用户名: 密码: 验证码:
锰和混合稀土复合添加对挤压态AZ61组织及性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相比于其他金属结构材料,挤压态AZ系列镁合金存在着力学性能偏低和耐腐蚀性能较差的问题,尤其是熔合缝的耐腐蚀性能问题。本文从多元合金化的角度出发,在AZ61的基础上,复合添加Mn与富铈混合稀土元素。研究两者对AZ61镁合金显微组织、力学性能及耐蚀性能的影响规律。
     本文采用平模铸造法生产了镁合金铸锭,同时使用直读光谱仪实时检测镁合金熔体中的元素含量。在铸锭空冷后使用超声波检测仪检测铸造缺陷,随后进行坯料加工。经过均匀化退火和热挤压加工后,采用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、能谱分析仪(EDS). RST5200电化学工作站、DCTC-600P盐雾腐蚀试验箱、显微硬度仪以及万能试验机等分析测试仪器,系统地研究了不同配比的Mn和富铈混合稀土元素对AZ61热挤压后的镁合金显微组织、力学性能和耐蚀性能的影响。
     经研究表明,通过Mn和富铈混合稀土元素的复合添加,AZ61镁合金第二相的种类和数量发生了明显的变化。p相(Mg17Al12)的数量由于锰和稀土元素的加入而大量减少并且部分呈点状分布于镁合金基体当中。同时在基体中生成了大量杆状和针状的Al11RE3木目,其中大部分都分布于晶粒中,只有少量沿晶界分布。原本存在于AZ61中的Al8Mn5相由于富铈混合稀土的加入而形成了Al10RE2Mn7三元相。这种三元相的也呈团簇状分布,与基体有较好的共格关系。经热挤压后,针状的Al11RE3相破碎并弥散分布于基体中而团簇的Al10RE2Mn7相沿挤压方向分散开来;镁合金的晶粒得到细化,但随着Mn/RE比例的变化,挤压棒材各部位的晶粒尺寸有增大的趋势。
     在力学性能方面,锰和稀土元素的复合添加形成了大量Al10RE2Mn7三元相,同时Al11RE3相破碎并弥散分布于AZ61+Mn+RE镁合金基体中使得综合力学性能在AZ61的基础上得到了进一步提高。成分2至成分6随着Mn/RE的变化,镁合金的抗拉强度和延伸率相对于AZ61均得到一定程度的提高。其中成分2的抗拉强度和伸长率最高,分别为273.88MPa和17.30%。除此之外,随着Mn/RE比例的变化,成分2到成分6,无论抗拉强度还是伸长率,均有一个先降低后升高的过程。在拉伸断口形貌上,对于抗拉强度和伸长率较好的成分,其断口上均有大量的第二相(Al10RE2Mn7)存在,球状Al10RE2Mn7相的存在强化了AZ61+Mn+RE的力学性能,而且韧窝和撕裂棱相对较多,解理面较少且解理面面积较小。这说明其塑性变形的能力较好,裂纹的扩展需要更多的能量。而抗拉强度和伸长率均较低的成分,其断口形貌主要表现为大量的解理面和少量的韧窝且几乎没有第二相,这说明在拉伸过程中,裂纹沿解理面迅速拓展,最终试样断裂,因此其断后伸长率较低。另外,AZ61和AZ61+Mn+RE的抗压强度变化也较大。Mn和RE的复合添加使镁合金的抗压强度得到明显的提高,且呈现出先增大后减小的趋势。成分2与成分3具有较高的屈强比。在抗弯性能方面,但其抗弯强度变化明显,随着Mn/RE比例的变化,抗弯强度下降。当Mn/RE比例为1.87时,其具有相对最高的抗弯强度。
     在耐蚀性方面,AZ61所含第二相的种类和数量较少,故其开路电位较高,因此腐蚀倾向较低。对极化曲线拟合后得到不同成分下的电流密度。AZ61+Mn+RE的自腐蚀电流密度与AZ61镁合金相比明显下降,这说明在腐蚀初期AZ61+Mn+RE均具有较好的耐蚀性能。对于阻抗,表面膜电阻R2值越大,意味着表面膜对合金基体的保护能力越强;电荷传递电阻R3值越大,表明腐蚀电化学的阻力越大。从拟合得到的数据来看,成分1至成分6的耐蚀性能大体上是逐渐提高的。在盐水浸泡试验中,通过不同时间的浸泡实验发现,AZ61随浸泡时间的延长而加速腐蚀,其他成分镁合金腐蚀速率前期较快,而后期形成保护层使腐蚀速率降低并趋于稳定。盐雾腐蚀实验与盐水浸泡试验的结果大致相符。锰与稀土的复合添加提高了AZ61的耐蚀性,含量达到0.67时效果明显。当添加超过此值后,耐蚀性继续提高,但幅度不大。
     Fe是镁合金中主要的杂质元素。在杂质元素Fe元素的含量上,通过Mn和混合RE的复合添加,AZ61镁合金中Fe元素的含量从单独加入锰时的0.0042wt%降低至0.0015wt%以下,其中Fe元素含量最低的为0.001wt%。从净化镁合金基体的角度讲,复合添加进一步降低了镁合金中Fe杂质的含量,使AZ61+Mn+RE的耐蚀性能的到了进一步的提高。对于熔合缝的腐蚀,经过72小时的盐雾试验,可以看到AZ61的熔合缝腐蚀比较严重。但随着镁合金成分的变化,熔合区被腐蚀的程度逐渐减轻。
Extruded Mg-Al-Zn alloys exists the problem of low mechanical properties and poor corrosion resistance, especially the corrosion trend of fusion zone. According to the concept of multi-alloy, Mn element and mixed rare earth elements (main cerium) was added into AZ61. The aim is to study the impact to microstructure, mechanical properties and corrosion resistance of AZ61magnesium alloy after composite addition of those elements.
     In this thesis, direct reading spectrometer was used to detect elements content real-time. AZ61magnesium alloy ingots were gotten by flat die casting and processed after air cooling, while an ultrasonic detector was used to detect casting defects.
     After homogenizing annealing and hot extrusion processing, test and analysis means including optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy spectrum analysis (EDS), RST5200electrochemical workstation, DCTC-600P, salt spray chamber, micro hardness tester and universal testing machine was used to study the impact of different Mn/RE ratio to microstructure, mechanical properties and corrosion resistance of extruded AZ61magnesium alloy systematically.
     The study shows that, by composite addition of manganese and rare earth elements, second phases'type and quantity changed significantly. Due to the addition of Mn and RE, the amount of β-phase (Mg17Al12) had a significant reduction and some spotty β-phase distributes in a-Mg, at the same time a large number of rod and needle-like Al11RE3phase generated, however most of them distribute in the crystal grains and only a small amount of it exist along the grain boundaries. Because of the addition of RE, the original Al8Mn5existing in AZ61changed into AlioRE2Mn7ternary phase. This ternary phase showed clusters like distribution and has good coherent relationship with the magnesium matrix. After homogenization heat treatment and hot extrusion, the needle-like rare earth crushed and dispersed in the matrix phase homogeneously and the clusters Al10RE2Mn7phase was dispersed after hot extrusion. The grains refined, but with the change of Mn/RE ratio,the grain size of the extruded bar had a tendency to grow up.
     In the mechanical properties, a large number of Al10RE2Mn7ternary phase formed after combined addition of manganese and rare earth elements.Broken and dispersed Al11RE3phase in AZ61+Mn+RE matrix has been further improved the mechanical properties on the basis of AZ61. From component2to component6with the change of Mn/RE, the tensile strength and elongation of the magnesium alloy with respect to AZ61were improved to some extent. Component2has the highest tensile strength and elongation which is273.88MPa and17.30%respectively. Besides, with change of the Mn/RE ratio, both tensile strength and elongation had a process of decreased first and then increased. As to tensile fracture surface, the component with better tensile strength and elongation had a large number of the second phase (Al10RE2Mn7) in its fracture surface. The spherical Al10RE2Mn7reinforced mechanical properties of AZ61+Mn+RE. There was relatively more dimples and tear ridge on fracture surface as well as less and smaller cleavage plane. It shows that the ability of the plastic deformation is better and the crack growth requires more energy. Component with a lower tensile strength and elongation, fracture morphology is mainly of a large amount of the cleavage plane, a small number of dimples and almost no second phase, indicating that in the stretching process, the crack along the cleavage plane expand rapidly leading to specimen fracture, and therefore its elongation is lower after fracture. In addition, the change of AZ61and of AZ61+Mn+RE in compressive strength is also great. The compressive strength of the AZ61magnesium alloy significantly improved after combined addition of Mn and RE, showing the trend of increased and then decreased. Component2and component3have a higher yield ratio. As to bending performance, changes in the flexural strength are obvious and there is a downward trend with the changes of Mn/RE ratio. When the Mn/RE ratio was1.87, alloy has the highest bending strength.
     In terms of corrosion resistance, for AZ61contains less second phase, so it possess the higher open circuit potential,a lower corrosion tendency. The current density of the polarization curve obtained after fitting. Self-corrosion current density of AZ61+Mn+RE compared with AZ61magnesium alloy was significantly decreased. This shows that AZ61+Mn+RE have good corrosion resistance in the initial stage of corrosion. For the impedance, the larger the surface film resistor R2value is, the stronger the ability of surface film protects magnesium matrix. The greater the charge transfer resistor R3value is, the easier the resistance of electrochemical corrosion is blocked. According to the data obtained from the fitting, the corrosion resistance from component1to component6is substantially gradually increased. Found through different time immersion test in salt water immersion test, AZ61accelerated corrosion rate with the immersion time and corrosion rate of other magnesium alloy is rapid in the initial stage of corrosion, while the latter a protective layer formed to reduce and stabilize the corrosion rate. Salt spray corrosion experiment is broadly in line with salt water immersion test results. Composite addition of Mn and RE improved the corrosion resistance of AZ61,especially the ratio reaches to0.67. However, when more than this value is added into magnesium alloy, the corrosion resistance continues to improve, but slightly.
     Fe is the main impurity elements in magnesium alloy. Composite addition of Mn and mixed RE in AZ61magnesium alloy makes Fe content reduced from0.0042wt%, when the manganese is added separately, to0.0015wt%, wherein the lowest Fe content is0.001wt%. From the perspective of purifying the magnesium alloy matrix, the composite addition further reduced the impurity content Fe in the magnesium alloy, so that AZ61+Mn+RE corrosion resistance improved further. As to salt spray test, serious corrosion at AZ61fusion seam could be seen after72hours. But with the change of composition, the degree of corrosion at the fusion zone minimized gradually.
引文
[1]潘复生,韩恩厚.高性能变形镁合金及加工新技术[M].北京:科学出版社,2007.21-23
    [2]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版,2002.47-50,58-65
    [3]陈振华,严红革,陈吉华等.镁合金[M].北京:化学工业出版社,2004.32-33
    [4]刘倩,单忠德.镁合金在汽车工业中的应用现状与发展趋势[J].铸造技术,2007,28(12):1668-1671
    [5]曾晓勤,王渠东.镁合金应用新进展[J].铸造,1998,11(6):39-43
    [6]Dr, Howard, I, Kaplan. The Future is Bright and Light[J]. Light Metal Age,1993,7(4):22-25
    [7]Hajime Iwasaki.Microstructure and Strength of Rapidly Solidified magnesium Alloys[J]. Light Metal Age,1999,4(6),6-12
    [8]刘正,范立坤.镁基快速凝固合金的研究与开发[J].汽车工艺与材料,2003,6(6):20-24.
    [9]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004.283-306
    [10]Bronfin B. Development of New Magnesium Alloys for Advanced Applications[J]. Magnesium and Their Applications. Proceedings of the 6th international conference, edited by Kainer,KU.2004,55-61
    [11]陈振华,夏伟军,严红革等.变形镁合金[M].北京:化学工业出版社,2005.3-5
    [12]杨顺华.晶体位错理论(第一卷)[M].北京:科学技术出版社,1988.365-374
    [13]I. J. Polmear, Mater. Sci.&Tech[J].1994, Vol.10:1-5
    [14]Yu K, Li W X, Wang R C. Plastic deformation mechanism of magnesium alloys[J]. Chinese Journal of Nonferrous Metals,2005,15(7):1081-1086
    [15]王祝堂.镁及镁合金型材的挤压[J].有色金属加工,2004,33(1):31-36
    [16]Laue K, Stenger H. Extrusion[J]. American Society for metals,1981:152-156
    [17]郑韫,吴国华,王其龙等.镁合金净化技术研究现状与展望[J].铸造技术,2010,31(1):104-108
    [18]R. Arrabal, A. Pardo, M.C. Merino et al. Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt.%NaCl solution[J].Corrosion Science,2012,55: 301-312
    [19]陈先华,肖瑞,丁雪征等.AZ系镁合金研究现状[J].材料热处理技术,2012,2:14-18
    [20]陈振华,严红革,陈吉华等.镁合金[M].北京:化学工业出版社,2004.5:1-22
    [21]张伟.合金元素在镁合金中作用的研究现状及其展望[J],铸造技术,2009,9,30(9):1181-1183
    [22]张诗昌,段汉桥,蔡启舟等.主要合金元素对镁合金组织和性能的影响[J].铸造,2001,50(6):310-314
    [23]轻合金材料加工手册编写组.轻金属材料加工手册[M].北京:冶金工业出版社,1979:143-166
    [24]彭建,吕滨江,童小山等.Mn元素对Mg-Zn系镁合金组织性能影响的研究现状与展望[J].轻金属,2012,8:55-58
    [25]杨明波,潘复生,李忠盛等.Mg-A1系耐热镁合金中的合金元素及其作用[J].材料导报,2005,19(4):46-49
    [26]Ma Chunjiang, Liu Manping, Ding Wenjiang. Tensile properties of extruded ZA60-RE alloys[J]. Mater. Sci. Eng. A,2003,349:207-212
    [27]王勇,廖治东,张恒飞等.稀土在镁合金中作用的研究现状[J].材料导报,2011,25(5):487-491
    [28]杨友,刘勇兵.稀土元素对AZ91D压铸镁合金高周疲劳性能的影响[J].金属热处理,2006,3:65-69
    [29]Lu Yizhen, Wang Qudong, Zeng Xiaoqin, et al. Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys[J].Mater Sci Eng A,2000,278:66-76
    [30]Lorimer G W, Apps P J, Karimzadeh H, et al. Improving the performance of Mg-rare earth alloys by the use of Gd or Dy additions[J]. Materials Science Forum,2003:419-422
    [31]Emely E F, Principles of Magnesium technology[M]. Oxford:Pergamon Press,1966
    [32]廖慧敏,龙思远,肖华强等.富铈混合稀土对AZ81合金组织与性能的影响[J].中国稀土学报,2008,26(6):792-796
    [33]王瑞斐.混合稀土对AZ61镁合金组织和力学性能的影响[D].重庆,重庆大学,2009
    [34]余琨,黎文献,王日初等.稀土Ce和Nd对AZ31镁合金耐蚀性能的影响[J].材料保护,2007,40(11):6-9
    [35]李春芳.稀土Ce改性AZ91D镁合金腐蚀剩余强度研究[D].吉林,吉林大学,2010
    [36]Wan Diqing. Improvement of Corrosion Resistance of Magnesium Alloy by Ce Addition and High Cooling Rate[J]. Rare Metal Materials and Engineering,2012,41(S2):47-49
    [37]张代东,张虎,于学花.稀土铈对AZ61A镁合金组织和力学性能的影响[J].金属热处理,2011,36(12):49-54
    [38]唐良宝,陶利民.稀土铈对AZ61镁合金显微组织和力学性能的影响[J].材料热处理技术,2011,7:38-44
    [39]高霞,郭锋,李鹏飞等.稀土铈对AZ91D镁合金组织及力学性能的影响[J].内蒙古工业大学学报,2010,29(1):25-29
    [40]张德平,田政,唐定骧.铈镧混合稀土对AZ91D压铸镁合金显微组织和蠕变性能的影响[J].稀有金属,2010,34(2):202-209
    [41]易荣喜,谢世坤,郑小秋等.稀土La对铝镁合金凝固曲线和微观组织的影响[J].热加工工艺,2012,41(17):6-15
    [42]梁海成,冯立军,崔建忠等.AZ80镁合金管材热挤压工艺及组织性能研[J].特种铸造及有色合金,2011年年会会刊
    [43]王忠堂,赵根发,刘劲松等.热挤压AZ80镁合金管材的组织与力学性能[J].金属热处理,2011,36(7):20-23
    [44]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006.94-120
    [45]卫英慧,许并社.镁合金腐蚀防护的理论与实践[M].北京:冶金工业出版社,2007.101-161
    [46]Jinsun Liao, Makoto Hotta, Naotsugu Yamamoto. Corrosion behavior of fine-grained AZ31B magnesium alloy[J]. Corrosion Science,2012,61:208-214
    [47]G.R. Argade, S.K. Panigrahi, R.S. Mishra. Effects of grain size on the corrosion resistance of wrought magnesium alloyscontaining neodymium[J].Corrosion Science,2012,58:145-151
    [48]刘兵.加强技术创新,为经济结构调整提供强大动力—论实施“镁合金开发应用及产业化”重大专项的战略意义[J].材料热处理学报,2001,22(S):1-5
    [49]彭建,吕滨江,朱熹等.A1含量及均匀化处理对AZ系列镁合金组织的影响[J].材料工程,2011,6:17-22
    [50]周桂斌,刘子利,刘希琴等.Mn对Mg-5A1镁合金腐蚀性能的影响[J].材料工程,2012,11:12-22
    [51]张广俊,龙思远,曹凤红.AZ61镁合金在不同挤压温度下的组织与力学性能[J].特种铸造及有色合金,2009,29(3):270-272
    [52]Jiang Bin, Gao Liang, Huang Guangjie et al. Effect of extrusion processing parameters on microstructure and mechanical properties of as-extruded AZ31 sheets[J]. Transactions of Nonferrous Metals Society of China,2008,18:160-164
    [53]刘永辉,张佩芬.金属腐蚀学原理[M].北京:航空工业出版社.1993.38-70
    [54]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社.2002.21-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700