用户名: 密码: 验证码:
麦芽糖基-β-环糊精的酶法合成及其性质和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦芽糖基-β-环糊精(Mal-β-CD或者G_2-β-CD)是分支环糊精的一种,是在保留环糊精空腔结构基本不变的情况下,采用化学或生物酶法向环糊精母体的6位羟基接枝麦芽糖基而得到的改性产物。麦芽糖基-β-环糊精既具有普通母体β-环糊精所具有的包合性能,同时又具有β-环糊精所不具有的极好的溶解度,因此在食品、医药、农药、精细化工、分析检测、环保等行业具有巨大的应用前景。本论文从商品普鲁兰酶液中分离得到普鲁兰酶,对所用普鲁兰酶的性质进行了研究,详细研究了普鲁兰酶反向催化合成麦芽糖基-β-环糊精的机制,并通过计算化学阐述了反应的可行性,对普鲁兰酶逆向催化反应合成麦芽糖基-β-环糊精的工艺进行了优化,并对合成产物结构进行了表征,同时对麦芽糖基-β-环糊精的应用进行了初步研究。
     确定了麦芽糖基-β-环糊精的高效液相法和纸层析法检测条件。高效液相法定量检测的检测条件为:Hypersil NH_2柱ф4.6×250mm,K-2301示差折光检测器,流动相乙睛-水(60:40),流速1 mL/min,柱温30℃,进样量10μL。纸层析法用于样品中麦芽糖基-β-环糊精的定量定性检测的检测条件为:下行法层析,展开剂为正丙醇-正丁醇-水(5:3:4),展开时间12小时;以0.1 mol/L的HCL溶液作为洗脱剂,样品的含量在150-250μg之间。定性检测时干燥后直接显色即可。纸层析法准确性和重复性都较好,可以和HPLC互相配合,作为麦芽糖基-β-环糊精在生产和应用中的一种经济可靠的常规检测方法。
     对普鲁兰酶进行了分离纯化,并进行了化学修饰。商品普鲁兰酶液,通过硫酸铵分级盐析,AKTA系统凝胶柱HiPrep 26/10 Desalting脱盐、Mono Q 10/100 GL柱上的离子交换层析、Superdex~(Tm) 200 10/300柱和HiPrep Sephacryl S-200HR凝胶色谱,分离得到了普鲁兰酶。SDS-PAGE电泳分析呈现单一条带,这表明该酶已经达到了电泳纯,该酶的分子量约为82 kDa。用DIC(丁二酮)、PMSF(苯甲磺酰氟)、DTT(二硫苏糖醇)、NBS(N-溴代琥珀酰亚胺)、DEPC(焦碳酸二乙酯)、EDC(碳二亚胺)、Ch-T(氯氨-T)和TNBS(三硝基苯磺酸)等八种专一性氨基酸残基修饰剂修饰纯化得到的普鲁兰酶后,结果表明精氨酸、氨基酸的羟基和巯基与酶活力无关,而色氨酸残基、组氨酸中的咪唑基、氨基酸的羧基、甲硫氨酸残基和赖氨酸ε-NH_2与普鲁兰酶活性有关,可能是酶活力的必需基团。
     通过单因素实验和响应面法优化了麦芽糖基-β-环糊精制备条件。通过优化,麦芽糖基-β-环糊精生产的最适反应条件:温度,60℃,pH值4.5,麦芽糖和β-环状糊精摩尔比为12:1,底物浓度80%,加酶量200 U/gβ-环糊精,反应时间60 h。在此条件下,反应体系的麦芽糖基-β-环糊精浓度达到71 mg/mL,β-环糊精合成麦芽糖基-β-环糊精的转化率达到65%。
     阐述了反向合成麦芽糖基-β-环糊精的可行性。应用计算化学手段,用AM1方法优化了生成麦芽糖基-β-环糊精过程中各分子的构型,得到了各分子的能量及反应的热效应。从能量结果看,生成麦芽糖基-β-环糊精的反应是吸热反应,吸收热量为294.7 kJ/mol。升高温度,平衡向正反应方向移动,且反应速度加快,有利于麦芽糖基-β-环糊精的生成,与实验结果一致。对于接枝多个麦芽糖基(两个或三个以上)生成如(G_2)_2-β-CD、(G_2)_3-β-CD等麦芽糖基-β-环糊精的反应,升高温度时,反应不利于合成接枝共聚物,且这种逆反应速度加快。
     通过串联质谱、富立叶变换红外光谱仪、核磁共振波谱仪等仪器对合成的产物进行结构鉴定,表明产物结构为一个麦芽糖基通过α(1-6)键连接到了β-环糊精母体上;将麦芽糖基-β-环糊精用糖化酶水解,得到的产物通过串联质谱、富立叶变换红外光谱仪、核磁共振波谱仪等手段进行结构解析,发现糖化酶水解后的产物是葡萄糖基-β-环糊精(Glu-β-CD),进一步说明合成产物为麦芽糖基-β-环糊精。
     利用DSC法对麦芽糖基-β-环糊精的热力学行为进行研究,按Kissinger方程和Ozawa方程对活化能等参数进行了计算。结果表明,麦芽糖基-β-环糊精的开始分解温度是328.7℃,Kissinger方程以及Ozawa方程计算出的麦芽糖基-β-环糊精的热分解活化能分别为41.44 kJ /mol和44 kJ /mol。根据Ozawa方法获得指前因子A为1.85×10~3 min~(-1),通过DSC曲线图,可以获得焓变(△H)为23.70 kJ /mol,以及熵变(△S)为0.0394 kJ /mol·K,降解速度常数k为0.228 min~(-1),同时麦芽糖基-β-环糊精的半衰期为3.04 min,玻璃化转变温度Tg是173℃。
     研究了Mal-β-CD对黑胡椒精油的包合作用。首先运用GC-MS对黑胡椒精油的基本成分组成进行分析,β-石竹烯占黑胡椒精油挥发性组分的37.11%;其次研究了Mal-β-CD存在下,β-石竹烯的相溶解度曲线,建立了Mal-β-CD—β-石竹烯的定量分析方法;然后以包埋率为指标,运用正交设计优化了包合物的制备工艺;通过红外光谱及热重分析,确认了Mal-β-CD—β-石竹烯包合物的形成,热重分析表明β-石竹烯经Mal-β-CD包埋后,耐热性显著提高;黑胡椒精油的Mal-β-CD包合物在稳定性试验中呈现出较高的稳定性,产物完全溶于水,可显著提高黑胡椒精油的溶解度,包合物产物的临界湿度为67%。
Maltosyl-β-cyclodextrin (Mal-β-CD or G_2-β-CD) is a kind of branched cyclodextrin, it is the modified cyclodextrin made by grafting maltose through chemical and bioenzymic method with maintance of native cyclodextrin conformation. Mal-β-CD has the properties of inclusion, which is the samilar as nativeβ-CD, but also has properties of high solubility which nativeβ-CD don’t have. Thus, Mal-β-CD could be used in field of food, medicine, agricultural chemical, fine chemical engineering, analysis and detection and environmental protection. This study separated pullulanase from commerical pullulanase liquids, and the properties of pullulanase were studied, the catalysis mechanism of reverse synthesis Mal-β-CD were investigated in detail, and the feasibility of the reaction was elaborated by computational chemistry, the synthetic technology was optimized and the structure of product was characterized, we further studied the application of Mal-β-CD.
     We investigated the detection conditions of HPLC and paper chromatography (PC) for Mal-β-CD. Results showed that the detection conditions on HPLC were: Hypersil NH_2 column (ф4.6×250mm), K-2301 refractive index detector (RID), mobile phase of acetonitrile- water (60:40), flow speed of 1 mL/min, temperature of 30℃, injection of 10μL. The detection conditions for PC were: chromatography of descending, developing solvent of 1-propyl:n-butyl:water (5:3:4), developing time of 12 h, 0.1 mol/Lof HCL as eluant, sample content of 150-250μg. The accuracy and repeatability of PC were satisfied, and could be used as an enconomic and realible detection method, which work in coordination with HPLC in Mal-β-CD production and application.
     We separated and purified pullulanase and made some chemical modification on pullulanase. Commercial pullulanase liquids were fractional precipitated by ammonium sulfate, then were desalted by gel column (HiPrep 26/10 desalting column), and then purified by ion exchange column chromatography (Mono Q 10/100 GL)、gel chromatography (Superdex~(Tm) 200 10/300 and HiPrep Sephacryl S-200HR) using AKTA pufrification system. The final purified pullulanase was detected by SDS-PAGE, single band means electrophoretically pure of pullulanase, the relative molecular weight was about 82 kDa。The purified pullulanase was modified by DIC、PMSF、DTT、NBS、DEPC、EDC、Ch-T and TNB, results showed that Arg, hydroxy and sulfydryl of amino acid were independent with pullulanase activity, while Trp, Met, imidazolyl in His, carboxyl in amino acid, andε-NH_2 in Lys were related to pullulanase activity, may be the essential group for maintaining pullulanase activity.
     The preparation condition for Mal-β-CD were optimized by single factor experiment and response surface design, the optimum condition were set up as temperature of 60℃,pH of 4.5,molar ratio of maltosetoβ-CD were 12:1,substrate concentration of 80%,enzyme concentration of 200 U/gβ-CD,reaction time of 60 h. Under these conditions the Mal-β-CD concentration was 71 mg/mL,the conversion percent forβ-CD synthesis Mal-β-CD was 65%。
     The feasibility of reverse systhesis Mal-β-CD was investigated. Using computational chemistry, the configuration of each molecule for synthesis of Mal-β-CD were optimized by AM1, and we got the energy and thermal effect of each molecule. Results showed that the reaction for synthesis of G_2-β-CD were endothermic reaction, the absorption energy was 294.7kJ/mol。The reaction balance moved to positive reaction with temperature increasing, and also the reaction speed fastened, which was suitable for G_2-β-CD preparation,this simulation results was accordance with experiments. For grafting reaction with more than two maltose such as(G_2)_2-β-CD、(G_2)_3-β-CD, the negative reaction speed were increased with temperature increasing.
     The structure of synthetic product was identified using MS, FTIR and NMR, results showed that the structure of the product was that maltose connected withβ-CD byα(1-6)glucosidic bond. The product was hydrolyzed by glucoamylase and the hydrolysate was identified as Glu-β-CD by MS, FTIR and NMR, which further identified the product. The thermodynamics behavior of Mal-β-CD was studied by DSC and the parameters, such as activation energy was calculated using Kissinger equation and Ozawa equation.
     The thermodynamics behavior of Mal-β-CD was studied by DSC, and the activation energy parameters were calculated by Kissinger equation and Ozawa equation. The results showed that decomposition temperature for Mal-β-CD was 328.7℃, the thermal decomposition activation energy calculated by Kissinger equation and Ozawa equation were 41.44 kJ /mol and 44 kJ /mol, separately. Exponential factor A was calculated as 1.85×10~3 min~(-1) by Ozawa method.△H and△S was calculated from DSC diagram as 23.70 kJ /mol and 0.0394 kJ /mol·K,respectively . The degradation velocity constant (k) was calculated as 0.228 min ~(-1), and half time period was calculated as 3.04 min, glass transition temperature Tg was 173℃.
     The inclusion properties of Mal-β-CD were studied by forming complexes essential oil from piper nigrum. Firstly, the volatile components of black pepper oil were identified by GC/MS method.β-caryophyllene was one of the main constituents of the identified terpinene compounds, up to 37.11 % of the total volatile substances detected. The complexation ofβ-caryophyllene with Mal-β-CD was investigated by phase solubility method and then the quantitative analysis method ofβ-caryophyllene from Mal-β-CD complex was established. The parameters of preparing complexes between Mal-β-CD andβ-caryophyllene were optimized by orthogonal design.The thermal behavior of the solid CDs complexes was analysized by thermogravimetric (TG). Complexes of Mal-β-CD with essential oil from piper nigrum showed high stability in the stability experiment, and the complex was totally soluble, thus the solubility of essential oil from piper nigrum could be significantly increased. The critical humidity of complex was about 67%.
引文
1.童林荟.环糊精化学[M].北京:科学出版社,2001
    2.金征宇,徐学明,陈寒青,李学红.环糊精化学—制备与应用[M].北京:化学工业出版社,2009
    3.金征宇,顾正彪,童群义等.碳水化合物化学:原理与应用[M].北京:化学工业出版社,2008
    4. Bender, M L, Komiyama, M. Cyclodextrin chemistry [M]. Berlin: Springer-Verlag, 1978
    5. Del Valle, E.M.M. Cyclodextrins and their uses: a review [J]. Process Biochemistry, 2004, 39: 1033–46
    6. Szetjli, J. Introduction and general overview of cyclodextrin [J]. Chemical Review, 1998, 98: 1743–53
    7. Hedges, R A. Industrial applications of cyclodextrins [J]. Chemical Review, 1998, 98: 2035–2044
    8. Villiers A.Sur la fermentation de la fécule par le action du ferment buytrique[J].Compt Rend Acad Sci, 1891:536-538.
    9. Schardinger F Z.Unters Nahru genussm,1903;6:865
    10. Schardinger F.Wiener Klinische Wochenschrift,1904;17:207-209
    11. Szejtli J,Osa T.Comprehensive supramolecular chemistry[M].Pergamon:Elsevier,1996
    12. French D, Rundle R E.The molecular weights of the Schardinger alpha and beta dextrins[J].Journal of the American Chemical Society,1942,64:1651-1653
    13. Freudenberg K,Cramer F.Die Konstitution der Schardinger Dextrin alpha, beta dextrin and gamma[J]. Zeitschrift fur Naturforschung Section B-A Journal of Chemical Sciences, 1948,3:464
    14. Cramer F. Proceedings of 1st intermational symposium on cyclodextrins[C]. Budapest, 1981
    15. Freudenberg K,Cramer F,Plieninger H[P].German patent,895769,1953
    16. French D.The schardinger dextrins[J].Adv Carbohydr Chem,1957,12:189-260
    17. French D, Levine M L, Pazur J H, et al. Studies on the schardinger dextrins the preparation and solubility character-istics of alpha beta and gamma dextrins [J].Journal of the American Chemical Society, 1949,71:353-356
    18. Cramer F.Einschlussverbindungen[C].Berlin:Heidelberg Springer-Verlag,1954
    19. FDSC Report NO. 55-093-12, 1980; Private communication from Nihon Shokuhin Kako Co. Ltd., 8 F1, Shinkokusai Bidg., 3-4-1 Marunouchi, Chiyoda-ku, Tokyo
    20. D'Souza V T,Lipkowitz K B.Cyclodextrins:Introduction[J].Chem Rev,1998,98:1741-1742
    21. Horikoshi K, Nakamura N, Matsuzawa N, et al. Industrial production of cyclodextrins Proceedings of
    1st International Symposium on Cyclodextrins [C].Budapest,1981
    22. Hashimoto H. Studies in the Industrial Production and Application of Cyclodextrins[J]. Denpun Kagaku, 1989,36:35-42
    23.袁超.羟丙基-β-环糊精的制备、性质及应用研究[D]:[博士学位论文].无锡:江南大学,2007
    24.王少杰.麦芽糖基β-环湖精的制备、分离及应用[D]:[硕士学位论文].无锡:江南大学,2005
    25. Manunzaa, B, Deianaa, S, Pintorea, M, et al. Structure and internal motion of solvated beta-cyclodextrine: a molecular dynamics study [J]. Journal of Molecular Structure (Theochem), 1997, 419: 133–137
    26. Tian, S, Forgo, P, D'Souza, V T. Selective modification at the 3-Position ofβ-Cyclodextrin [J].Tetrahedron Letters, 1996, 37(46): 8309–8312
    27. Szetjli, J. Cyclodextrin technology [M]. Boston: Kluwer, 1988
    28.二国二郎.淀粉科学手册[M].北京:轻工业出版社,1977
    29. Allegre, M., Deratani, A. Cyclodextrin uses: from concept to industrial reality [J]. Agro Food Industry. Hi-Tech. 1994, 5 (1): 9–17
    30. Munro, I C, Newberne, P M , Young, V R, et al. Safety assessment ofγ-cyclodextrin [J]. Regulatory Toxicology and Pharmacology, 2004, 39: S3–S13
    31. Bellringer, M E, Smith, T G, Read, R, et al.β-Cyclodextrin: 52-week toxicity studies in the rat and dog [J]. Food and Chemical Toxicology, 1995, 33: 367–376
    32.高群玉,黄立新,周俊侠等.姜黄色素及其微胶囊化的应用研究[J].食品科技,2000,3:35-37
    33.俞宝康,王彦彤.β-环糊精包结洋葱汁[J].食品科学,1992,11(15525-27
    34.郭爱莲,胡永卫,王雪峰.环状糊精脱除食品异味的研究[J].食品工业科技,1996,2
    35. Kim H O, Hill R D. Modification of wheat flour dough characteristics with cyclodextrins [J]. Cereal Chemistry,1984,61:406-407
    36. Yu E K. ovel decaffeination process [J]. Applied Microbiology Biotechnology, 1988, 28:546-549
    37.曹新志,金征宇.β-环糊精在食品中的胶囊化作用[J].粮食与饲料工业,2002,(8):47-50
    38.张莉,罗来辉.环糊精包合物的研究进展[J].华北工学院学报,2003,24:278-231
    39.邹连生.β-环糊精的开发现状及其在软饮料工业中的最新应用[J].饮料工业,1996, 2:13-16
    40.刘璘,姜亦茂,杨晓.β-环糊精对酪蛋白发泡性能的改善[J].食品工业科技,1995,(4):28-30
    41. Loftsson, T, Duchêne D. Cyclodextrins and their pharmaceutical applications [J]. International Journal of Pharmaceutics, 2007, 329: 1–11
    42. Duchêne, D, Ponchel, G, Bochot, A. New uses of cyclodextrins [J]. European Journal of Pharmaceutical Sciences, 2005, 25(S1): S1–S2
    43. Fr?mming, K H, Szejtli, J. Cyclodextrins in Pharmacy [M]. Dordrecht: Kluwer Academic Publishers, 1994
    44. Granero, G, Granero, C, Longhi, M. The effect of pH and triethanolamine on sulfisoxazole complexation with hydroxypropyl-β-cyclodextrin [J]. European Journal of Pharmaceutical Sciences, 2003, 20: 285–293
    45. H?ncal, A A. Recent advances in drug delivery using amphiphilic cyclodextrin nanoparticles [J]. European Journal of Pharmaceutical Sciences. 2005, 25(S1): S3–S4
    46. Tavornvipas S, Hirayama F, Arima H, et al. 6-O-α-(4-O-α-D-glucuronyl)- D-glucosyl-β- cyclodextrin: solubilizing ability and some cellular effects [J]. International Journal of Pharmaceutics, 2002,249:199-209
    47. Bellringer M E, Smith T G, Read R, et al.β-Cyclodextrin: 52-week toxicity studies in the rat and dog [J]. Food and Chemical Toxicology,1995,33:367-376
    48. Koizumi K, Tanimoto T, Fujita K, et al. Proparation, isolation,and characterization of novel heterogenous branched cyclomaltooligosaccharides havingβ-D-galactosyl residue(s) on the side chain [J]. Carbohydrate Research,1993,238:75-91
    49. Abe J, Takeda Y, Hizukuri S, et al. Isolation and characterization of 6-O-α-D-glucopyranosylcycloheptaose [J]. Carbohydrate Research, 1984, 131:175-179
    50. Kobayashi S, Shibuya N, Yong B M, et al. The preparation of 6-O-α-D-glucopyranosyl cyclohexaamylose [J]. Carbohydrate Research,1984,126:215-224
    51. Abe J, Mizowaki N, Hizukuri S, et al. Synthesis of branched cyclomalto-oligosaccharides using Pseudomonas isoamylase [J]. Carbohydrate Research,1986,154:81-92
    52. Hisamatsu M, Yamada T. Production of maltosyl-β-cyclodextrin by a bioreactor system with pullulanase immobilized on particially deacetylated chitin [J]. Starch /St?rke 1989,41:239-242
    53. Kitahata S, Hara K, Fujita K, et al. Sysnthesis of 6-O-α-D-galactosyl-α-cyclodextrin by coffee beanα-galactosidase [J]. Bioscience, Biotechnology, and Biochemistry,1992, 56:1518-1519
    54. Kitahata S, Fujita K, Takagi Y, et al. Galactosylation at side chains of branched cyclodextrins by variousβ-galactosidases [J]. Bioscience, Biotechnology, and Biochemistry,1992,56:242-245
    55. Hara K, Fujita K, Nakano H, et al. Acceptor specificities ofα-mannosidases from jack bean and almond, and transmannosylation of branched cyclodextrins [J]. Bioscience, Biotechnology, and Biochemistry, 1994,58:60-63
    56. Szente, L., Szejtli, J. Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development [J]. Advanced Drug Delivery Reviews, 1999, 36: 17–28
    57. Kobayashi S, Shibuya N, Yong M, et al. The preparation of 6-O-α-D-glucopyranosyl cyclohexaamylose [J]. Carbohydrate Research,1984,126:215-224
    58. Watanabe N, Yamamoto K,Tsuzuki W, et al. A novel method to produce branched-cyclodextrins: pullulanase-glucoamylase-mixed method [J]. Journal of Fermentation and Bioengineering, 1997, 83(1): 43- 47
    59. Shiraishi T,Kusano S,Sumuraya Y, et al. Synthesis of maltosyl (α,1-6)cyclodextrins the reverse reaction of thermostable Bacillus acidopullyticus pullulanase[J].Agricultural and Biological Chemistry, 1989,153: 2181-2188
    60. Kitahata S, Yoshimura Y, Okada S. Formation of 6-O-α-maltosylcyclomalto -oligosaccharides fromα-maltosyl fluoride and cyclomalto-oligosaccharides by pullulanase[J].Carbohydrate Research,1987,159: 303-313
    61. Yoshimura Y, Kitahata S, Okada S. Formation of 6-O-maltosylcyclomalto-oligosacch- arides by transfer action of three debranching enzymes [J].Carbohydrate Research,1987,168: 85-294
    62. Sakano Y,Shiraishi T,Kusano S, et al. Immobilization of pullulanase and successive synthesis of branched cyclodextrins by immobilized pullulanase [C]. Proceedings of the fourth international symposium on cyclodextrins,1988
    63. Hisamatsu M,Yamada T.Production of maltosyl-β-cyclodextrin by a bioreactor system with pullulanase immobilized on particially deacetylated chitin[J]. Starch /St?rke,1989,41(6):239-242
    64. Abe J, Mizowaki N, Hizukuri S, et al. Synthesis of branched cyclomalto-oligosaccharides using Pseudomonas isoamylase [J].Carbohydrate Research,1986,154:81-92
    65. Kitahata S,Hara K,Fujita K, et al.Synthesis of 6-O-α-D-Galactosylα-Cyclodextrin by Coffee Beanα–Galactosidase [J].Bioscience Biotechnology and Biochemistry,1992,56:1518-1519
    66.沈汪洋.发芽咖啡α-半乳糖苷酶的制备、性质及应用研究[D]:[博士学位论文].无锡:江南大学,2009
    67. Sakano Y, Sano M, Kobayashi T. Preparation and enzymatic hydrolysis of maltosyl-α-cyclodextrin[J]. Agricultural and Biological Chemistry,1985,49:3391-3398
    68.蔡孟深,李中军.糖化学—基础、反应、合成、分离及结构[M].北京:化学工业出版社,2007
    69. Tavornvipas, S, Hirayama, F, Arima, H, et al. 6-O-α-(4-O-α-D-glucuronyl)- D-glucosyl-β-cyclodextrin: solubilizing ability and some cellular effects [J]. International Journal of Pharmaceutics, 2002, 249:199-209
    70. Ajisaka, N, Hara, K, Mikuni, K et al. Effects of branched cyclodextrins on the solubility and stability of terpenes [J]. Biosci. Biotech. Biochem.2000, 64(4): 731-734
    71. López-Nicolás, J M, Núňez-Delicado, E, Pérez-López, A J, Sánchez-Ferrer,á, García- Carmona, F: Reaction’s mechanism of fresh apple juice enzymatic browning in the presence of maltosyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2007,57, 219-222
    72. López-Nicolás, J M, Pérez-López, A J, Carbonell-Barrachina,á, García-Carmona, F.: Kinetic study of the activation of banana juice enzymatic browning by the addition of maltosyl-β-cyclodextrin. J. Agric. Food. Chem. 2007, 55: 9655-9662
    73. López-Nicolás, J M, Núňez-Delicado, E, Sánchez-Ferrer,á, García-Carmona, F.: Kinetic model of apple juice enzymatic browning in the presence of cyclodextrins: the use of maltosyl-β-cyclodextrin as secondary antioxidant [J]. Food. Chem. 2007,101, 1164-1171
    74. Lehn, J M. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry [J]. 1988, 6: 351-355
    75. Cram, D J. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry [J]. 1988, 6: 397-401
    1.张莉,罗来辉.环糊精包合物的研究进展[J].华北工学院学报,2003,24:278-231
    2.张学农,苗爱东,周惠等.维生素D3-beta-环糊精包合物的理化性质及包合作用研究[J].中国药学杂志,2001,36:742-745
    3. Noriko A, Koji H, Katsuhiko M, et al. Effects of branched cyclodextrins on the solubility and stability of terpenes [J]. Biosci. Biotechnol. Biochem. 2000, 64(4):731-734
    4.金征宇,徐学明,陈寒青等.环糊精化学—制备与应用[M].北京:化学工业出版社,2009
    5. Yoshiyuki S, Mutsumi S, Tsuneo K. Preparation and enzymatic hydrolysis of maltosyl-α-cyclodextrin [J]. Agric. Biol. Chem. 1985, 49(12):3391-3398
    6.曹新志,金征宇.β-环糊精在食品中的胶囊化作用[J].粮食与饲料工业,2002,(8):47-50
    7. Shoichi K, Kohichi N, Masaomi A. Production and some properties of branched cyclomalto-oligosaccharides [J]. Carbohydrate Research.1989, 192:223-231
    8.童林荟.环糊精化学—基础与应用[M].北京:科学出版社,2001
    9. Yasuyo O, Kyoko K, Sumio K. Separation and characterization of five positional isomers of trimaltosyl-cyclomaltoheptaose (trimaltosyl-β-cyclodextrin) [J]. Carbohydrate Research.1994, 254:1-13
    10. Abe, J, Mizowaki, N, Hizukuri, S. et al. Synthesis of branched cyclomalto- oligosaccharides using Pseudomonas isoamylase [J]. Carbohydr. Res., 1986, 154: 81-92
    11. Yoshimura, Y, Kitahata,S. and Okada,S. Formation of 6-O-α-maltosyl cyclomaltooligosacch-arides by transfer action of three debranching enzymes [J]. Carbohydr.Res.1987,168:285-294
    12. Kitahata, S, Yoshimura,Y, Okada,S, et al . Formation of 6-O-α-maltosyl cyclomaltooligosacch - arides fromα-maltosyl fluoride and cyclomaltooligosaccharidesby pullulanase [J]. Carbohydr. Res., 1987, 159:303-313
    13. Sumio K, Yoshimichi Y, Shigetaka O. Formation of 6-O-α-maltosyl- cyclomalto-oligosaccharides fromα-maltosyl fluoride and cyclomalto-olig-osaccharides by pullulanase. Carbohydrate Research [J].1987,159:303-313
    14. Takeshi F, Hidefumi Y, Takashi K et al. Powdery encapsulation of d-lim-onene by kneading with mixed powders ofβ-cyclodextrin and maltodextrin at low water content. Biosci. Biotech. Biochem [J].1994, 58(5):847-850
    15.程池.歧化环糊精的研究进展[J].食品与发酵工业, 1992, 3:77-80
    16. Kevin B H, Rebecca M H, Cindy B.S. Tong et al. Inhibition of enzymatic browning in fresh fruit and vegetable juices by soluble and insoluble forms ofβ-cyclodextrin alone or in combination with phosphates [J]. J.Agric.Food Chem.1996, 44: 2591-2594
    17. Seiki T, Takeo N, Naohito K, et al. Inclusion of volatile organic compounds into natural cyclodextrins and their branched cyclodextrins in the gaseous phase. Journal of colloid and interface science [J].1997, 186:180-184
    18. Noriyasu W. A novel method to produce branchedα-cyclodextrins: pullula-nase- glucoamylase-mixed method. Journal of Fermentation and Bioenginee-ring [J] .1997, 83(1):43-47
    19. Shoichi K, Naoto S, Betty Y, et al. The preparation of 6-α-D- glucopyranosylcyclohexaamylose [J]. Carbohydrate Research.1984, 126: 215-224
    20.张惟杰.复合多糖生化研究技术[M].上海科学技术出版社.1987
    21.王兰.高产海藻糖菌种选育及生产工艺的研究[D]:[硕士学位论文].天津:天津科技大学,2002
    22.王兰,肖冬光.纸层析分离洗脱法定量测定海藻糖[J].生物技术.2002, 12(3):27-29
    23.王少杰.麦芽糖基β-环湖精的制备、分离及应用[D]:[硕士学位论文].无锡:江南大学,2005
    24.崔波,金征宇.纸层析法定量检测麦芽糖基β-环状糊精[J].食品与生物技术学报,2005,24(6):88-91
    1. Lee E Y C, Whelan W J. Glycogen and starch debranching enzyme[M]. New York: Academic Press, 1971:191-234
    2. Zhang H, Jin Z. Preparation of resistant starch by hydrolysis of maize starch with pullulanase [J].Carbohydrate Polymers, 2011,83:865-867
    3. Sakano Y, Sano M, Kobayashi T. Preparation and enzymatic hydrolysis of maltosyl-α-cyclodextrin [J]. Agricultural and Biological Chemistry, 1985, 49: 3391-3398
    4. Yim D K, P Park Y H, Park Y H. Production of branched cyclodextrins by reverse reaction of microbial debranching enzymes [J]. Starch /St?rke, 1997,49:75-78
    5. Shiraishi T, Kusano S, Tsumuraya Y, et al. Synthesis of maltosyl(α1→6)cyclodextrins through the reverse reaction of thermostable Bacillus acidopullyticus pullulanase [J]. Agricultural and Biological Chemistry, 1989,153:2181-2188
    6.张树政.酶制剂工业[M].北京:科学出版社,1998
    7. Nakamura N, Watanabe K, Horikoshi K. Purification and some properties of alkaline pullulanase from a strain of Bacillus No. 202-1, an alkalophilic microorganism [J]. Biochimica et Biophysica Acta, 1975,397:188-193
    8. Plant A R, Worgan H W, Daniel R M. A highly stable pullulanase from Thermus aquaticus YT-1 [J]. Enzyme and Microbial Technology,1986,8:668-672
    9. Kim C, Nashiru O, Ko J H. Purification and biochemical characterization of pullulanase type I from Thermus caldophilus GK-24 [J]. Microbiology Letters,1996,138:147-152
    10. Kriegsh(a|¨)user G, Liebl W. Pullulanase from the hyperthermophilic bacterium Thermotoga maritima purification byβ-cyclodextrin affinity chromatography [J]. Journal of Chromatography B, 2000,737:245-251
    11. Roy I, Gupta M N. Purification of a bacterial pullulanase on a fluidized bed of calcium alginate beads [J]. Journal of Chromatography A, 2002,950:131-137
    12.汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000
    13. Miller G L. Use of dinitrosalicyclic acid reagent for determination of reducing sugar [J]. Analytical Chemistry, 1959,31:426-428
    14. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72: 248-254
    15. Lundblad R L. Techniques in Protein Modification[M]. Boca Raton:CRC press, 1995:187-208
    16. Hoare D G, Koshland D E. A method for the quantitative modification and estimation of carboxylic acid groups in proteins [J]. Journal of Biological Chemistry, 1967, 242: 2447-2453
    1.周博,方燕,常辉等.超高水溶性麦芽糖基β-环糊精的生物反向合成[J].无锡轻工大学学报,2003,22(6):31-34
    2.曹新志,明红梅.高效液相色谱法测定麦芽糖基-β-环糊精的含量[J].四川理工学院学报, 2007,20(2):89-91
    3.曹新志,金征宇.RP-HPLC法测定麦芽糖基-环糊精的含量[J].粮油食品科技,2004,12(4):36-37
    4.曹新志,徐学明,金征宇.反向合成超高水溶性麦芽糖基-β-环糊精[J].食品科技,2004.12(6):17-22.
    5.王少杰.麦芽糖基-β-环糊精的制备、分离及应用[D]: [硕士论文].无锡:江南大学, 2005
    6.陈敏,蔡同一,阎红.β-环糊精化学改性及其在食品工业中应用的前景[J].食品与发酵工业,1998,24(5):68-71
    7.黎洪珊,王培玉.β-环糊精衍生物的研究进展及其在药剂学上的应用[J].中国药学杂志,1999,34( 4):2-10
    8.李文德,周俊侠,张力田.环糊精的改性研究及进展[J].中国粮油学报,1997,12(l):29-31
    9. Sakano Y, Sano M, Kobayashi T. Preparation and enzymatic hydrolysis of maltosyl-α- cyclodextrin [J]. Agriculture Biological Chemsitry, 1985, 49:3391-3398.
    10. Hizukiri S, Kawano S, Abe J, et al. Production of branched cyclomaltooctaose through the reverse action of Klehsiella aerogenes pullulanase [J]. Biorechnology Application Biochemistry, 1989(11):60-73
    11. Shiraishi T, Kusano S, Tsumuraya Y, et al. Synthesis of maltosyl (α1-6) cyclodextrins the reverse reaction of thermostable Bacillus acidopullyticus pullulanase [J].Agriculture Biological Chemistry,1989,153:2181-2188
    12. Abe J, Mizowaki N, Hizukuri S, et al. Synthesisi of branched cyclomalto-oligosaccharide using Pseudomonas isoamylase [J]. Carbonhydrate Research, 1986,154:81-92
    13.王少杰,金征宇.普鲁兰酶逆向合成麦芽糖基-β-CD的工艺研究[J].食品工业科技,2005,26(9):105-110
    14.袁超,金征宇.响应面法优化羟丙基-β-环糊精制备工艺[J].食品科学,2007, 28(3):147-151
    15.崔波,金征宇.普鲁兰酶逆向合成麦芽糖基β-环状糊精[J].食品科学,2005, 26(12):128-131
    16. Keiko Iwaki, Hidetsugu. Purification and some properties of debranching enzyme of germinating rice endosperm [J]. Agric. Biol. Chem. 1981, 45(12):2683-2688
    17.齐香君,苟金霞,韩戌珺等. 3,5-二硝基水杨酸比色法测定溶液中还原糖的研究[J].纤维素科学与技术, 2004,12(3):17-19
    18.张惟杰.复合多糖生化研究技术[M].上海:上海科学技术出版社,1987
    19. Davies O L, George E P, Lewis R C. The Design and Analysis of Industrial Experiments (2nd ed)[M]. London: Longman Group Limited, 1978
    1.李清旭.电子结构计算方法研究进展[J].重庆邮电大学学报(自然科学版), 2010, 22(6):776-780
    2.杨糠,浦伟光,隋志军等.计算机在化工中的应用与进展[J].化学世界, 2009,11:697-700
    3.陈鹏飞,张丽华.高分子溶液中分子模拟技术的研究进展[J].中国胶粘剂, 2007,16(7):52-56
    4.王永霞,段雪梅,王钦等.甲硫醇和氢原子反应的从头算直接动力学[J].物理化学学报, 2010, 26(1):183-187
    5. Zhang T, Zhang J M, Jiang H H, et al. A DFT Study on the stable structures and dissociation mechanism of C3O6 Cluster [J]. Chinese Journal of Structural Chemistry, 2011, 30(3):443-447
    6. Janke R H, Haufe G, Würthwein E. et al. Racemization barriers of helicenes: A computational study [J]. J. Am. Chem. Soc., 1996, 118 (25): 6031–6035
    7. Sodupe M, Raphael Rios, Vicen(?) Branchadell,et al. A theoretical study of the endo/exo selectivity of the diels?alder reaction between cyclopropene and butadiene [J]. J. Am. Chem. Soc., 1997, 119 (18): 4232–4238
    8. Castet F, Champagne B. Simple scheme to evaluate crystal nonlinear susceptibilities: semiempirical AM1 model investigation of 3-Methyl-4-nitroaniline crystal [J]. J. Phys. Chem. A, 2001, 105 (8): 1366–1370
    9. Brina B, Gerber R B, Martin K, et al. Vibrational spectroscopy of the G···C base pair: experiment, harmonic and anharmonic calculations, and the nature of the anharmonic couplings[J]. J. Phys. Chem. A, 2005, 109 (31): 6974–6984
    10. Xu L, Cai W S, Shao X G. Prediction of low-energy isomers of large fullerenes from C132 to C160 [J]. J. Phys. Chem. A, 2006, 110 (29): 9247–9253
    11. Williams D E, Peters M B, Bing Wang, et al. AM1 parameters for the prediction of 1H and 13C NMR chemical shifts in proteins [J]. J. Phys. Chem. A, 2009, 113 (43): 11550–11559
    12.梁小蕊,梁承红,李荫等.几种席夫碱衍生物的荧光性质研究[J].新技术新工艺,2010,5:75-78
    13.王越,徐春莹,高健等.二乙烯三胺吸收CO2分子机理的半经验量子化学研究[J].光谱实验室, 2008, 25(1):6-9
    14. Hasanov R, Bilgic S, Gece G. Experimental and theoretical studies on the corrosion properties of some conducting polymer coatings [J]. Journal of Solid State Electrochemistry, 2011, 15(5):1063-1070
    15. Yan C L, Xiu Z L, Li X H, et al. Theoretical study for quercetin/β-cyclodextrin complexes: quantum chemical calculations based on the PM3 and ONIOM2 method [J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 58(3), 337-344
    16. Yan C L, Xiu Z L, Li X H, et al. Molecular modeling study ofβ- cyclodextrin complexes with (+)-catechin and (-)-epicatechin [J]. Journal of Molecular Graphics & Modelling, 2007, 26(2):420-428
    17. Leila N, Sakina H, Bouhadiba A, et al. Theoretical study of inclusion complexation of 3-amino-5-nitrobenzisothiazole with cyclodextrin [J]. Journal of Molecular Liquids, 2011, 160(1): 8-13
    18. Jin X, Wang X Y, Ren C H, et al. Theoretical study on interactions ofβ- cyclodextrin with helicobacter pylori eradicating agent (TG44) [J]. Journal of Molecular Modeling, 2011, 17(4):913-920
    19.繆方明,宿秀梅,徐秀丽等.β-环糊精包合物的量子化学计算[J].计算机与应用化学, 2002,19(3): 215-317
    20.高海翔,鲁润华,曹玉娟等.含氮基团修饰β-环糊精量子化学研究[J].化学物理学报, 2002,15(5): 375-378
    21.董川,李俊芬,双少敏.环糊精包结物的形成及光谱表征[J].光谱实验室,2000, 17(3):247-256
    22. Frisch, M J, Trucks, G W, Schlegel, H B. et al. GAUSSIAN 03, Revision B.05; Gaussian, Inc.: Pittsburgh, PA, 2003
    1. Tanimoto T, Sakaki T, Koizumi K. Preparation of 61.62-, 61.63-, 61.64- and 61.65-di-O-(-D-glucopyranosyl) cyclomalto-octaoses [J]. Carbohydrate Res., 1995, 267:27-37
    2. Koizumi K, Tanimoto T, Okada Y et al. Isolation and characterization of three positional isomers of diglucosylcyclomaltoheptaose [J]. Carbohydrate Res., 1990, 201:125-134
    3. Koizumi K, Utamara T, Sato M et al.. Isolation and characterization of branched cyclodextrins [J].Carbohydrate Res., 1986, 153:55-67
    4. Yasuko I, Tadashi N, Kenji K et al. 1H NMR Spectra of branched-chain (α-cyclodextrin) [J]. Carbohydrate Res., 2004, 339:777-785
    5. Watanabe, N., Yamamoto, K., Tsuzuki, W., et al. A novel method to produce branched–cyclodextrins:pullulanase-glucoamylase-mixed method [J]. Journal of fermentation and bioengineering 1997, 83(1):43-47
    6.王少杰.麦芽糖基β-环湖精的制备、分离及应用[D]:[硕士学位论文].无锡:江南大学,2005
    7.常建华,董绮功.波谱原理及解析[M].北京:科学出版社, 2001:169-228
    8.宁永成.有机化合物结构鉴定与有机波谱学[M].第二版,北京:科学出版社, 2000:27-217
    9.李学红,晁文,金征宇等.环糊精对尼泊金乙酯和苯甲酸的包埋及其热力学分析[J].食品科技,2010,35(9):262-266
    10.赖兵,李颖,曹耗能等.古细菌RNase HⅡ与金属离子结合的热力学研究[J].物理化学学报.2001, 17(10):865-867
    11.谷雪莲,胡桐记,胥义.牛乳热力学性质与时间温度关系[J].食品工业科技,26(10):65-68
    12.雍国平,查正根,李光水.水溶液中几种苯衍生物与β-环糊精包合物的热力学研究[J].化学研究与应用, 2002, 14(3):308-309
    13.刘嶙,郑海平,王权.6-α-葡萄糖基β-环糊精对辣根过氧化物酶的热力学稳定性的影响[J].浙江工业大学学报,2001,29(2):200-203
    14.方文军,雷群芳,林瑞森.吸热型碳氢燃料的核磁共振和色谱质谱分析及热力学性质[J].分析化学研究报告,2004, 32(3):283-288
    15.曹新志,金征宇.γ-环糊精的玻璃化及热分解动力学的研究[J].中国粮油学报.2002, 20(2):37-39
    16.曹新志,檀宜兵,金征宇.用差热分析法测定羟丙基-β-环糊精的热稳定性[J].食品科学,2003, 21(3):25-27
    17. Kissinger H E. Reaction Kinetices in Differential Thermal Analysis [J]. Anal Chem, 1957, 29: 1702-1708
    18.陆昌伟,奚同庚.热分析质谱法[M].上海:上海科学技术文献出版社, 2002,111-124
    19. Ozawa T. Kinetics in Differential Thermal Analysis [J]. Bull Chem Soc Japan, 1965, 38: 1881-1887
    1.童林荟.环糊精化学[M].北京:科学出版社,2001
    2.金征宇,徐学明,陈寒青,李学红.环糊精化学—制备与应用[M].北京:化学工业出版社,2009
    3.金征宇,顾正彪,童群义等.碳水化合物化学:原理与应用[M].北京:化学工业出版社,2008
    4. Bender, M L, Komiyama, M. Cyclodextrin chemistry [M]. Berlin: Springer-Verlag, 1978
    5. Del Valle, E.M.M. Cyclodextrins and their uses: a review [J]. Process Biochemistry, 2004, 39: 1033–1046
    6. Szetjli, J. Introduction and general overview of cyclodextrin [J]. Chemical Review, 1998, 98: 1743–1753
    7. Duchêne, D, Ponchel, G, Bochot, A. New uses of cyclodextrins [J]. European Journal of Pharmaceutical Sciences, 2005, 25(S1): S1–S2
    8. Tavornvipas S, Hirayama F, Arima H, et al. 6-O-α-(4-O-α-D-glucuronyl)-D-glucosyl-β-cyclodextrin: solubilizing ability and some cellular effects [J]. International Journal of Pharmaceutics, 2002, 249:199-209
    9. Bellringer M E, Smith T G, Read R, et al.β-Cyclodextrin: 52-week toxicity studies in the rat and dog [J]. Food and Chemical Toxicology,1995,33:367-376
    10. Ajisaka, N., Hara, K., Mikuni, K. et al Effects of branched cyclodextrins on the solubility and stability of terpenes [J]. Biosci. Biotech. Biochem. 2000, 64(4): 731-734
    11. López-Nicolás, J M, Núňez-Delicado, E, Pérez-López, A J, et al. Reaction’s mechanism of fresh apple juice enzymatic browning in the presence of maltosyl-β-cyclodextrin [J]. J. Incl. Phenom. Macrocycl. Chem. 2007,57:219–222
    12. López-Nicolás, J M , Pérez-López, A J, Carbonell-Barrachina,á, et al. Kinetic study of the activation of banana juice enzymatic browning by the addition of maltosyl-β-cyclodextrin [J]. J. Agric. Food. Chem. 2007, 55: 9655–9662
    13. López-Nicolás, J M, Núňez-Delicado, E, Sánchez-Ferrer,á, et al. Kinetic model of apple juice enzymatic browning in the presence of cyclodextrins: the use of maltosyl-β-cyclodextrin as secondary antioxidant [J]. Food. Chem. 2007,101, 1164-1171
    14.王少杰.麦芽糖基β-环湖精的制备、分离及应用[D]:[硕士学位论文].无锡:江南大学, 2005
    15.江苏新医学院编.中药大词典(下册)[M].上海:上海人民出版社,1996
    16.文瑞明.香料香精手册[M].北京:湖南科学技术出版社,2000,106-110.
    17.李学红.环糊精在抗菌食品包装中的基础应用研究应用[D]:[博士学位论文].无锡:江南大学, 2007
    18. Higuchi T, Connors K A. Analysis chemistry instrument, 1965, 4: 117

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700