用户名: 密码: 验证码:
综合地球物理考古方法的应用可行性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
出于文物保护的需要,田野考古调查需要无损的探测技术。因此不会给地下文物带来损害的地球物理考古是考古调查发展的一个必然方向。地下考古遗存常常和周围介质存在物性差异,这就为应用地球物理方法进行考古奠定了物性基础。如夯土经过夯筑,其密度、介电常数、电导率以及磁导率等就会和周围的介质产生差异。根据考古遗存和周围介质在电性、磁性、地震波阻抗、放射性元素含量等方面的差异,就可以进行多种地球物理方法的探测,如探地雷达、高密度电法、磁法、地震勘探、放射性勘探等。每种地球物理方法,不仅有各自的优缺点,且只对某一两个物性差异比较敏感,一般具有多解性,还常常会受到近地表干扰。因此应用单种地球物理方法进行考古,虽能反映地下考古遗存信息,但其考古解译的准确性令人怀疑。综合地球物理考古则可以提供多方面的信息,综合发挥各种方法的优点,从而增强地球物理考古解译的准确性和可靠性。
     地球物理考古理论研究的最终目的是将地球物理技术成功应用于实际的考古调查中,完成考古任务。故本文在进行综合地球物理考古方法的应用可行性研究时采用理论结合实际的思路,先进行单方法考古的理论研究,而后应用到实际考古中,并进行综合地球物理考古的实际应用研究。
     针对在实际考古调查中遇到的几种考古目标,展开了相应的地球物理正演模拟,并结合实际探测数据综合研究,以提取夯土层(腾冲南诏古城)、石刻(西安唐陵)、地下古墓(腾冲南诏古城)的探地雷达响应特征;获得了古城墙(模拟良渚东城墙)、古河道(良渚古城遗址)的高密度电法响应特征,从而指导实际的考古探测。
     许多考古遗址常位于城市或城市边缘,如良渚古城遗址,在这些遗址进行探地雷达考古时就会受到现代人工产品(如高压线、铁丝网、建筑等)的干扰。本文利用有限差分和射线理论,进行了地面以上物体的反射干扰的正演模拟和系统理论分析,提取了干扰特征,为干扰的有效识别和压制提供了基础。
     地下考古目标是三维的,因此有必要进行三维地球物理考古研究。本文进行了三维探地雷达和三维高密度电法的实际应用研究。研究结果表明,与二维探测相比,结合有效的三维显示软件,三维探测能提供更为丰富的信息,其考古解译的成果也更为准确和可信。
     本文首次应用综合地球物理方法开展了良渚古城外古水系分布情况的调查,还进行了文化层堆积的有效探测。在良渚古城遗址的东城墙遗址,还进行了多道面波分析实际探测研究,这在国内外尚属首次。
     在不同遗址的实际应用成果表明,论文的理论研究成果具有实用价值,能在实际的考古调查中起到作用。
Field archaeological investigation required nondestructive detection technology for cultural relic safeguard. Most geophysical methods do not give damaging of underground cultural relics, so it is an inevitable need with the development of archaeological survey. The physical properties of underground archaeological remains are often different with the surrounding. medium, which laid a physical basis for the application of geophysical methods to archaeological survey, Such as rammed earth because after ram fighting, density, dielectric constant and conductivity may be different from the surrounding medium.A variety of geophysical methods, such as ground penetrating radar, resistivity tomography,magnetic,seismic, radioactive and so on could be used as the difference between the archaeological remains and the surrounding media in the electric, magnetic, seismic impedance, the difference in content of radioactive elements.However, a single species of geophysical methods have its advantages and disadvantages, only sensitive to one or two physical properties,which often has multiple solutions and subject to interference.Although a single method may reflect the information of the underground archaeological remains, it is questionable on the accuracy of the archaeological interpretation by it.Hence it is need to do comprehensive geophysical archaeological research.
     The ultimate goal of the theory study of geophysical archaeologic is successfully applied in archaeological investigations and completion of the archaeological mission. So this paper did the single archaeological geophysics study first and then applied in practice.At the same time did a comprehensive exploration study of the application.
     Encountered for several archaeological archaeological targets, expand the geophysical forward modeling combined with the actual detection data, to extract the GPR response characteristics of rammed layer (Tengchong Nanzhao city-site), stone(Xi an Tang Ling site), underground tomb (Tengchong Nanzhao city-site); and the resistivity tomography response characteristics of ancient city wall (analog Liangzhu east wall), the ancient river (Liangzhu ancient city-site) in order to guide the actual archaeological exploration.
     Since many archaeological sites are often located in urban or urban fringe, archaeological survey by GPR would be interfered by modern products,such as power lines, barbed wire, construction, etc. This paper did the forward simulation and system theoretical analysis by finite difference and ray theory to extracte the reflection interference feature of objects above ground. It provides a basis for effective identification and suppression interference.
     As underground archaeological goal is three-dimensional, it is necessary to carry out three-dimensional geophysical archaeologic research. This paper did the display and practical application study of three-dimensional ground penetrating radar and three-dimensional resistivity tomography. The results show that compared with the two-dimensional detection, three-dimensional detection combined with an effective three-dimensional display software, can provide richer information, and more accurate and credible archaeological interpretation.
     This is the first application of comprehensive geophysical methods at Liangzhu ancient city-site to survey the ancient water system outside and inside the ancient city. The effective detection of the accumulation of cultural layer was made by comprehensive geophysical methods. This pape also did the actual detection study of the east City Wall Ruins in Liangzhu ancient city-site by multichannel analysis of surface waves method,which is the first time at home and abroad.
     Practical application in different sites showed that the theoretical research of this paper has practical value, which can be applied to actual archaeological investigation.
引文
边浩林.高密度电法勘探在水利水电工程中的应用研究[J].甘肃水利水电技术研究,2006,42(4):417-418.
    程业勋,王南萍,侯胜利.核辐射场与放射性勘查[M],北京:地质出版社,2005.
    程守洙,江之水主编.普通物理学[M].北京:高等教育出版社,2005.
    陈红伟,岳学峰.探地雷达在隧道质量检测中的应用[J].山西建筑,2010,36(29):335-336.
    董浩斌,王传雷.高密度电法的发展与应用.地学前缘(中国地质大学,北京),2003,10(1):171-176.
    邓超文,周孝宇.高密度电法的原理及工程应用[J].西部探矿工程,2006,18(B06):278-279.
    付长民,李帝铨,王光杰,等.高密度电法数值模拟及其在寻找北京人头盖骨化石中的应用[J].地球物理学进展,2008,23(1):263-269.
    高立兵,王斌,夏明军.GPR技术在考古勘探中的应用研究[J].地球物理学进展,2000,15(1):61-69.
    高立兵,阎永利,底青云,等.高密度电阻率法在商丘东周城址考古勘探中的应用[J].考古与科技,2004,7(),:648-653.
    葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:电子科技大学出版社,2005.
    葛双成,叶可来,梁国钱,等.探地雷达和浅层地震波法在海堤抛石层探测中的应用[J].水利水电科技进展,2008,28(5):71-73.
    管志宁.地磁场与磁力勘探[M].北京:地质出版社,2005.
    胡广书.数字信号处理理论、算法与实现[M].北京:清华大学出版社,2003.
    胡维竹,杨茂齐.地面高精度磁测在印尼滨海型磁铁矿应用[J].云南地质,2010,29(2):197-200.
    何冰,王晶.Radon变换不变矩在数字水印技术中的应用[J].计算机与数字工程,2010,38(7):133-138.
    何建民,许军才.探地雷达在工程中常见的干扰及其对策[J].科技广场,2008,1():245-247.
    霍光辉.高精度磁测在山西省繁峙吐楼铁矿区勘探中的应用[J].山东国土资源,2010,26(9):23-26.
    黄克忠,钟世航.石雕风化的无损检测[J].文物保护与考古科学,1989,1():28-33.
    黄理兴,高鹏飞,肖国强,等.采用地质雷达探测莫高窟壁画厚度的试验研究[J].辽宁工程技术大学学报,2001,20(4):457-459.
    蒋宏耀,张立敏.考古地球物理学[M].北京:科学出版社,2000.
    雷军军,隆威.探地雷达法在隧道地质预报中的应用研究[J].广东建材,2010,26(10):24-26.
    雷宛,肖宏跃,邓一谦.工程与环境物探教程[M].北京:地质出版社,2006.
    李大心.探地雷达方法与应用[M].北京:地质出版社,1994.
    李新祥.Radon变换的计算及其地球物理应用[J].计算物理,1992,9(A01):643-646.
    利奕年,王传雷.高密度电法应用于考古工作的实验初探[J].地质与勘察,2004,40(z1):123-126.
    刘士毅,袁炳强,吕国印,等.综合地球物理方法在探测秦始皇帝陵地宫中的应用[J].工程球物理学报,2004,1(3):213-219.
    刘春华,马宏伟,段先意.高密度电法勘探在高速公路勘察中的应用[J].山西能源与节能,2010,(5):29-31.
    刘菁华,田钢,王祝文,等.良渚古城墙的地面γ能谱测量含量特征分析[J].核技术,2010,33(4):262-267.
    刘勇.探地雷达在道路工程中的应用研究[J].山西建筑,2010,36(7):44-246.
    陆基孟.地震勘探原理[M].北京:石油大学出版社,1993.
    林金鑫,田钢,王帮兵,等.良渚遗址古水系调查中的综合地球物理方法[J],浙江大学学报 (工学版),2011,45(5):954-960.
    孟美丽.堤坝隐患探测中的探地雷达技术[J].山西建筑,2010,36(32):363-364.
    彭利丽,郝天珧,姚长利,等.低纬度磁异常化极方法应用效果对比[J].2010,(1):151-161.
    彭格林,杨宇仁,余仁富,等.物化探方法堆古墓完整性地研究[J].物探与化探,2000,24(3):233-239.
    曲赞.高精度磁测考古的进展[J].地质科技情报,1993,12(2):105-109.
    冉弥,邓世坤,陆礼训.探地雷达测量土壤含水量综述[J].工程地球物理学报,2010,7(4):480-486.
    苏永军,王绪本,罗建群.高密度电阻率法在三星堆壕沟考古勘探中应用研究[J].地球物理学进展,2007,22(01):268-272.
    沈鸿雁,袁炳强,肖忠祥,等.晋阳古城遗址考古地球物理特征[J].地球物理学进展,2008,23(4):1291-1298.
    孙建国.岩石物理学基础[M],北京:地质出版社,2006.
    朔知.良渚文化的初步分析[J].考古学报,2000,(4):421-450.
    田钢,林金鑫,王帮兵,等.探地雷达地面以上物体反射干扰特征模拟和分析[J].地球物理学报,2011,(已录用).
    吴宝杰,田钢.基于matlab的pulseEKKO PRO型地质雷达数据读取与显示[J].工程地球物理学报,2006,3(5):381-385.
    吴宝杰,姬美秀,杨桦.基于matlab的探地雷达数据三维显示[J].物探与化探,2009,33(3):342-344.
    吴其斌,王超.国外考古物探的现状与发展[J].国外地质勘察技术,1997,1():1-5
    吴健生,张昊.拉东变换在探地雷达资料处理中的应用[J],同济大学学报:自然科学版,2005,33(9):1270-1273.
    吴汝祚,徐吉军.良渚文化兴衰史[M].北京:社会科学文献出版社,2009.
    吴文贤,王传雷,喻忠鸿.地球物理方法在盘龙城(府河工区)考古调查中的应用[J].物探 与化探,2007,31(z):32-34.
    王宁远.遥远的村居-良渚文化的聚落和居住形态[M].杭州:浙江摄影出版社,2007.
    王若,底青云.改进的佐迪反演方法及在考古中的应用研究[J].工程地质学报,1999,7(3):284-288.
    王书民,孟小红,李汝传,等.频率域高密度电法在秦始皇陵地宫探测中的试验效果[J].物探与化探,2004,28(4):327-329,332.
    王家映.地球物理反演理论[M].北京:高等教育出版社,2002.
    王祝文,丁阳,刘菁华,等.γ能谱测量探测良渚古遗址的影响因素分析及数据处理[J].吉林大学学报(地球科学版),2010,40(2):439-446.
    王亮,王绪本,李正文.探地雷达在金沙遗址考古探测中的应用研究[J].物探与化探,2008,32(4):401-403.
    许柏青,陈达,王俊茹.高精度磁法在陕西岐山考古中的应用[J].江汉考古,2008,(4):88-91,F0002,F0003.
    许新刚,李党民,周杰.地质雷达探测中干扰波的识别及处理对策[J].工程地球物理学报,2006,3(2):114-118.
    徐世浙.二度重磁力场解析延拓的实际方法[J].地球物理学报,1965,14(2):136-146.
    徐世浙.地球物理中的有限单元法[M].北京:科学出版社,1994.
    徐国昌.气候变化对良渚文化发展和消失的影响[J].干旱气象,2008,26(1):13-16.
    席道瑛,宛新林,薛彦伟,等.用地质雷达寻找宋代钧窑遗址木[J].岩石力学与工程学报,2004,23(1):112-115.
    杨成林等编著.瑞雷面波勘探.北京:地质出版社,1993
    杨宏智,吕小红.高密度电法结合高精度磁法在洛庄汉墓考古中的应用[J].华北地震科学,2008,26(3):57-59.
    杨志华.利用Radon变换实现手写数字识别的新方法[J].计算机工程与应用,2008,44(30):13-15.
    杨峰,高云泽,康文献.地质雷达剖面高压线干扰的识别与去除[J].工程地球物理学报, 2005,2(4):276-281.
    杨俊广,李才明,熊智民.△T化极处理在航磁数据处理中的应用[J].平顶山学院学报,2010,25(2):74-76.
    颜廷旭,曹煜,倪敬国.高密度电阻率法在地下水源勘察中的应用[J].赤峰学院学报(自然科学版),2009,25(7):73-74.
    闫永利,底青云,高立兵,等.高密度电阻率法在考古勘探中的应用[J].物探与化探,1998,22(6):452-457.
    闫志勇,李勃,张忠杰,等.高精度磁测在寻找斑岩型铜钼矿中的应用效果[J].有色矿冶,2010,26(5):2-3,6.
    阎桂林.考古磁学—磁学在考古中的应用[J].物探与化探,1996,20(2):141-148.
    袁炳强,杨明生,刘士毅,等.高精度重力测量探测秦始皇帝陵地宫[J].地球科学——中国地质大学学报,2005,30(4):498—502.
    朱安宁,吉丽青,张佳宝,等.基于探地雷达的土壤水分测定方法研究进展[J].中国生态农业学报,2009,17(5):1039-1044.
    张腾,万雪林,童婷婷,等.高密度电法探测老窑采空区试验研究[J].北京工业职业技术学院学报,2010,9(2):11-16.
    张胜业,潘玉玲.应用地球物理学原理[M],武汉:中国地质大学出版社,2004.
    张涛涛,张华.探地雷达及注水试验在检测大坝截渗墙中的应用[J].河南水利与南水北调,2010,(09X):41-42.
    张明.路面破损检测技术现状与发展[J].西部探矿工程,2010,22(9):218-220.
    张英德,刘江平,刘良琼.Hilbert变换在地质雷达数据处理中的应用[J].工程地球物理学报,2004,1(4):349-352.
    张志勇,胡敬浓,张丽娇,等.探地雷达复信号分析的几点讨论[J].物探化探计算技术,2006,28(2):146-148.
    张寅生.物探在考古勘探中的应用初探[J].物探与化探,1990,14(6):444-451.
    张寅生.磁法考古探测应用机制及其应用效果[J].物探与化探,1999,23(2):138-145.
    张寅生.磁法在田野考古勘探中的应用研究[J].考古,2002,(7):59-69.
    周鸿,郑祥民.试析环境演变对史前人类文明发展的影响_以长江三角洲南部平原良渚古文化衰变为例[J].华东师范大学学报(自然科学版),2000,(4):71-77.
    周膺.良渚文化与杭州城市精神[J].中共杭州市委党校学报,2008,(2):34-39
    周小虎,谭克龙,万余庆,等.现代遥感技术在秦始皇陵考古研究中的应用[J].现代地质,2007,21(1):157-162.
    钟世航.用物探方法解决文物保护和考古中的某些问题[J].地球物理学报,1991,34(5):635-643.
    钟世航.地球物理技术在我国考古和文物保护工作中的应用[J].地球物理学进展,2002,17(3):498-506.
    钟世航.我国考古和文物保护工作中物探技术的应用[J].文物保护与考古科学,2004,16(3):58-64.
    曾昭发,刘四新,王者江,等.探地雷达方法原理及应用[M].北京:科学出版社,2006.
    曾昭发,刘四新,冯晅.探地雷达原理与应用[M].北京:电子工业出版社,2010.
    赵光辉.高密度电法勘探技术及其应用[J].2006,20(2):166-168.
    浙江省文物考古研究所.杭州市余杭区良渚古城遗址2006-2007年的发掘[J],考古,2008,(7):3-10.
    祝炜平,黄世强,李江林.杭州雷峰塔遗址地下遥感考古研究[J].地球信息科学,2002,2(4):104-107.
    Adam DB, Roger AC, Ken H, et al. Multi-offset ground penetrating radar methods to image buried foundations of a medieval town wall, Great Yarmouth, UK[J]. Archaeological Prospection,2010,17(2):103-116.
    Albetro G, Salvatore P. Integrated data processing for archeological magnetic surveys[J]. The Leading Edge,2005,24(11):1138-1144.
    Alexandre N, Mark G, Dave A. Viggiano, et al.3D GPR in Archeology:What can be gained from dense Data Acquisition and Processing? [C/OL].12th International Conference on Ground Penetrating Radar, Birmingham, UK.June 16-19,2008,http://webs.uvigo.es.
    Alexandre N, Henrique L, Fernando I R, et al. Three-dimensional ground-penetrating radar strategies over an indoor archaeological site:Convent of Santo Domingo (Lugo, Spain)[J]. Archaeological Prospection,2010,17(4):213:222.
    Ana 0, Matas DLV, Eugenia Lascano.3D electrical imaging of an archaeological site using electrical and electromagnetic methods[J]. Geophysics,2005,70(4):101-107.
    Andreas V, Immo T, Kerstin L. A review of the use of geophysical archaeological prospection in Sweden[J]. Archaeological Prospection,2011,18(1):43-56.
    Andrew P. A survey in the park:Methodological and practical problems associated with geophysical investigation in a late Victorian municipal park[J]. Archaeological Prospection, 2010,17(3):161-174.
    Andy C. The structure of Upper Mesopotamian cities:Insight from fluxgate gradiometer survey at Kazane Hoyuk, southeastern Turkey[J]. Archaeological Prospection,2010,17(2):73-88.
    Annan AP. Ground Penetrating Radar Applications Principles Procedures & Applications [M]. Canada:Sensors & Software Inc,2003.
    Bano M, Pivot F, Marthelot JM. Modelling and filtering of surface scattering in ground-penetrating radar waves[J]. First Break.1999,17(6):215-222.
    Basile V, Carrozzo MT; Negri S,et al. A ground-penetrating radar survey for archaeological investigations in an urban area(Lecce, Italy)[J]. Journal of Applied Geophysics,2000,44(1): 15-32.
    Bescoby D, Bowden W, Chroston PN. Magnetic survey at Venta Icenorum, Caistor St Edmund: Survey strategies and initial results[J]. Archaeological Prospection,2009,16(4):287-291.
    Cai J, McMechan GA. Ray-based synthesis of bistatic ground-penetrating radar profiles[J]. Geophysics,1995,60(1):87-96.
    Cai J, McMechan GA.2-D ray-based tomography for velocity, layer shape, and attenuation from GPR data[J]. Geophysics,1999,64(5):1579-1593.
    Campana S, Dabas M, Marasco L, et al. Integration of remote sensing, geophysical surveys and archaeological excavation for the study of a medieval mound (Tuscany, Italy)[J]. Archaeological Prospection,2009,16(3):167-176.
    Capineri L, Falorni P, Borgioli G, et al. Application of the RASCAN holographic radar to cultural heritage inspections[J].Archaeological Prospection,2009,16(3):218-230.
    Castaldo R, Crocco L, Fedi M, et al. GPR microwave tomography for diagnostic analysis of archaeological sites_ the case of a highway construction in Pontecagnano (Southern Italy)[J]. Archaeological Prospection,2009,16(3):203-217.
    Chavez RE, Tejero A, Argote DL, et al. Geophysical study of a Pre-Hispanic lakeshore settlement, Chiconahuapan Lake, Mexico[J]. Archaeological Prospection,2010,17(1):1-13.
    Christian MM, Richard OH, Gregory NT, et al.Complex attributes of the magnetic signal for multiple sources:Application to signals from buried ditches[J]. Archaeological Prospection, 2010,17(2):89-101.
    Creekmore A. The structure of Upper Mesopota-mian cities:in sight from fluxgate gradiomete rsurvey at Kazane Hoyuk,south eastern Turkey[J]. Archaeological Prospection, 2010,17(2):73-88.
    Dahlin T, Bernstone C,Loke MH. A 3-D resistivity investigation of a contaminated site at Lernacken,Sweden[J]. Geophysics,2002.67(6),1692-1700.
    Dalan RA. A magnetic susceptibility logger for archaeologic alapplication[J]. Geoarchaeology, 2001,16(3):263-273.
    Dale FR, Marc TL, William JG. Three-dimensional electrical resistivity model of a nuclear waste disposal site[J]. Journal of Applied Geophysics,2009,69(3):150-164.
    David J. How effective is geophysical survey? A regional review[J]. Archaeological Prospection, 2009,16(2):77-90.
    Drahor MG, Berge MA, Kurtulmus TO, et al. Magnetic and electrical resistivity tomography investigations in a Roman legionary camp site(Legio IV Scythica) in Zeugma,Southeastern Anatolia,Turkey[J]. Archaeological Prospection,2001,15(3):159-186.
    Drahor MG, Berge MA, Hartmann M, et al. Magnetic imaging and electrical resistivity tomography studies in a Roman military installation found in Satala archaeological site,northeastern Anatolia,Turkey[J]. Journal of Archaeological Science,2008,35(4):259-271
    Eppelbaum LV, Khesin BE, Itkis SE. Archaeological geophysics in arid environments:Examples from Israel[J]. Journal of Arid Environments,2010,74(7):849-860.
    Forte E, Pipan M. Integrated seismic tomography and ground-penetrating radar (GPR) for the high-resolution study of burial mounds (tumuli)[J]. Journal of Archaeological Science, 2008,35(9):2614-2623.
    Gallet Y, Genevey A, Le Goff M, et al. On the use of archeology in geomagnetism, and vice-versa: Recent developments in archeomagnetism[J]. Comptes Rendus Physique, 2009,10(7):630-648.
    Holt JJ. Finite difference time domain modeling of dispersion from heterogeneous ground properties in ground penetrating radar[D]. Department of Geological Sciences, The Ohio State University,2004.
    Herbich T, Misiewicz K, Teschauer O. Multilevel resistivity prospecting of architectural remains: The Schwarzach case study[J]. Archaeological Prospection,1997,4(3):105-112.
    Harald VdO, Bruno C, Walter R. New archaeological discoveries through magnetic gradiometry: The early Celtic settlement on Mont Lassois, France. The Leading Edge,2006,25(1):46-48.
    Ian L, Adam TS, Ruben B. Magnetic survey in the investigation of sociopolitical change at a Late Bronze age fortress settlement in northwestern Armenia[J]. Archaeological Prospection, 2010,17(1):15-27.
    Immo T, Bernth J, Jaana G, et al.Efficient, large-scale archaeological prospection using a true three-dimensional ground-penetrating Radar Array system[J]. Archaeological Prospection, 2010,17(3):175-186.
    Jeffrey CW. Archaeological prospection:An introduction to the special issue[J]. Geophysics,1986,51(3):533-537.
    Jordan D. How Effective is Geophysical Survey? A Regional Review[J]. Archaeological Prospection,2009.16(2):77-90.
    Jorg WEF. Geophysical prospection of the frontiers of the Roman Empire in southern Germany, UNESCO World Heritage Site[J]. Archaeological Prospection,2010,17(3):129-139.
    Julien T, Michel D, Sebastien F. Detection of resistive features using towed slingram electromagnetic induction instruments[J]. Archaeological Prospection,2009,16(2):103-109.
    Jurg L. Comparison of a stepped-frequency continuous wave and a pulsed GPR system[J]. Archaeological Prospection,2011,18(1):15-25.
    Kelsey ML, Aaron SF. Understanding Northeastern Plains Village sites through archaeological geophysics[J]. Archaeological Prospection,2010,17(4):247-257.
    Lawrence BC, Juerg L. Geophysical Archaeology Research Agendas for the Future:Some Ground-penetrating Radar Examples[J]. Archaeological Prospection,2010,17(2):117-123.
    Lindsay 1, Smith A T,Badalyan R. Magnetic survey in the investigation of sociopolitical change at a Late Bronze age for tress settlement in northwestern Armenia[J]. Archaeological Prospection,2010,17(1):15-27.
    Loke MH, Barker RD. Practical techniques for 3D resistivity surveys and data inversion[J]. Geophysical Prospecting,1996,44(3):499-523.
    Lowe KM, Fogel AS. Understanding Northeastern Plains Village Sites Through Archaeological Geophysics[J]. Archaeological Prospection,2011,17(4):247-257.
    Luigia N, Giovanni L, Sergio N. GPR, ERT and magnetic investigations inside the Martyrium of St Philip, Hierapolis, Turkey[J]. Archaeological Prospection,2009,16(3):177-192.
    Luis M, Nestor B, Eugenia L, et al. Electrical and GPR prospecting at Palo Blanco archaeological site, northwestern Argentina[J]. Geophsics,2006,71(6):B193-B199.
    Maio RD, Fedi M, Manna M L, et al. The contribution of geophysical prospecting in the reconstruction of the buried ancient environments of the house of Marcus Fabius Rufus (Pompeii, Italy)[J]. Archaeological Prospection,2010,17(4):259-269.
    Martorana R, Fiandaca G, Ponsati AC, et al. Comparative tests on different multi-electrode arrays using models in near-surface geophysics[J]. Journal of geophysic and engineering, 2009,6(1):1-20.
    Matthias L, Evey G, Jorg V, et al. Geophysical prospection of a bronze foundry on the southern slope of the acropolis at athens, Greece[J]. Archaeological Prospection,2011,18(1):27-41.
    Milea CM, Hansen RO, Tsokas GN, et al. Geophysical Archaeology Research Agendas for the Future:Some Ground-penetrating Radar Examples[J]. Archaeological Prospection, 2010,17(2):117-123.
    Neil L, Paul L,, Louise M, et al. Stepped frequency ground-penetrating radar survey with a multi-element array antenna:Results from field application on archaeological sites[J]. Archaeological Prospection,2010,17(3):187-198.
    Negri S, Leucci G, Mazzone F. High resolution 3D ERT to help GPR data interpretation for researching archaeological items in a geologically complex subsurface[J]. Journal of Applied Geophysics,2008,65(3-4):111-120.
    Nikos GP, Gregory NT, Michel D, et al. Three-dimensional inversion of automatic resistivity profiling data[J]. Archaeological Prospection,2009,16(4):267-278.
    Nuzzo L. Coherent noise attenuation in GPR data by linear and parabolic Radon transform techniques[J]. Annals of Geophysics,2003,46(3):533-547.
    Nuzzo L, Quarta T. Improvement in GPR coherent noise attenuation using x-p and wavelet transforms[J]. Geophysics,2004,69(3):789-802.
    Nuzzo L. Identification and Removal of Above-ground Spurious Signals in GPR[J]. Archaeological Prospecting,2005,12(1):93-103.
    Ortega Al, Benito-Calvo A, Porres J,et al.Applying electrical resistivity tomography to the identification of endokarstic geometries in the Pleistocene Sites of the Sierra de Atapuerca (Burgos, Spain)[J]. Archaeological Prospecting,2010,17(4):233-245.
    Park CB, Miller RD, Xia J. Imaging dispersion curves of surface waves on multi-channel record[J]. Technical Program with Bilgraphies,SEG,68th Annual Meeting, New Orleans,Louisiana,1998:1377-1380.
    Park CB, Miller RD, Xia J. Multi-channel analysis of surface waves (MASW)[J]. Geophysics, 1999,64(3):800-808.
    Papadopoulos NG, Tsourlos P, Tsokas G N,et al.Two-dimensional and three-dimensional resistivity imaging in archeological site investigation[J]. Archeological Prospection, 2006,13(3),163-181.
    Parkyn A. A Survey in the Park:Methodological and Practical Problems Associated with Geophysical Investigation in a Late Victorian Municipal Park[J]. Archaeological Prospecting, 2010,17(3):161-174.
    Petronille M, Thiesson J, Simon FX, et al. Magnetic signal prospecting using multiparameter measurements:the case study of the Gallic Site of Levroux[J]. Archaeological Prospecting, 2010,17(3):141-150.
    Piro S. Integrated geophysical prospecting at Ripa Tetta Neolithic site (Lucera,Foggia-ltaly)[J]. Archaeological Prospection,1996,3(2),81-88.
    Rayleigh L. On Waves Propagated Along t he Plane Surface of an Elastic Solid [J]. Proceedings of the London Mathematic Society,1887,17():4-11.
    Richard J, Adrian C, Charles F, Nick C, et al. Exploring the location and function of a Late Neolithic house at Crossiecrown, Orkney by geophysical, geochemical and soil micromorphological methods[J]. Archaeological Prospection,2010,17(1):29-47.
    Rodrigues SI, Porsani JL, Santos VRN, et al. GPR and inductive electromagnetic surveys applied in three coastal sambaqui (shell mounds) archaeological sites in Santa Catarina state, South Brazil[J]. Journal of Archaeological Science,2009,36(10):2081-2088.
    Ryz E, Eric W. Archaeological geophysics:3D imaging of the Muweilah archaeological site, United Arab Emirates[J]. Exploration Geophysics,2004,35():93-98.
    Salvatore P, Roberto G Multimethodological approach to investigate chamber tombs in the Sabine Necropolis at Colle del Forno (CNR, Rome, Italy)[J]. Archaeological Prospection, 2009,16(2):111-124.
    Simon K, Graeme E, Sophie H, et al. The role of integrated geophysical survey methods in the assessment of archaeological landscapes:the case of Portus[J]. Archaeological Prospection, 2009,16(3):154-166.
    Steven DS, Douglas M, David D. Decorrugation, edge detection, and modelling of total field magnetic observations from a historic town site, Yellowstone National Park, USA[J]. Archaeological Prospection,2010,17(1):49-60.
    Solla M, Lorenzo H, Novo A, et al. Ground-penetrating radar assessment of the medieval arch bridge of San Anton, Galicia, Spain[J]. Archaeological Prospection,2010,17(4):223-232.
    Sun J, Young RA. Recognizing surface scattering in ground-penetrating radar data[J]. Geophysics, 1995,60 (5):1378-1385.
    Suwimon U, Vivian L P, Mark E E, et al. Ground-penetrating radar imaging of twelfth century Romanesque foundations beneath the thirteenth century Gothic abbey church of Valmagne, France[J]. Archaeological Prospection,2010,17(4):199-212.
    Terrance HG. Magnetic prospection on prehistoric sites in Western Canada[J]. Geophysics, 1986,51(3):553-560.
    Tian Gang,Don Steeples,Xia J, et al. Multichannel analysis of surface wave method with autojuggie [J]. Soil Mechanics and Earthquake Engineering,2003,23(3):243-247
    Tsokas GN, Tsourlos PI, Stampolidis A, et al. Tracing a major Roman road in the area of ancient Helike by resistivity tomography [J]. Archaeological Prospection,2009,16(4):251-266.
    van DKJ, Slob EC. The influence of the soil on reflections from above surface objects in GPR data[C].8th International Conference on Ground Penetrating Radar(GPR 2000), GPR 2000: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR,2000:453-458.
    van DKJ Slob EC. Reduction of reflections from above surface objects in GPR data[J]. Journal of Applied Geophysics,2004,55(3-4):271-278.
    Verdonck L, Simpson D, Cornelis W M, et al. Ground-penetrating radar survey over bronze age circular monuments on a sandy soil, complemented with electromagnetic induction and fluxgate gradiometer data[J]. Archaeological Prospection,2009,16(3):193-202.
    Vincenzo C, Marilena C, Paolo M, et al. Three-dimensional resistivity probability tomography at the prehistoric site of grotta reali (Molise, Italy)[J]. Archaeological Prospection, 2009,16(1):53-63.
    Valois R, Bermejo L, Guerin R, et al. Karstic Morphologies Identified with Geophysics around Saulges Caves (Mayenne, France)[J]. Archaeological Prospection,2010,17(3):151-160
    Varga M, Novak A, Szarka,L. Application of tensorial electrical resistivity mapping to archaeological prospection[J]. Near Surface Geophysics,2008,6(1):39-47.
    Viberg A, Trinks I, Liden K. A Review of the Use of Geophysical Archaeological Prospection in Sweden[J]. Archaeological Prospection,2011,18(1):43-56.
    Xia JH, Miller RD, Park CB. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics,1999,64(3):691-700.
    Young RA, Sun J.3D ground penetrating radar imaging of a shallow aquifer at Hill Air Force Base, Utah[J]. Journal of Environmental and Engineering Geophysics,1996,1 (2):97-108.
    Young RA, Sun J. Extracting a radar reflection from a cluttered environment using 3-D interpretation[J]. Journal of Environmental and Engineering Geophysics,1998,3(2):121-132.
    Young RA, Sun J. Revealing stratigraphy in ground-penetrating radar data using domain filtering[J]. Geophysics,1999,64(2):435-442.
    Young CT, Droege D R. Archaeological applications of resistivity and magnetic methods at Fort Wilkins State Park, Michigan[J]. Geophysics,1986,51(3);568-575.
    Yuan BQ, Liu S Y, Lu G Y. An Integrated Geophysical and Archaeological Investigation of the Emperor Qin Shi Huang Mausoleum[J]. Journal of Environmental and Engineering Geophysics,2006,11(2):73-81.
    Zananiri I, Hademenos V, Piteros C. Geophysical investigations near the ancient Agora at the city of Argos, Greece[J]. Journal of geophysic and engineering,2010.7(2):174-182.
    Zohdy AAR.A new method for the automatic interpretation of Schlumberger and Wener Sounding curves[J]. Geophysics,1989,54(2):245-253.
    Zhang J, Mackie RL, Madden TR.3-D resistivity forward modeling and inversion using conjugate gradients[J]. Geophysics,1995,60(5):1313-1325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700