用户名: 密码: 验证码:
高性能橡胶纳米复合材料的制备及结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶纳米复合材料是指以橡胶为基体(连续相)、填充颗粒以纳米尺度(小于100nm)分散于基体中的新型高分子复合材料。本文主要研究了三种橡胶纳米复合材料:丁苯橡胶/白炭黑纳米复合材料、氢化丁腈橡胶/白炭黑纳米复合材料和丁苯橡胶/华光炭黑纳米复合材料,分别讨论了这三种橡胶纳米复合材料的制备、结构和性能。
     论文第一部分详细研究了湿法制备丁苯橡胶/白炭黑纳米复合材料的技术及材料的结构与性能,前期实验发现该技术存在的最大问题是白炭黑在与丁苯胶乳共絮凝的过程中有极大的沉降损失,不能完全复合进入橡胶基体中。本文主要采用了两种方法来解决该问题。
     第一种方法为干法有机化处理白炭黑表面,然后将有机改性后的白炭黑在机械搅拌力的作用下混入水中制得有机化白炭黑的水浆,再与丁苯胶乳混合,加入絮凝剂破乳,经干燥、混炼和硫化,得到丁苯橡胶/白炭黑纳米复合材料,这种方法也被称为间歇湿法复合技术。研究了偶联剂与白炭黑混合分散次数、偶联剂用量以及有机化白炭黑水浆浓度对复合材料性能的影响,结果表明,偶联剂与白炭黑最佳混合分散次数为15次;有机化白炭黑水浆浓度最优为15%;随着偶联剂用量的增大,处理时间的延长,白炭黑表面有机化改性程度提高,偶联剂的接枝率提高,复合材料的力学性能提高。该间歇湿法复合技术制备得到的复合材料同传统干法制备得到的复合材料对比发现,湿法复合中偶联剂的利用效率较低,胶料的焦烧时间延长,材料的定伸应力低,但撕裂性能较好。
     第二种方法为水相有机化处理白炭黑表面,即先将亲水的白炭黑在强机械搅拌下混入水中制得白炭黑水浆,然后滴加偶联剂,加热两者反应后得到有机化的白炭黑水浆,再与丁苯胶乳混合、絮凝、干燥、混炼和硫化,得到丁苯橡胶/白炭黑纳米复合材料,这种方法也被称为连续湿法复合技术。研究了不同制浆工艺、偶联剂与白炭黑水浆反应时间以及不同白炭黑复合份数对复合材料性能的影响,结果发现,增大白炭黑水浆的粘度(浓度),延长搅拌的时间,可以减小白炭黑颗粒在水中的尺寸,同时延缓白炭黑的沉降,最优的水浆固含量为15%。随着偶联剂反应时间的延长,有机化白炭黑在水相中的颗粒尺寸变大,白炭黑在复合过程中的损失减小。与干法混炼相比,湿法复合制得的材料具有精细均匀的填料分散,高的拉伸强度和撕裂强度,低的门尼粘度、永久变形、动态温升和动态压缩永久变形,两者具有一致的硬度、定伸应力和磨耗性能。另外,采用该连续湿法复合技术制备可以制得填料分散优良且性能保持良好的高填充(100phr)的丁苯橡胶/白炭黑纳米复合材料。
     论文第二部分研究了原位改性分散技术中的工艺参数,如偶联剂用量、热处理时间、热处理温度对白炭黑填充氢化丁腈橡胶纳米复合材料结构和性能的影响,采用Payne效应表征了复合材料中的填料网络结构,研究发现,填料的微观分散随着偶联剂用量的增大、热处理温度的提高和热处理时间的延长而提高。发现该体系中不同于白炭黑填充非极性橡胶体系的反常现象,即常温下加入KH570会造成HNBR/白炭黑混合物中填料分散变差,经热处理或室温长时间的停放,填料的分散状况会变好。分析原因知该现象与偶联剂KH570、白炭黑表面硅羟基、HNBR大分子链上的氰基三者之间的相互作用存在竞争关系有关。
     论文的第三部分研究了一种新型的具有特殊中空结构和高结构度的炭黑——华光炭黑(HG-CB)填充丁苯橡胶纳米复合材料的性能。通过力学性能、动态力学性能、功能性能的测试,发现随着华光炭黑用量的增大,华光炭黑在丁苯橡胶基体中形成了完善的填料网络结构,SBR/HG-CB复合物的门尼粘度、小应变下的储能模量值都大幅度上升;结合胶在填料含量为25phr时可以测得,并随着填料用量的增大而增大;SBR/HG-CB纳米复合材料的力学性能提高,并且在小填充份数下表现出高的增强效果。磨耗体积和体积电阻率随填料用量的增大而减小,导热系数随着填料用量的增大线性增大。与普通炭黑N330相比,SBR/HG-CB纳米复合材料具有高的拉伸强度、导热系数和好的导电性。
Rubber nano-composite is a kind of novel composite which is made of rubber as matrix(continuous phase) and particles as dispersed phases with at least one dimension size less than 100nm. In this paper, three kinds of rubber nano-composites have been studied:Styrene butadiene rubber(SBR)/silica nano-composite, hydrogenated butadiene acrylonitrile rubber(HNBR)/silica nano-composite and styrene butadiene rubber(SBR)/huaguang carbon black(HG-CB) nano-composite. The preparation, structure and properties of the them have been discussed.
     In the first part, SBR/silica nano-composite prepared by wet compounding method has been studied in detail. In previous research, we found that the biggest problem of wet compounding method for SBR and silica is the loading weight of silica lost too much during the process of silica co-flocculated with SBR. In this paper, two kinds of methods have been used to resolve this problem.
     The first method included several steps as follows:first, silica particles surface were organically modified by dry method; second, the organic silica slurry was prepared by putting the modified silica into water and mixed by mechanical agitation; the third step, SBR latex was blended with the organic silica aqueous suspension, and then emulsion was broke by adding into flocculating agent suspension; at last, the SBR/silica nano-composite was achieved by this intermittent wet compounding method via drying, mixing with other agent using traditional mixers and vulcanizing. The influence of blending times of coupling agent and silica, amount of coupling agent and slurry concentration on properties of composite was studied. The results show that, the optimum blending times of coupling agent and silica is 15 times; the greatest concentration of organic silica slurry is 15 percent; with the increasing of coupling agent amount and the surface modification time, the degree of the surface organic modification of silica, the grafting rate of coupling agent and mechanical properties of the composites all increase. Comparing this intermittent wet compounding method with traditional dry mixing method, the efficiency of coupling agent, stress at definite elongation by wet method is lower, scorch time of composite prolong, and tear strength becomes better.
     The second method was that silica surface was organically modified in slurry. Firstly, the silica slurry was prepared by putting the hydrophilic silica particles into water and blending with intensity mechanical agitation. Then,the silane was added into the aqueous suspension to in-situ modify the silica nano-particles, and after that, mixed the suspension with SBR latex before adding flocculants to co-coagulate silica and rubber. The obtained SBR/silica nanocompounds were dried, further mixed using traditional mixers and vulcanized at last to give the nanocomposites by this continuous wet compounding method. In this part, effect of different preparing methods for silica slurry, reaction time of coupling agent and silica slurry and different amount of silica on the properties of composites was studied. The results illustrat that with the increase of concentration of slurry or extended the stirring time could decrease the particle size of silica in water, and delay the subsidence of silica. The optimal solid content of slurry is 15 percent. With the increase of reaction time of coupling agent and silica, the particle size of organic surface modified silica in water becomes larger, and the weight loss of silica co-coagulate with rubber latex decreases. Compared to the composites prepared by dry mixing method, the ones achieved by wet compounding method have better filler dispersion, higher tensile strength, lower tear strength, mooney viscosity, permanent deformation, dynamic compression set and dynamic temperature rise. And they have similar hardness, Stress at definite elongation and abrasion performance. What's more, by using this continuous wet compounding method, SBR/silica nano-composite loaded high concentration of filler(100phr) with great filler dispersion and good mechanical properties could be prepared.
     In the second part, the effect of technological parameters of in-situ modified dispersion method, such as the amount of coupling agent, heat treated time, heat treated temperature on the structure and properties of HNBR/silica nanocomposites were studied. Payne effect was used to characterized the structure of filler network in composites. The results showed that the micro-dispersion of filler became better while increased the amount of coupling agent or rised the treated temperature or extended the treated time. Some abnormal phenomenons appeared in this system which was different from that of non-polared rubber loaded silica system. The dispersion of filler in uncured HNBR/silica compound became worse when coupling agent KH570 was introduced at room temperature, but after heat treated or store at room temperature for a long time, the dispersion of the filler in the composite became better. This abnormal phenomenon is related with the competition relationship of intereaction among coupling agent KH570, hydroxyl groups in the surface of silica and cyano group of HNBR.
     In the third part, a novel carbon black with special hollow structure and high structure degree named Huaguang carbon black and the properties of SBR/huaguang carbon black nano-composite were studied. Mechanical test, dynamic mechanical test and functional properties tests have been used to characterized this new kind of composite. The results showed that with the increase of amount of huaguang carbon black, strong filler network structure was formed in SBR matrix, the mooney viscosity of SBR/HG-CB compound, storage modulus in small strain amplitude increased dramatically, and the mechanical properties of SBR/HG-CB nano-composite increased which showed great reinforce effect in low filler concentration. Content of bound rubber could be measured when the filler content was 25phr and the content of bound rubber increased while the concentration of filler increased. With the increase of filler content, the volume of wear and volume resistivity decreased and coefficient of thermal conductivity increased linearly. Comparison with common carbon black N330, the SBR/HG-CB nano-composite has higher tensile strength, greater thermal conductivity property and better electrical conductivity property.
引文
[1]杨伟燕,成瑾,赵军霞.橡胶纳米复合材料研究进展及其发展前景[J].甘肃科技,2006,(10):133-135.
    [2]Hoffman David W.,Roy Rustum,Komarneni Sridhar. Diphasic Xerogels, a New Class of Materials: Phases in the System Al2o3-Sio2[J]. Journal of the American Ceramic Society,1984,67 (7): 468-471.
    [3]郝爱.橡胶纳米复合材料研究进展[J].弹性体,2001,(01):37-44.
    [4]刘岚,罗远芳,贾德民.橡胶纳米复合材料的制备与性能[J].特种橡胶制品,2002,(03):8-11.
    [5]王韶晖,赵树高,张萍.橡胶纳米复合材料制备研究进展[J].特种橡胶制品,2002,(01):58-61.
    [6]张立群,贾德民.橡胶的纳米增强技术与理论.2004.中国北京.
    [7]张立群,吴友平,王益庆,王一中,张慧峰,余鼎声,贺建芸.橡胶的纳米增强及纳米复合技术[J].合成橡胶工业,2000,(02):71-77.
    [8]Zhang Qi,Tian Ming,Wu Youping,Lin Gui,Zhang Liqun. Effect of Particle Size on the Properties of Mg(Oh)2-Filled Rubber Composites[J]. Journal of Applied Polymer Science,2004,94 (6): 2341-2346.
    [9]Hamed G. R. Reinforcement of Rubber[J]. Rubber Chemistry and Technology,2000,73 (3): 524-533.
    [10]Hamed G. R. Rubber Reinforcement and Its Classification[J]. Rubber Chemistry and Technology, 2007,80 (3):533-544.
    [11]王小萍,朱立新,贾德民.橡胶纳米复合材料研究进展[J].合成橡胶工业,2004,(04):257-260.
    [12]宋凤珠涂学忠,曾泽新.白炭黑及其改性产品在轮胎工业中的应用(续),轮胎工业.1997.p.259-263.
    [13]A Hunsche,U Gorl,A Muller. Investigations Concerning the Reaction Silica/Organosilane and Organosilane/Polymer(Ⅰ):Reactionmecha-Nism and Reaction Model for Silica/Organosilane[J]. Kauts u Gummi Kunstt,1997,50 (12):881-889.
    [14]D Patkar S,E Bice J. Effect of Silica on the Viscoelastic Properties of a Model Tread Compound[J]. Rubb World,1998,218 (3):21-28.
    [15]R Evans L,C Fultz W. Tread Compounds with Highly-Dispersible Silica[J]. Rubb World,1998, 219 (2):38.
    [16]A Okel T,D Patkar S,E Bice J. Advances in Precipitated Silicas for Passenger and Truck Tyre Treads[J]. Progress in Rubber and Plastics Technology,1999,15 (1):1-27.
    [17]于欣伟,徐广惠,赵国鹏,周英彦,尚世南.白炭黑结构及其与橡胶性能的关系[J].橡胶工业,1997,45(01):13-16.
    [18]吴淑华,涂学忠,单东杰.白炭黑在橡胶工业中的应用[J].橡胶工业,2002,(07):428-433.
    [19]于欣伟,赵国鹏,徐广蕙,周英彦,尚世南.由稻壳制取白炭黑工艺中提取率影响因素研究[J].化学工程,1998,(04):53-57.
    [20]黄永炎.沉淀法白炭黑的制法、特性和特种橡胶制品工业对其性能的要求[J].特种橡胶制品, 1991,(6):23.
    [21]戴志成.硅化合物的生产与应用[M].1994,成都:成都科技大学出版社.
    [22]Yingbing Li,J Wang M,Tao Zhang. Study on Dispersion Morphology of Silica in Rubber[J]. Rubber Chemistry and Technology,1994,67 (4):693.
    [23]宁凯军,王小萍,贾德民.白炭黑的特性及其在胎面胶中的应用[J].合成橡胶工业,2001,24(3):182-184.
    [24]王作龄.白炭黑和炭黑及其与橡胶的配合[J].世界橡胶工业,2001,(05):46-53.
    [25]S Wolff,U Gorl,J Wang M. Silica-Based Tread Compounds[J]. European Rubber Journal,1994, 176(1):16.
    [26]于欣伟,陈姚.白炭黑的表面改性技术[J].广州大学学报(自然科学版),2002,1(6):12-16.
    [27]Stoll Robert W.,Maclaury Michael R. Method for Treating Fumed Silica[P]. US Patent, US 4554147.1985
    [28]Parmentier Francois,Persello Jacques. Hydrophobic Precipitated Silica Granules [P]. US Patent, US5009874.1991
    [29]Griffith Phillip J.,Harkness Brian R.,Herron William,Taylor Rosemary M.,Wilson David J. Method of Preparing Hydrophobic Precipitated Silica [P]. US Patent, US5908660.1999
    [30]聂素青,王懿.硅烷偶联剂在浅色填料中的应用[J].橡胶科技市场,2007,411-12.
    [31]J Kim K,K John V. Temperature Effects of Silane Coupling on Moisture Treated Silica Surface[J]. Journal of Applied Polymer Science,2005,95623-633.
    [32]S Pongdhorn,S Chakrit,T Uthai,Al Et. Comparison of Reinforcing Efficiency between Si-69 and Si-264 in a Conventional Vulcanization System [J]. Polymer Testing,2004,23 871-879.
    [33]W Brink J..A General Scheme for Velocity Topography [J]. Composites Science and Technology, 2003,63 1165-1174.
    [34]G Joshi. P. Silane Coupling Agent Boosts Tire Performance[J]. Rubber & Plastics News,2002,32(3):30-32.
    [35]王瑞刚,吴厚政,陈玉如.陶瓷料浆稳定分散进展[J].陶瓷学报,1999,(1):35-361.
    [36]马文有,田秋,曹茂盛,高正娟,陈玉金,朱静.纳米颗粒分散技术研究进展——分散方法与机理(1)[J].中国粉体技术,2002,(03):28-31.
    [37]朱玉俊.弹性体的力学改性:填充补强剂共混[M].1992,北京:北京科学技术出版社.
    [38]王曾辉,高晋生.碳素材料[M].1991,上海:华东化工学院出版社.
    [39]吴立峰,丁丽萍.炭黑应用手册[M].2008,北京:化学工业出版社.
    [40]化学工业部人事教育司,化学工业部教育培训中心.炭黑制造工艺方法[M].1997,北京:化学工业出版社.
    [41]E.M. Dannerberg. The Effects of Surface Chemical Interactions on the Properties of Filler-Reinforced Rubbers[J]. Rubber Chem Technol,1975,48410-433.
    [42]王奇坤,孟凡瑞.塑料用炭黑的性能与应用[J].塑料科技,1997,(3):28-31.
    [43]E. Hall C. Dark Filed Electron Microscopy ii. Studies of Colloidal Carbon[J]. J Appl Phys 1948,19 271-278.
    [44]蒋建国.Hg-3型导电炭黑在阻燃抗静电胶布胶料中的应用[J].橡胶工业,1995,(08):480-481.
    [45]刁嘉锐.“华光”导电碳黑在干电池中的应用[J].电池,1990,(04):9-13.
    [46]宁英沛,辛振祥,林海涛,高秀蕊,刘文成,孟祥雨,刘建平.Pvc/华光特导电炭黑(Hg-Cb)复合材料的性能[J].聚氯乙烯,1995,(01):3-8.
    [47]郝进生.导电炭黑在高功率纸板电池中的应用[J].电源技术,1996,(01):16-18.
    [48]王有道,郑元锁,袁安国.炭黑填充导电丁腈橡胶研究[J].特种橡胶制品,1994,(01):6-10.
    [49]吴涛,范汝良.抗静电nbr纺织胶辊胶料的研究[J].橡胶工业,1998,(11):26-28.
    [50]宁英沛,赵金义,卢祥来,刘文成,孟祥雨,刘建平.华光特导电炭黑在硅橡胶中的应用研究[J].橡胶工业,1995,(11):663-666.
    [51]吴友平,张立群,伍社毛,刘力,田明,冯予星,谢俊.华光导电炭黑填充硅橡胶的研究[J].特种橡胶制品,1998,(05):4-6.
    [52]吴友平,张立群,谢俊,刘力,冯予星,田明.改性华光导电炭黑及其填充橡胶的性能[J].特种橡胶制品,1998,(06):1-4.
    [53]裘怿明,陈克正,刘志琴,郑永祥,王玉海.纳米纤维填充硅橡胶的应力松驰方程[J].特种橡胶制品,1997,(04):48-50.
    [54]陈克正,裘怿明,张志琨.纳米导电纤维与导电炭黑并用填充硅橡胶胶料的流变性能[J].橡胶工业,1998,(10):7-10.
    [55]陈克正,王德平,张志琨.纳米导电纤维和导电炭黑并用填充硅橡胶复合材料的电性能[J].材料研究学报,1999,(03):323-327.
    [56]裘怿明,傅政,胡义强.华光导电炭黑填充胶料的负温度系数(Ntc)效应[J].特种橡胶制品,1999,(02):5-8.
    [57]陈克正,杜芳林,崔作林,张华凯.高结构导电炭黑填充硅橡胶复合材料的性能[J].合成橡胶工业,2000,(06):366-369.
    [58]李鹏.电磁波屏蔽橡胶的导电机理与屏蔽性能研究[D].大连:大连理工大学,2005
    [59]李鹏,刘顺华,陈光钧.电磁波屏蔽橡胶的线性电阻特性研究[J].特种橡胶制品,2005,(01):12-15.
    [60]李鹏,刘顺华,段玉平,管洪涛.导电型室温硫化硅橡胶的屏蔽性能及拉敏特性研究[J].有机硅材料,2005,(02):9-13+42.
    [61]刘顺华,李鹏,段玉平,钟武波,董星龙.聚合物基拉敏导电材料的制备及其屏蔽效能的理论预测[J].材料工程,2005,(02):3-5+9.
    [62]刘顺华,李鹏,杜纪柱,段玉平,管洪涛,陈光昀.炭黑填充复合型硅橡胶屏蔽性能及拉敏特性研究[J].大连理工大学学报,2006,(02):207-211.
    [63]李鹏,刘顺华.导电炭黑填充室温硫化硅橡胶的屏蔽性能[J].功能高分子学报,2005,(02):227-231.
    [64]陈克正,张言波,张军,崔作林,张华凯.纳米导电纤维与导电炭黑填充pvc复合材料的电性能研究[J].高分子材料科学与工程,2001,(05):71-73+77.
    [65]张芳,项义敏,徐自奥,夏正华.硬质聚氯乙烯/空壳结构导电炭黑复合抗静电材料的研制[J].中国塑料,2003,(03):32-35.
    [66]张芳,章于川,庄永龙,郑颂先.阻燃抗静电尼龙6中炭黑的选择及处理[J].塑料工业,1999,(04):41-43.
    [67]Usuki Arimitsu. Composite Material Containing a Layered Silicate[P]. US patent, USP 4889885. 1989
    [68]W Elspass C,N Kresge E,G Peiffer D. Polymer Nanocomposite Formation by Emulsion Synthesis [P]. PCT, WO 97/00910A1.1997
    [69]Okada Akane,Usuki Arimitsu. The Chemistry of Polymer-Clay Hybrids[J]. Mater Sci and Engin, 1995,3 109-115.
    [70]N Kresge E. Tire Inner Liners Comprising a Solid Rubber and a Complex of a Reactive Rubber and Layered Silicate Clay[P]. US Patent, US5665183.1997
    [71]Wang Shengjie,Long Chengfen,Wang Xinyu. Synthesis and Properties of Silicone Rubber/Organomontmorillonite Hybrid Nanocomposites[J]. Journal of Applied Polymer Science, 1998,691557-1561.
    [72]M Laus,O Francescangeli,F Sandrolini. New Hybrid Nanocomposites Based on an Organophilic Clay and Poly(Styrene-B-Butadiene) Copolymers[J]. Journal of Material Research 1997,12 (11): 3134-3139.
    [73]Z Wang,Tj Pinnavaia. Nanolayer Reinforcement of Elastomeric Polyurethane[J]. Chemistry of Materials,1998,10 (12):3769.
    [74]隋园.粘土/橡胶纳米复合材料[D].北京:北京化工大学,1996
    [75]D Burnside S,P Giannelis E. Synthesis and Properties of New Poly(Dimethylsiloxane) Nanocomposites[J]. Chemistry of Materials,1995,7 (9):1597-1600.
    [76]张立群,王一中,余鼎声,王益庆,孙朝晖.粘土/橡胶纳米复合材料的制备方法[P].中国专利,98101496.8.1998
    [77]W Beall Gary,Semeon Tsipursky,Anatoliy Sorokin. Exfoliated Layered Materials and Nanocomposites Comprising Matrix Polymers and Said Exfoliated Layered Materials Formed with Water-Insoluble Oligomers and Polymers[P]. US5698624.1997
    [78]Usuki Arimitsu,A Tukigase,M Kato. Preparation and Properties of Epdm-Clay Hydrids[J]. Polymer,2002,43 2185-2189.
    [79]Tokita Noboru.未来的炭黑和先进的填料分散性新概念[J].橡胶参考资料,1999,29(10):1-9.
    [80]N Na-Ranong,V Kajornchaiyak Ul.. Using Modified Silicas in the Rubber Industry [a] in Symp Technol End Uses Nat Rubber.1996:Thailand.p.119-122.
    [81]Tsutumi F著,邹评译.与锡化合物偶联的溶聚SBR的结构和动态性能[J].橡胶参考资料,1991,21(9):49-56.
    [82]张立群.弹性体纳米增强的优异特性及增强机理.2007.中国四川成都.
    [83]张琦,田明,吴友平,刘力,童玉清,胡伟康,张立群.纳米氢氧化镁/橡胶复合材料的分散特性及分散机理[J].复合材料学报,2003,20(4):88.
    [84]P Wu Y,S Zhao Q,H Zhao S,Q Zhang L. The Influence of in Situ Modification of Silica on Filler Network and Dynamic Mechanical Properties of Silica-Filled Solution Styrene-Butadiene Rubber[J]. Journal of Applied Polymer Science,2008,108 (1):112-118.
    [85]K Sanui,N Ogata,K Kamitani. In-Situ Direct Polycondenstation in Polymer Matrices. Ⅱ. In-Situ Direct Polycondenstation in Styrene-Butadiene Block Copolymers[J]. J Polym Sci Part A,1993, 31597-602.
    [86]Y (?)keda,A Tanaka,S Kohjiya. Reinforcement of Styene-Butadiene Rubber Vulcanizate by in Situ Silica Prepared by the Sol-Gel Reaction of Tetraethoxysilane[J]. Journal of Materials Chemistry, 1997,7(8):1497-1503.
    [87]M Sugiya,K Terakawa,Y Miyamoto. Dynamic Mechanical Properties and Morphology of Silica-Reinforced Butadiene Rubber by the Sol-Gel Process[J]. Kautsch Gummi Kunstst,1997,50 (7):538.
    [88]W Yuan Q,E Mark J. Reinforcement of Poly(Dimethysiloxane) Networks by Blended and in-Situ Generated Silica Fillers Having Various Sizes,Size Distribution, and Modified Surfaces[J]. macromolecular chemistry and physics,1999,200 (1):206.
    [89]H Tanahashi,Osanai,M Shigekuni. Reinforcement of Acrylonitrile-Butadiene Rubber by Silica Generated in Situ[J]. Rubber Chemical Technology,1998,71 (1):38-52.
    [90]T Payne J,A Reuschle D,B Bri St Er L. Inorganic Modification of Elastomeric Poly(Styrene-B-Isobutylene) Block Copolymer Ionomers Via in Situ Sol-Gel Reactions of Tetraet Hoxysilane[J]. Polym Prepr,1997,38 (1):249.
    [91]T La Ndry C J,K Colt Rain B,R La Ndry M. Poly(Vinylacetate) Silica Filled Materials:Material Properties of in-Situ Vs Fumed Silica Particles[J]. Macromolecules,1993,26 (14):3702.
    [92]J Michalczyk M,G Sha Rp K,W St Ewa Rt C. Fluoropolymerna Nocomposites for Coating and Their Manufacture[P]. PCT WO97/01599A1.1997
    [93]Y Abe,Y Honda,T Gunji. Preparation and Properties of Silicon-Containing Polymer Hybrids from 3-Methacryloxypropyltrimet Hoxysilane[J]. Applied Organometallic Chemistry,1998,12749.
    [94]W Elspass C,N Kresge E,G Peiffer D. Polymer Nanocomposite Formation by Emulsion Synthesis[P]. PCT, WO9700910A1.1997
    [95]A Sadhu,K Bhowmick A. Preparation and Properties of Styrene-Butadiene Rubberbased Nanocomposites:The Influence of the Structural and Processing Parameters [J]. Journal of Applied Polymer Science,2004,92 (698-709):
    [96]M Pramanik,K Srivastava S,K Samanteray B. Rubber-Clay Nanocomposite by Solution Blending[J]. Journal of Applied Polymer Science,2003,87 (2216-2220):
    [97]F Schon,R Thomann,W Gronski. Shear Controlled Morphology of Rubber/Organoclay Nanocomposites and Dynamic Mechanical Analysis[J]. Macromol Symp,2002,189 105-110.
    [98]Liu Xiao,Zhao Suhe. Study on Structure and Properties of Ssbr/Sio2 Co-Coagulated Rubber and Ssbr Filled with Nanosilica Composites[J]. J Appl Polym Sci,2008,109 (6):3900-3907.
    [99]Liu Xiao,Zhao Suhe,Yang Yong,Zhang Xingying,Wu Youping. Structure and Properties of Star-Shaped Solution-Polymerized Styrene-Butadiene Rubber and Its Co-Coagulated Rubber Filled with Silica/Carbon Black-I:Morphological Structure and Mechanical Properties[J]. Polym Adv Technol,2009,20 (11):818-825.
    [100]Liu Xiao,Zhao Suhe,Yang Yong,Zhang Xingying,Wu Youping. Structure and Properties of Star-Shaped Solution Polymerized Styrene-Butadiene Rubber/Silica Co-Coagulating Rubber Filled with Nano-Silica[J]. Hecheng Xiangjiao Gongye,2009,32 (1):33-37.
    [101]S Varghese,J Karger-Kocsis. Nature Rubber-Based Nanocomposites by Latex Compounding with Layer Silicates[J]. Polymer,2003,444921-4927.
    [102]S Varghese,G Gatos K,A Apostolov. Morphology and Mechanical Properties of Layered Silicated Reinforced Nature and Polyurethane Rubber Blends Produce by Latex Compounding[J]. Journal of Applied Polymer Science,2004,92 543-551.
    [103]王益庆,张惠峰,尹丽君,张立群,汪昌秀.累托石/Sbr纳米复合材料的结构与性能[J].橡胶工业,2003,50(8):457-461.
    [104]Wang Z. F,Wang B,Qi N,Zhang H. F,Zhang L. Q. Influence of Fillers on Free Volume and Gas Barrier Properties in Styrene-Butadiene Rubber Studied by Positrons[J]. Polymer,2005,46 (3): 719-724.
    [105]Wang Yi-Qing,Wu You-Ping,Zhang Hui-Feng,Zhao Wei,Wang Chang Xiu,Zhang Li-Qun. Preparation, Structure, and Properties of a Novel Rectorite/Nitrile Butadiene Rubber (Nbr) Nanocomposites[J]. Polymer journal,2005,37 (3):154-161.
    [106]Jia Qing-Xiu,Wu You-Ping,Wang Yi-Qing,Lu Ming,Zhang Li-Qun. Enhanced Interfacial Interaction of Rubber/Clay Nanocomposites by a Novel Two-Step Method[J]. Composites Science and Technology,2007, In Press, Accepted Manuscript
    [107]Jia Qing-Xiu,Wu You-Ping,Lu Ming,He Shao-Jian,Wang Yi-Qing,Zhang Li-Qun. Interface Tailoring of Layered Silicate/Styrene Butadiene Rubber Nanocomposites[J]. Composite Interfaces, 2008,15 (2-3):193-205.
    [108]Wang Yizhong,Zhang Liqun,Tang Chunhong,Yu Dingsheng. Preparation and Characterization of Rubber-Clay Nanocomposites[J]. Journal of Applied Polymer Science,2000,78 (11):1879-1883.
    [109]Zhang Liqun,Wang Yizhong,Wang Yiqing,Sui Yuan,Yu Dingsheng. Morphology and Mechanical Properties of Clay/Styrene-Butadiene Rubber Nanocomposites [J]. Journal of Applied Polymer Science,2000,78 (11):1873-1878.
    [110]Ma Jun,Xiang Ping,Mai Yiu Wing,Zhang Li Qun. A Novel Approach to High Performance Elastomer by Using Clay[J]. Macromolecular Rapid Communications,2004,25 (19):1692-1696.
    [111]Wu You-Ping,Jia Qing-Xiu,Yu Ding-Sheng,Zhang Li-Qun. Structure and Properties of Nitrile Rubber (Nbr)-Clay Nanocomposites by Co-Coagulating Nbr Latex and Clay Aqueous Suspension[J]. Journal of Applied Polymer Science,2003,89 (14):3855-3858.
    [112]Wu You-Ping,Zhang Li-Qun,Wang Yi-Qing,Liang Yi,Yu Ding-Sheng. Structure of Carboxylated Acrylonitrile-Butadiene Rubber (Cnbr)-Clay Nanocomposites by Co-Coagulating Rubber Latex and Clay Aqueous Suspension[J]. Journal of Applied Polymer Science,2001,82 (11):2842-2848.
    [113]梅林达·a·马布里,王婷,伊凡·Z·波多布尼克,詹姆斯·a·谢尔,阿伦·C·摩根,钟斌,时田升.弹性体复合共混料及其制备方法[P].中国专利,CN 1935888A.2007-03-28
    [114]王婷,王梦蛟,格伦登·a·麦康奈尔,史蒂文·R·雷兹尼克.弹性体复合物、弹性体共混物及其方法[P].中国专利,CN1608105.2005-04-20
    [115]Wang M.-J. New Developments in Carbon Black Dispersion[J]. Kautschuk Gummi Kunststoffe, 2005,58 (12):626-628,630-632,634-637.
    [116]王梦蛟,王婷,王应龙,J.Shell,K.Mahmud,叶立林,高晓青.连续液相混炼工艺生产的nr炭黑母炼胶[J].轮胎工业,2004,24(3):132-141.
    [117]文涛.卡博特弹性体复合物材料及其在工程机械轮胎中的应用[J].现代橡胶技术,2007,33(03):4-10.
    [118]吴友平,贾清秀,刘力,张立群.橡胶增强的理论研究[J].合成橡胶工业,2004,27(1):1-5.
    [119]G Kilian H,M Strauss,W Hamm. Universal Properties in Filler Loaded Rubbers[J]. Rubber Chemistry and technology,1994,67 (1):1-15.
    [120]F Reiehert W,D Goritz,J Duschi E. The Double Network:a Model Describing Filled Elastomers[J]. Polymer,1993,34 (6):1216-1221.
    [121]B Meissncr,L Matejka. Description of the Tensile Stress-Strain Behavior of Filler Reinforced Rubber-Like Networks Using a Langevin-Theory-Based Approach:Part I[J]. Polymer,2000, 41 (21):7749-7760.
    [122]宋名实.聚合物网的网络结构同力学性能间相关性的研究:自由连接链的交联一缠结网大形变弹性分子理论[J].中国科学技术大学学报,1985,15(3):286-298.
    [123]S Naunton W J. The Applied Science of Rubber[M].1961, London:Edward Arnold Ltd.
    [124]G Kraus. Reinforcement of Elastomers [M].1965, New York:Inter.science Publishers.
    [125]L Smith T,A Rinde J. Ultimate Tensile Properties of Elastomers(V):Rupture in Constrained Biaxial Tensions[J]. Journal of Polymer Science(Part A-2):Polymer Physics,1969,7 (4):675-685.
    [126]B Boonstra B. Mixing of Carbon Black and Polymer:Interaction and Reinforcement[J]. Journal of Applied Polymer Science,1967,11 (3):389-406.
    [127]张立群,王振华,吴友平,吴丝竹.橡胶纳米增强中的逾渗行为及其机理[J].合成橡胶工业,2008,31(4):245-250.
    [1]王梦蛟,王婷,王应龙,.J.Shell,K.Mahmud,l叶立林,高晓青.连续液相混炼工艺生产的nr炭黑母炼胶[J].轮胎工业,2004,24(3):132-141.
    [2]Wang M.-J. New Developments in Carbon Black Dispersion[J]. Kautschuk Gummi Kunststoffe, 2005,58 (12):626-628,630-632,634-637.
    [3]王益庆.层状硅酸盐/橡胶纳米复合材料制备机理及工业化技术研究[D].2005
    [4]朱玉荪,孙志斌.沉淀法白炭黑的生产现状和市场发展趋势[J].橡胶科技市场,2009,(11):5-7.
    [5]李炳炎.国内外轮胎用白炭黑发展动态[J].中国橡胶,2004,(09):3-7.
    [6]孟宪德,王名东.平衡硫化体系中的si69对白炭黑补强nr的影响[J].高分子材料科学与工程,1996,(03):99-103.
    [7]武杰灵,潘守华,齐雪琴.白炭黑生产工艺现状及发展前景[J].科技情报开发与经济,2003,13(7):97-98.[J].
    [8]王宝君.白炭黑的生产与制备方法[J].世界地质,2006,25(1):100-104.[J].
    [9]王艳玲,王佼.白炭黑表面研究现状[J].中国非金属矿业导刊,2006增刊(54):107-112[J].
    [10]王君,李芬,吉小利.白炭黑制备及其表面改性研究[J].非金属矿,2004,27(2):38-40.[J].
    [11]Joshi P G, Curese R J.白炭黑胎面胶的新一代硅烷偶联剂[J].轮胎工业,2005,25(1):96-104[J].
    [1]雷昌纯,张立群,冯予星,马军.氢化丁腈橡胶共混改性的技术进展[J].弹性体,1998,(03):43-48.
    [2]Lu Yonglai,Liu Li,Yang Cheng,Tian Ming,Zhang Liqun. The Morphology of Zinc Dimethacrylate Reinforced Elastomers Investigated by Sem and Tem[J]. European Polymer Journal,2005,41 (3): 577-588.
    [3]Lu Yonglai,Liu Li,Tian Ming,Geng Haiping,Zhang Liqun. Study on Mechanical Properties of Elastomers Reinforced by Zinc Dimethacrylate[J]. European Polymer Journal,2005,41 (3): 589-598.
    [4]Ikeda Takaharu,Yamada Bunichiro,Tsuji Masaki,Sakurai Shinya. In Situ Copolymerization Behaviour of Zinc Dimethacrylate and 2-(N-Ethylperfluoro-Octanesulphonamido)Ethyl Acrylate in Hydrogenated Nitrile-Butadiene Rubber During Peroxide Crosslinking[J]. Polymer International,1999,48 (6):446-454.
    [5]Ikeda Takaharu,Yamada Bunichiro. Simulation of the in Situ Copolymerization of Zinc Methacrylate and 2-(N-Ethylperfluoro-Octanesulphonamido)Ethyl Acrylate in Hydrogenated Nitrile-Butadiene Rubber[J]. Polymer International,1999,48 (5):367-372.
    [6]Gatos Konstantinos G.,Sawanis Nikolaos S.,Apostolov Anton A.,Thomann Ralf,Karger-Kocsis Jozsef. Nanocomposite Formation in Hydrogenated Nitrile Rubber (Hnbr)/Organo-Montmorillonite as a Function of the Intercalant Type[J]. Macromolecular Materials and Engineering,2004,289 (12):1079-1086.
    [7]Gatos Konstantinos G.,Szazdi Laszlo,Pukanszky Bela,Karger-Kocsis J6zsef. Controlling the Deintercalation in Hydrogenated Nitrile Rubber (Hnbr)/Organo-Montmorillonite Nanocomposites by Curing with Peroxide[J]. Macromolecular Rapid Communications,2005,26(11):915-919.
    [8]Gatos Konstantinos G.,Karger-Kocsis Jozsef. Effect of the Aspect Ratio of Silicate Platelets on the Mechanical and Barrier Properties of Hydrogenated Acrylonitrile Butadiene Rubber (Hnbr)/Layered Silicate Nanocomposites[J]. European Polymer Journal,2007,43 (4):1097-1104.
    [9]Lu Lan,Zhai Yinghao,Zhang Yong,Ong Christopher,Guo Sharon. Reinforcement of Hydrogenated Carboxylated Nitrile-Butadiene Rubber by Multi-Walled Carbon Nanotubes[J]. Applied Surface Science,2008,255 (5, Part 1):2162-2166.
    [10]Xu D.,Karger-Kocsis J.,Major Z.,Thomann R. Unlubricated Rolling Wear of Hnbr/Fkm/Mwcnt Compounds against Steel[J]. Journal of Applied Polymer Science,2009,112 (3):1461-1470.
    [11]Felhos D.,Karger-Kocsis J.,Xu D. Tribological Testing of Peroxide Cured Hnbr with Different Mwcnt and Silica Contents under Dry Sliding and Rolling Conditions against Steel[J]. Journal of Applied Polymer Science,2008,108 (5):2840-2851.
    [12]Chen Shuguo,Yu Haiyang,Ren Wentan,Zhang Yong. Thermal Degradation Behavior of Hydrogenated Nitrile-Butadiene Rubber (Hnbr)/Clay Nanocomposite and Hnbr/Clay/Carbon Nanotubes Nanocomposites[J]. Thermochimica Acta,2009,491 (1-2):103-108.
    [13]Das A.,St kelhuber K. W.,Jurk R.,Saphiannikova M.,Fritzsche J.,Lorenz H.,K1 pel M.,Heinrich G. Modified and Unmodified Multiwalled Carbon Nanotubes in High Performance Solution-Styrene-Butadiene and Butadiene Rubber Blends[J], Polymer,2008,49 (24):5276-5283.
    [14]Choi Sung-Seen. Improvement of Properties of Silica-Filled Styrene-Butadiene Rubber Compounds Using Acrylonitrile-Butadiene Rubber[J]. Journal of Applied Polymer Science,2001, 79(6):1127-1133.
    [1]王梦蛟.炭黑[M].1982,北京:化学工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700