Cao C W. Mathematical simulation of temperature fields in a stored grain bin due to internal heat generation. Journal of Food Engineering,2000,43(4):227-233.
    [52]Jian F, Jayas D S, White N D G, et al. A three-dimensional, asymmetric, and transient model to predict grain temperatures in grain storage bins. Transactions of the ASABE,2005,48(1):263-271.
    [53]Iguaz A, Arroqui C, Esnoz A, et al. Modelling and simulation of heat transfer in stored rough rice with aeration. Biosystems Engineering,2004,89(1):69-77.
    [54]Khatchatourian O A, Toniazzo N A, Gortyshov Y F. Simulation of airflow in grain bulks under anisotropic conditions. Biosystems Engineering,2009,104(2):205-215.
    [55]Gaston A, Abalone R, Bartosik R E, et al. Mathematical modelling of heat and moisture transfer of wheat stored in plastic bags (silobags). Biosystems Engineering,2009,104(1):72-85.
    [56]Markowski M, Bialobrzewski I, Bowszys J, et al. Simulation of temperature distribution in stored wheat without aeration. Drying Technology,2007,25(9):1527-1536.
    [57]Sun D W, Woods J L. Simulation of the heat and moisture transfer process during drying in deep grain beds. Drying Technology,1997,15(10):2479-2508.
    [58]Jian F, Jayas D S, White N D G. Temperature fluctuations and moisture migration in wheat stored for 15 months in a metal silo in Canada. Journal of Stored Products Research,2009,45(2):82-90.
    [59]Smith E A, Sokhansanj S. Moisture transport caused by natural convection in grain stores. Journal of agricultural engineering research,1990,47:23-34.
    [60]Carrera-Rodriguez M, Martinez-Gonzalez G M, Navarrete-Bola Os J L, et al. Transient numerical study of the effect of ambient temperature on 2-D cereal grain storage in cylindrical silos. Journal of Stored Products Research,2011,47(2):106-122.
    [61]Khatchatourian O A, Binelo M O. Simulation of three-dimensional airflow in grain storage bins. Biosystems Engineering,2008,101(2):225-238.
    [62]李铁盘,宋友林.粮库温度分布函数及应用.郑州工程学院学报,2004,25(3):77-79.
    [63]李琼,汪喜波,杨德勇.CFD方法在仓储粮堆温度场研究中的应用探索.粮食储藏,2008,37(3):21-24.
    [64]顾巍,张民平,王本龙,等.平房仓散粮机械通风效果的数值研究.粮食流通技术,2006(4):16-19.
    [65]门艳忠.北方粮库仓储水稻温度场数学模拟和试验研究.农机化研究,2004(6):171-173.
    [66]王远成,魏雷,刘伟,等.储粮保水降温通风关键技术研究.中国粮油学报,2008(5):141-145.
    [67]代建国,汪喜波,代彦军,等.谷物热泵就仓干燥过程分析与探讨.粮食储藏,2008,37(3):25-29.
    [68]刘雪强.谷物干燥过程复杂性分析及其控制:[博士学位论文]长春:吉林大学,2006.
    [69]李其弢,胡天群,俞忠,等.颗粒物质(粮食)的通风阻力试验研究.水动力学研究与进展(A辑),2006,21(4):473478.
    [70]武传欣,王远成.储粮就仓通风时机的掌控原理及应用:国家粮食局节能减排—粮油仓储行业在行动暨粮油仓储节能减排专题技术会议,济南,2010[C].
    [71]张前,周永杰,辛立勇,等.高大平房仓储粮温度变化规律及数学模型研究.粮食储藏,2003,32(6):25-30.
    [72]刘建英.高大平房仓中央区粮温模拟方法-稻谷堆中粮温计算的经验公式:中国粮油学会储藏分会第七次全国粮食储藏学术交流会,杭州,2010[C].
    [73]朱正刚,KALISKE Michael.多孔介质在压力梯度作用下的热质耦合数值模拟.计算力学学报,2011,28(3):388-393.
    [74]王馨,王海,施明恒,等.多孔介质快速干燥过程中热质耦合效应的研究.工程热物理学报,2001,22(3):344-347.
    [75]薛定谔著,王鸿勋译.多孔介质中的渗流物理.北京市:石油工业出版社,1982.
    [76]贝尔著,李竞生,陈崇希译.多孔介质流体动力学.北京市:中国建筑工业出版社,1983.
    [77]施跃,宣益民,邸胜国.不同粮堆内孔隙度与渗透率的试验研究.粮食储藏,1988,17(2):10-17.
    [78]贺瑶瑶.裂隙-孔隙介质细观渗流机理研究:[硕士学位论文]武汉:武汉工业学院,2010.
    [79]张丽萍.低渗透煤层气开采的热-流-固耦合作用机理及应用研究:[博士学位论文]徐州:中国矿业大学,2011.
    [80]王宝辉,董荟思,徐兆明,等.多孔介质中污染物溶质迁移模型研究进展.化工进展,2010,29(7):1338-1342.
    [81]Bear J, Zaslavsky D, Irmay S. Physical principles of water percolation and seepage. Paris: UNESCO,1968.
    [82]赵阳升.多孔介质多场耦合作用及其工程响应.北京市:科学出版社,2010.
    [83]Monicard R P. Properties of reservoir rocks:core analysis. Paris:Editions OPHRYS,1980.
    [84]张小正.仓储粮堆孔隙结构参数研究:[硕士学位论文]北京:中国农业大学,2010.
    [85]潘永康,王喜忠,刘相东.现代干燥技术.北京市:化学工业出版社,2007.
    [86]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用.第1版.北京:科学出版社,2006.
    [87]马良.粮食干燥.北京:中国商业出版社,1993.
    [88]郑坤灿,温治,王占胜,等.前沿领域综述-多孔介质强制对流换热研究进展.物理学报,2012,61(1):532-542.
    [89]李小川,施明恒,张东辉.非均匀多孔介质有效热导率分析.工程热物理学报,2006,27(4):644-646.
    [90]Stelian P, Adina F, Camelia P. Heat transfer at convective solid melting in fixed bed. World Academy of Science, Engineering and Technology,2008,23:5-10.
    [91]Ziegler T, Richter I G. Analysing deep-bed drying based on enthalpy-water content diagrams for air and grain. Computers and Electronics in Agriculture,2000,26(2):105-122.
    [92]孔祥言.高等渗流力学.合肥市:中国科学技术大学出版社,1999.
    [93]Sang I P, Hartley J G. Predicting effective thermal conductivities of unbonded and bonded silica sands. Journal of Applied Physics,1999,86(9):5263-5269.
    [94]于明志,陈汉翠,胡爱娟,等.水分含量对颗粒型含湿多孔介质导热系数的影响及机理.工程热物理学报,2013,34(10):1910-1913.
    [95]李岩峰,张来林,曹阳,等.小麦导热系数的测定.河南工业大学学报(自然科学版),2010,31(1):67-70.
    [96]ASABE. D243.4 Thermal properties of grain and grain products.2006.
    [97]Janetti M B, Ochs F, Feist W.3D simulation of heat and moisture diffusion in constructions: Comsol Conference, Stuttgart,2011.
    [98]罗伟,戴希碧.含水量对谷物热传导性能的影响.安徽农业科学,2010,38(21):11453-11454.
    [99]Pallares J, Grau F X. A modification of a Nusselt number correlation for forced convection in porous media. International Communications in Heat and Mass Transfer,2010,37(9):1187-1190.
    [100]薛靓.粉末密度的测定方法及误差分析.中国测试技术,2004,30(6):31-32.
    [101]王运东,骆广生,刘谦.传递过程原理.北京市:清华大学出版社,2002.
    [102]Cao Y, Li G, Zhang Z, et al. The specific heat of wheat:10th International Working Conference on Stored Product Protection, Portugal,2010[C].
    [103]杨宏民.井下注气驱替煤层甲烷机理及规律研究:[博士学位论文]焦作:河南理工大学,2010.
    [104]张允.裂缝性油藏离散裂缝网络模型数值模拟研究:[博士学位论文]东营:中国石油大学,2008.
    [105]GB/T 21305-2007谷物及谷物制品水分的测定[S].
    [106]郝立群.干燥后玉米水分不均匀度影响因素的分析与建议.中国粮油学报,2005,20(4):110-114.
    [107]Wang Z, Xiao B, Wang M, et al. Drying kinetics of extruded pellets in fixed beds. Drying Technology,2012,30(16):1881-1889.
    [108]顾巍,王本龙,胡天群,等.机械通风降温效果的数值评估.粮食储藏,2007,36(5):29-34.
    [109]顾巍.环形通风地槽对实际温度场特征的适应性研究.中国粮油学报,2009,24(1):102-106.
    [110]Sokhansanj S, Lang W S. Prediction of kernel and bulk volume of wheat and canola during adsorption and desorption. Journal of Agricultural Engineering Research,1996,63(2):129-136.
    [111]Sarnavi H J, Mohammadi A N, Motlagh A M, et al. DEM model of wheat grains in storage considering the effect of moisture content in direct shear test. Research Journal of Applied Sciences, Engineering and Technology,2013,5(3):829-841.
    [112]Tabatabaeefar A. Moisture-dependent physical properties of wheat. International Agrophysics, 2003,17(4):207-211.
    [113]Thorpe G R. The application of computational fluid dynamics codes to simulate heat and moisture transfer in stored grains. Journal of Stored Products Research,2008,44(1):21-31.
    [114]Iguaz A, Arroqui C, Esnoz A, et al. Modelling and simulation of heat transfer in stored rough rice with aeration. Biosystems Engineering,2004,89(1):69-77.
    [115]Sitompul J P, Istadi, Sumardiono S. Modelling and simulation of momentum, heat, and mass transfer in a deep-bed grain dryer. Drying Technology,2003,21(2):217-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700