用户名: 密码: 验证码:
钛酸铋钠基多元无铅压电陶瓷的结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选择了A位离子复合取代的钙钛矿型铁电体钛酸铋钠(Bi0.5Na0.5TiO3,简称BNT)作为研究的基材。针对BNT陶瓷作为压电陶瓷材料本身存在的一些缺点,借鉴传统压电陶瓷改性研究的思路,对BNT陶瓷进行了系统的改性研究,以期提高BNT陶瓷的压电性能,达到实用化的目的。为了提高BNT陶瓷的致密度及耐击穿场强,采用锂离子取代A位钠离子对BNT陶瓷进行改性研究;根据不同结构的钙钛矿铁电体固溶后,在准同型相界附近具有优异的压电性能的特点,本文将三方结构的BNT分别与四方结构的(Bi0.5K0.5)TiO3和正交结构的KNbO3铁电体复合形成二元系固溶体,为了进一步提高BNT基陶瓷的压电性能,在BNT与(Bi0.5K0.5)TiO3二元复合的基础上进行了La2O3和MnO2掺杂的改性研究。最后将BNT与(Bi0.5K0.5)TiO3和KNbO3进行三元复合,研究其组成、结构及性能的变化并期望得到最佳的性能配方。
     本文系统研究了A位Li取代对BNT陶瓷烧结特性、晶体结构和性能的影响,实验研究的结果表明:适量锂取代会提高BNT陶瓷的致密度,其相对密度达到95%以上,且在x=0.1时,陶瓷的绝缘电阻率达到最大,其值为1.56×1012Ω.cm。XRD结果显示,在固溶限内的锂取代没有改变BNT陶瓷的三方相结构。并且该体系在x=0.15处得到最佳的压电性能:压电常数d33的值为110pC/N,机电耦合系数kp的值为18%。该系陶瓷具有弛豫铁电体的特征并在居里温度以上表现出奇特的介电行为。同时,采用离子电导诱导的空间电荷极化理论详细分析了产生这种介电行为的机理。
     对于(1-x)Bi05Na0.5TiO3-xBi0.5K0.5TiO3陶瓷,XRD分析表明,该体系在x=0.16~0.22为三方-四方准同型相界,该体系在准同型相界略靠四方结构这一边,即x=0.22时得到最佳的压电性能,剩余极化强度Pr、机电耦合系数kp和压电系数d33都达到极大值,分别为47μC/cm2、0.33和174pC/N,是目前该体系得到的最好性能。采用La2O3对BNKT18陶瓷进行掺杂改性研究,在掺杂量为0.5wt%得到最佳的性能:kp=0.32,d33=157pC/N,εT33/ε0=963,Qm=139,tanδ=0.039。在La掺杂的基础上,进一步用Mn掺杂来改性,提高陶瓷的综合性能,在Mn掺杂量为0.3wt%时,最佳性能为:kp=0.34,d33=158pC/N,εT33/ε0=865,Qm=291,tanδ=0.02。
     对于(1-x)Bi0.5Na0.5TiO3-xKNbO3陶瓷,XRD测试结果表明,在研究的组成范围内,KNbO3的加入没有改变BNT陶瓷的三方相结构。只是随着KNbO3含量的增加,陶瓷的三方结构的畸变程度降低,在x≥0.08时,陶瓷转变成了对称性较高的假立方结构。性能的测试结果表明,在x=0.05时,得到最佳的压电性能:kp=0.23,d33=125pC/N,εT33/ε0=830。
     对于(1-x-y)BNT-xBKT-yKN三元系陶瓷,提出了该三元系陶瓷的三元相图。在三元相图中相界附近,得到最佳的压电性能:对于x=0.10,y=0.03的组成,机电耦合系数kp和压电常数d33分别为0.38和138pC/N,kp达到最大值;对于x=0.16,y=0.02的组成,机电耦合系数kp和压电常数d33分别为0.35和197pC/N,d33达到最大值。所研究的三元系压电陶瓷的某些配方其性能达到BNT基无铅压电陶瓷的先进水平。
     XRD、SEM及EDAX的测试结果表明,对于含钾的BNT基陶瓷,钾离子在烧结过程中起关键作用,钾离子含量的多少决定了烧结温度的高低以及烧结温区的宽窄,而与组成中具体的成分关系不大。一般是低含钾量的样品烧结的温区要宽,高含钾量的样品烧结的温区要窄。为了得到高含钾量的致密陶瓷样品,尽量通过降低烧结温度延长保温时间来实现。
     通过介电温谱和不同温度下的电滞回线,对BNT基材料的相变过程和介电行为进行了研究,发现研究的BNT陶瓷都具有弛豫铁电体的特征,且基本上确定在低温介电反常以上没有反铁电相产生。低温介电反常产生的原因主要是发生了铁电宏畴-铁电微畴的转变。
In this dissertation, sodium bismuth titanate (abbr. BNT), which is a kind of A-site compound perovskite ferroelectrics, is investigated. Aiming at the shortcoming of the BNT and according to the modified method of traditional piezoelectric ceramic, the BNT ceramics was modified systemically to improve the piezoelectric properties and achieve the practical objective. To increase the density and breakdown field strength, Li+ substitution for Na+ in BNT was researched. According to the thought that the excellent properties would be obtained in the morphotropic phase boundary, the multi-component free-lead piezoelectric ceramics which were BNT-BKT, BNT-KN and BNT-BKT-KN, were formed respectively. To further improve the piezoelectric properties, La2O3 and MnO2 were doped to BNKT18 ceramics and the performance of this material was studied.
     Li substitution for Na in BNT ceramics which affects on the sintering characteristic, structure and performance of the BNT material was systemically studied. The experimental results indicate: high relative density of more than 95% is obtained from proper Li substitute which may improve the sintering process. When x=0.1, the resistivity reaches the maximum value, 1.56×1012Ω.cm. The results of XRD show that there are Li2O and Bi2Ti2O7 phases which result from the instability of perovskite at x=0.3. Li substitutes don’t change the structure symmetry of rhombohedra. When x=0.15, this composition expresses the optimal properties: d33=110pC/N, kp=18%, Pr=21μC/cm2. The diffuse phase and the dielectric dependence on frequency from the dielectric thermogram show that the Bi0.5(Na1-xLix)0.5TiO3 ceramics are the relaxor ferroelectrics. Above Tc, the relation of dielectric and frequency doesn’t accord with the Curie-Weiss law with the increase of the temperature, which arouses from the space charge polarization induced by ions conductance.
     For (1-x)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 system: The patterns of XRD show that the range of x=0.16~0.22 is the morphotropic phase boundary with rhombohedral and tetragonal co-existed structure. When x=0.22, the piezoelectric properties which d33 and kp are 110pC/N and 18% respectively, are the best properties at the present time. La2O3 dopant can enhance the electromechanical coupling factor and piezoelectric constant but decrease the mechanical quality factor. At the La2O3 amount of 0.5wt%, the best properties are: kp=0.32, d33=157pC/N,εT33/ε0=963, Qm=139, tanδ=0.039. Based on 0.5wt% La2O3 doped BNKT18 ceramics, MnO2 dopant can enhance the depolarization temperature but decrease mechanical and dielectric loss. At the MnO2 amount of 0.3 wt%, the best properties are: kp=0.34, d33=158pC/N,εT33/ε0=865, Qm=291, tanδ=0.02. At the same time, the mechanics that the“soft or hard”adulterant influence the depolarization temperature was analyzed.
     (1-x)Bi0.5Na0.5TiO3-xKNbO3 system was prepared by the tradional ceramics fabrication, in range of the researched composition, XRD results show that KNbO3 don’t change the structure symmetry of rhombohedra and enhanced the structure symmetry to pseudo-cubic structure with the increase of KNbO3 content. At amount of x=0.05, the best properties are: kp=0.23, d33=125pC/N,εT33/ε0=830.
     For (1-x-y)BNT-xBKT-yKN ternary system, the phase diagram of the BNT-BKT-KN ternary system was put forward. Near the phase boundary of the phase diagram, the optimal piezoelectric properties are: for the composition of x=0.10 and y=0.03, kp and d33 are 38% and 138 pC/N, respectively. For the composition of x=0.16 and y=0.02, kp and d33 are 35% and 197pC/N, respectively. The d33 value reaches the maximum in the ternary system.
     The results of XRD, SEM and EDAX indicate: the K+ act as key function in the sintering process, the sintering temperature and the width of sintering temperature are decided by K+ content and independent of the component in the BNT based samples. Generally, the width of the sintering temperature is broad when the K+ content is little. For higher K+ content, the result is contrary. The density sample with higher K+ content can be gained by decreasing the sintering temperature and prolonging the sintering time.
     The results of dielectric thermogram and hysteresis loop at different temperature indicate: the BNT based ceramics are the relaxor ferroelectrics; above Td, there isn’t anti-ferroelectric in the temperature region of ferroelectric and paraelectric; the reason of dielectric abnormity at low temperature is the transition from ferroelectric macro-domain to ferroelectric micro-domain.
引文
[1]陆佩文,吕亿农,薛万荣.用于超声电机的压电陶瓷的探讨.材料导报,2000,14 (10):146-148
    [2]万学华.压电陶瓷换能器和压电陶瓷材料.2002年中国电子学会第十二届电子元件学术年会论文集,2002.295-302
    [3]段选杰.片型化多层(独石)压电陶瓷变压器及其应用.2001年全国电子元器件应用技术研讨会论文集,2001.205-208
    [4]孙慷,张福学.压电学(上).北京:国防工业出版社,1984. 1-4,116-120,164-169
    [5]刘梅东,许毓春.压电铁电材料与器件.武汉:华工理工大学出版社,1990. 1-21,48-73
    [6]林声和,叶至碧,王裕斌.压电陶瓷.北京:国防工业出版社,1979. 32-38,81-87
    [7]李标荣,王筱珍,张绪礼.无机电介质.武汉:华中理工大学出版社,1995. 114-128
    [8]肖定全.环境协调型铁电压电陶瓷.压电与声光.1999,21(5):363-366
    [9] Michael Pecht, Yuki Fukuda, Subramanian Rajagopal. The impact of lead-free legislation exemptions on the electronic industry. IEEE Trans. on Electronic Packing Manufacturing , 2004,27(4):221-232
    [10] Neirman S M.The Curie point temperature of Ba(Ti1-xZrx)O3 solid solutions. J. Mater. Sci., 1988, 23(20): 3973-3980
    [11] Ravez J, Simon A. Non-stoichiometric perovskites derived from BaTiO3 with ferroelectric relaxor behaviour. Phys. Stat. Sol., 2000, 178: 793-797
    [12] Ravez J, Simon A. Relaxor ferroelectricity in ceramics with composition. Mater.lett., 1998, 36(1): 81-84
    [13] Farhi R, Marssi M E, Simon A. A raman and dielectric study of ferroelectric Ba(Ti1-xZrx)O3 ceramics. J.Eur.Phy.B., 1999, 9(4): 599-604
    [14] Shrabanee Sen, Choudhary R N P. Impedance studies of Sr modified BaTi0.95Zr0.05O3 ceramics. Mater.Chem.and Phys., 2004, 87: 256-263
    [15]马晋毅,吴裕功,董向红等. (Na0.5Bi0.5)TiO3陶瓷A位二价金属离子取代的研究.压电与声光,2000, 20 (4): 253-255
    [16]肖定全,赁敦敏,朱建国等. Na0.5Bi0.5TiO3基A位多重复合无铅压电陶瓷的研究.高技术通讯,2005, 15 (5): 54-57
    [17] Venkata Ramana E, Bahuguna Saradhi B V, Suryanarayana S V et al.Synthesis and Characterisation of 1-x(Na0.5Bi0.5TiO3)-xBiFeO3 ceramics.Ferroelectrics,2005, 324: 55-61
    [18]佐々木淳.压电体磁器组成物.日本公开特许公报(A):特开2000-44335, 2000-2-15
    [19] Wu L, Xiao D Q, Lin D M et al.Synthesis and properties of [Bi0.5(Na1-xAgx)0.5]1-yBayTiO3 piezoelectric ceramics.Japan.J.Appl.Phys., 2005,44(12): 8515-8518
    [20] Li Yueming, Chen Wen, Zhou jing et al. Dielectric and piezoelectric properties of Na0.5Bi0.5TiO3-NaNbO3 ceramics. Mater. Sci.and Eng.(B), 2004, 112: 5-9
    [21] Nagata Hajime, Takenaka Tadashi. Lead-free piezoelectric ceramics of Na0.5Bi0.5TiO3-1/2(Bi2O3·Sc2O3) system. Jpn.J.Appl.Phys., 1997, 36: 6055-6057
    [22] Wang X X, Choy S H, Tang X G et al. Dielectric behavior and microstructure of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics. J.Appl.Phys., 2005, 97: 104101(1-4)
    [23] Chu Baojin, Chen Daren, Li Guorong et al. Electrical properties of (Bi1/2Na1/2)TiO3- BaTiO3 ceramics. J.Eur.Ceram.Soc., 2002, 22: 2115-2121
    [24] Shirane G, Newnham R, Pepinsky R. Electrical properties and phase transitions of NaNbO3and (Na,K)NbO3. Physical Review, 1954, 96(3): 581-588
    [25] Kimura M, Ogawa T, Ando A et al. Piezoelectric properties of metastable (Li,Na)NbO3 ceramics. 2002 IEEE, 2002, 339-342
    [26]张慧君,赵鸣,张昌松等. Na0.5K0.5NbO3-LiTaO3无铅压电陶瓷的研究.电子元件与材料.2006, 25(2): 41-44
    [27] Ahn C W, Song H C, Nahm S et al. Effect of MnO2 on the piezoelectric properties of (1-x)Na0.5K0.5NbO3-xBaTiO3 ceramics. Jpn.J.Appl.Phys., 2005, 44(44): L1361-1364
    [28] Guo Y P, Kakimoto K I, Ohsato H. Structure and electrical properties of lead-free Na0.5K0.5NbO3-BaTiO3 ceramics. Jpn.J.Appl.Phys., 2004, 43(9B): 6662-6666
    [29] Guo Y P, Kakimoto K I, Ohsato H. Na0.5K0.5NbO3-LiTaO3 lead-free piezoelectric ceramics. Mater.Lett., 2005, 59: 241-244
    [30] Guo Y P, Kakimoto K I, Ohsato H. Dielectric and piezoelectric properties of lead-free Na0.5K0.5NbO3-SrTiO3 ceramics. Solid State Communications, 2004, 129: 279-284
    [31] Matsubara M, Yamaguchi K, Sakamoto W et al. Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. J.Am.Ceram.Soc., 2005, 88(5): 1190-1196
    [32] Jaeger R E, Egerton L. Hot pressing of potassium sodium niobates. J.Am.Ceram.Soc., 1962, 45(5): 209-213
    [33] Zhang B P, Li J F, Wang K et al. Compositional dependence of piezoelectric properties in NaxK1-xNbO3 lead-free ceramics prepared by spark plasma sintering. J.Am.Ceram.Soc., 2006, 89(5): 1606-1609
    [34] Park S H, Ahn C W, Nahm S et al. Microstructure and piezoelectric properties of ZnO-added Na0.5K0.5NbO3 ceramics. Jpn.J.Appl.Phys., 2004, 43(8B): L1072-L1074
    [35] Matsubara M, Yamaguchi T, Kikuta K et al. Sintering and Piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Jpn.J.Appl.Phys., 2005, 44(1A): 258-263
    [36] Takao Hisaaki, Saito Yasuyoshi, Aoki Yoshifumi et al. Microstructural evolution of crystalline-oriented Na0.5K0.5NbO3 piezoelectric ceramics with a sintering aid of CuO. J.Am.Ceram.Soc., 2006, 89(6): 1951-1956
    [37] Guo Y P, Kakimoto K I, Ohsato H. Phase transitional behavior and piezoelectric properties of Na0.5K0.5NbO3-LiNbO3 ceramics. Applied Physics letters, 2004, 85(18): 4121-4123
    [38]郑立梅,王矜奉,臧国忠等. (Na,K,Li)(Nb,Sb)O3无铅压电陶瓷的性能.电子元件与材料.2006, 25(7): 21-22
    [39] Matsubara M, Yamaguchi T, Kikuta K et al. Synthesis and Characterization of (K0.5Na0.5)(Nb0.7Ta0.3)O3 piezoelectric ceramics sintered with sintering aid K5.4Cu1.3Ta10O29. Jpn.J.Appl.Phys., 2005, 44(9A): 6618-6623
    [40] Marima V, Caballero A C, Calos M et al. Factors-affecting the electrical conductivity of donor-doped Bi4Ti3O12 piezoelectric ceramics. J.Am.Ceram.Soc., 1999, 82(9): 2411-2416
    [41] Gelfuso M V. Synthesis and structural, ferroelectric, and piezoelectric of SrBi4Ti4O15 ceramics. J.Am.Ceram.Soc., 1999, 82(9): 2369-8-2372
    [42] Yan H, Li C. A-site (MCe) substitution effects on the structures and properties of CaBi4Ti4O15 ceramics. Jpn.J.Appl.Phys., 2000, 38 (11): 6339-6342
    [43] Kazu O S, Mizuka A, Yasu O U et al. Preparation and properties of SrBi2Ta2O9 ceramics. Jpn.J.Appl.Phys., 1998, 37: 5273-5276
    [44] Megriche A, Lebrun L, Trocca Z M et al. Materials of Bi4Ti3O12-type for hightemperature acoustic piezo-sensors. Sensors and Actuatos, 1999, 78: 88-91
    [45] Takenaka T, Gotoh T, Mutoh S et al. A new series of Bismuth layer-structure ferroelectrics. Jpn.J.Appl.Phys., 1995, 34: 5384
    [46]童元丰,陶锋烨. Sr1-xMexBi2(Nb1-yWy)2O9系陶瓷压电性能的研究.压电与声光.2005, 27(1): 62-64
    [47] Ando Akira, Kimura Masahiko, Sakabe Yukio. Piezoelectric properties of Ba and Ca doped SrBi2Nb2O9 based ceramic materials. Jpn.J.Appl.Phys., 2003, 42: 520-525
    [48] Aoyagi R, Inai S, Hiruma Y et al. Piezoelectric properties of Vanadium-substituted Stronium Bismuth Niobate. Jpn.J.Appl.Phys., 2005, 44(9B): 7055-7058
    [49] Umakantham K, Narayana S. Effect of rare-earth ions on the properties of modified (SrBa)Nb2O6 ceramics. J.Mater.Lett., 1987, 6: 565-567
    [50] Sambasiva R K, Satyanayan A C. Piezoelectric and ferroelectric properties of rare-earth modified filled tungsten bronze barium silver niobate ceramics. Ferroelectrics, 1994, 154(1-4): 195-200
    [51] Robin A I, Prasadar A V. Ferroelectric and piezoelectric studies of lanthanum and praseodymium modified Ba2AgNb5O15 ceramics. J.Mater.Lett., 1994, 13: 1381-1383
    [52] Masahik O K, Tadahir O M, Arir A A. Temperature characteristics of (Ba1-xSrx)2NaNb5O15 ceramics. Jpn.J.Appl.Phys., 1997, 36(9B): 6051-6054
    [53] Spinolad U P, Moreira E N, Bassora L A etal. Pyroelectric and piezoelectric properties of SBN ceramics.1996 IEEE Ultrasonics Symposium, 1996:523-526
    [54] Robin A I, Prasadar A V, Sabasiv A R et al. Effect of rare earth substitution on the dielectric and piezoelectric properties of Ba2AgNb5O15. Ferroelectrics, 1994, 154(1-4): 285-290
    [55] Takenaka T, Maruyama K I, Saketa K. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn.J.Appl.Phys., 1991, 30(98): 2236-2239
    [56] Zvirgzds J A, Kaposting P P, Zvirgzds J V. X-ray study of phase transtions in ferroelectrics Bi0.5Na0.5TiO3. Ferroelectrics, 1982, 40: 75-77
    [57] Suchanicz J, Kwapulinshi J. X-ray diffraction study of the phase transtions in ferroelectrics Bi0.5Na0.5TiO3. Ferroelectrics, 1995, 165: 249-253
    [58] Jones G O, Thomas P A. Investigation of the structure and phase transition in the novel A-site substituted distorted perovskite compound Bi0.5Na0.5TiO3. Acta Cryst., 2002, B58: 168-178
    [59] Isupov V A. Ferroelectric Bi0.5Na0.5TiO3 and Bi0.5K0.5TiO3 perovskites and their solid solutions. Ferroelectrics, 2005, 315: 123-147
    [60] Tu C S, Siny I G, Schmidt V H. Sequence of dielectric anomalies and high-temperature relaxation behavior in Bi0.5Na0.5TiO3. Physical Review B, 1994, 49(17): 11550-11559
    [61] Suchanicz J. Investigations of the phase transition in Bi0.5Na0.5TiO3. Ferroelectrics, 1995, 172: 455-458
    [62] Suchanicz J. Peculiarities of phase transition in Bi0.5Na0.5TiO3. Ferroelectrics, 1997, 190: 77-81
    [63] Suchanicz J. Time evolution of the phase transition in Bi0.5Na0.5TiO3. Ferroelectrics, 1997, 200: 319-325
    [64] Roleder K, Suchanicz J. Time dependence of electric permititivity in Bi0.5Na0.5TiO3 single crystal. Ferroelectrics, 1989, 89: 1-5
    [65] Isupov V A, Pronin I Pet al. Temperature dependence of birefringence and opalescence of sodium-bismuth titanate crystals. Ferroelectrics Letter, 1984, 2: 205-208
    [66]李月明. Na0.5Bi0.5TiO3基无铅压电陶瓷的制备、结构与电性能研究: [博士学位论文].武汉:武汉理工大学图书馆,2004:39-49
    [67] Sakata K, Takenaka T. Phase relations, dielectric and piezoelectric properties of ceramics in the system Bi0.5Na0.5TiO3-PbTiO3. Ferroelectrics, 1992, 131: 219-226
    [68] Suchanicz J. Behaviour of Bi0.5Na0.5TiO3 ceramics in the A.C. electric field. Ferroelectrics, 1998, 209: 561-568
    [69]赵名磊.无铅压电陶瓷制备与物性研究: [博士学位论文].济南:山东大学图书馆,2003: 90-96
    [70] Xu Qing, Wu Sujuan, Chen Shutao et al. Influence of poling condition and sintering temperature on piezoelectric properties of (Bi1/2Na1/2)1-xBaxTiO3 ceramics. Materials Research Bulletin, 2005, 40: 373-382
    [71] Xu Qing, Chen Shutao, Chen Wen et al. Structure, piezoelectric properties and ferroelectric properties of (Bi1/2Na1/2)1-xBaxTiO3 system. Journal of Alloys and Compounds, 2004, 381: 221-225
    [72]初宝进,李国荣,殷庆瑞等.非化学计量和掺杂对(Bi1/2Na1/2)0.92 Ba0.08TiO3陶瓷电性能的影响.物理学报.2001, 50(10): 2012-2016
    [73]赵名磊,王春雷,艾树涛等. Bi0.5Na0.5TiO3-BaTiO3陶瓷的介电和压电性能的研究.无机材料学报.2002, 17 (1): 61-65
    [74] Suchanicz J, Kusz J, Bohm H. Structure and electric characteristics of (Bi0.5Na0.5)0.5Ba0.5TiO3 and (Bi0.5Na0.5)0. 2 Ba0. 8TiO3 ceramics. Mater. Sci.and Eng., 2003, B97: 154-159
    [75] Suchanicz J, Kusz J, Bohm H. Structure and dielectric properties of (Bi0.5Na0.5)0. 7 Ba0. 3TiO3 ceramics. J.Eur.Ceram.Soc., 2003, 23: 1559-1564
    [76] Sasaki Atsushi, Chiba Tatsuya, Mamiya Youichi. Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems. Jpn.J.Appl.Phys., 1999, 38: 5564-5567
    [77] Zhao Suchan, Li Guorong, Ding Aili et al. Ferroelectric and piezoelectric properties of (Na,K)0.5Bi0.5TiO3 lead free ceramics. Journal of Physics D: Applied Physics, 2006, 39: 2277-2281
    [78]李月明,陈文,徐庆等.BNT-BKT系无铅压电陶瓷的介电压电性能.压电与声光.2005, 27(2): 168-171
    [79]李月明,陈文,徐庆等.BNT-BKT系无铅压电陶瓷的制备工艺研究.陶瓷学报.2004, 25(1): 6-10
    [80]李月明,陈文,徐庆等.(Na0.8K0.2)0.5Bi0.5TiO3陶瓷的介电压电性能.无机材料学报.2004, 19(4): 817-822
    [81] Ishii H, Nagata H, Takenaka T. Morphotropic phase boundary and electrical properties of Bismuth Sodium Titanate-Potssium Niobate solid solution ceramics. Jpn.J.Appl.Phys., 2001, 40: 5660-5663
    [82]李月明,陈文,徐庆等. (1-x)(Bi1/2Na1/2)TiO3-xNaNbO3系无铅压电陶瓷的机电性能.硅酸盐学报.2005, 33(3): 366-370
    [83] Takenaka T, Okuda T, Takegahara K. Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3-NaNbO3. Ferroelectrics, 1997,196: 175-178
    [84] Park S E, Hong K S. Variations of structure and dielectric properties on substituting A-site cation for Sr2+ in Bi0.5Na0.5TiO3. J.Mater.Res., 1997, 12(8): 2152-2157
    [85]吴裕功,马晋毅,董向红等. (Bi1/2Na1/2)TiO3-SrTiO3无铅压电陶瓷的介电、压电性能.压电与声光.2000, 22(6): 370-372
    [86] Nagata H, Yoshida M, Makiuchi Y et al. Large piezoelectric constant and high Curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary. Jpn.J.Appl.Phys., 2003, 42: 7401-7403
    [87] Wang X X, Tang X G, Chan H L W. Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics.Appl.Phys.Lett., 2004, 85(1): 91-93
    [88] Li Yueming, Chen wen, Xu Qing. Electromechanical and dielectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3-BaTiO3 lead-free ceramics. Mater. Chem. and Phys., 2005, 94: 328-332
    [89] Wu Yugong, Zhang Huili, Zhang Yue et al. Lead-free piezoelectric ceramics with composition of (0.97-x)(Bi1/2Na1/2)TiO3-0.03NaNbO3-xBaTiO3. J. Mater. Sci., 2003, 38: 987-994
    [90] Li Yueming, Chen wen, Xu Qing et al. Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3-NaNbO3 lead-free ceramics. Journal of Electroceramics, 2005, 14: 53-58
    [91] Herabut A, Safari A. Effects of substitution in A- and B- site cations of Bi0.5Na0.5TiO3. Proceedings of the 10th IEEE international of symposium on applications of ferroelectrics, 1996, 2: 775-778
    [92] Herabut A, Safari A. Processing and electromechanical properties of (Bi0.5Na0.5)1-1.5xLaxTiO3 ceramics. J.Am.Ceram.Soc., 1997, 80(11): 2954-2958
    [93] Li J Y, Lee J K, Hong K S. Dependence of microstructure and the electrical properties of Lanthanum-substituted (Bi1/2Na1/2)TiO3 on cation vacancies. J.Am.Ceram.Soc., 2002, 85 (12): 3004-3010
    [94] Wang X X, Kwok K W, Tang X G. Electromechanical properties and dielectric behavior of (Bi1/2Na1/2)1-1.5xBixTiO3 lead-free piezoelectric ceramics. Solid State Communication, 2004, 129: 319-323
    [95]赁敦敏,肖定全,朱建国等.[(Bi1-x-yLax)Na1-y]0.5BayTiO3压电陶瓷的性能与微结构.电子元件与材料.2004, 23(11): 1-3
    [96] Lin D M, Xiao D Q, Zhu J G et al. Systhesis and piezoelectrid properties of lead-free piezoelectric [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 ceramics. Mater. Lett., 2004, 58: 615-618
    [97] Lin D M, Xiao D Q, Zhu J G et al. The relations of sintering conditions and microstructures of [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 ceramics. Cryst. Res. Technol., 2004, 39(1): 30-33
    [98] Lin D M, Xiao D Q, Zhu J G et al. Piezoelectric and ferroelectric properties of [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 lead-free piezoelectric ceramics. Appl. Phys. Lett., 2006, 88: 062901-1~3
    [99] Lin D M, Xiao D Q, Zhu J G et al. Electrical properties of [Bi1-z(Na1-x-y-zKxLiy)]0.5BazTiO3 muti-component lead-free piezoelectric ceramics. Phys. Stat. Sol. (a), 2005, 202(9): R89-R91
    [100] Nagata H, Takenaka T. Effects of substitution on electrical properties of Bi0.5Na0.5TiO3 based lead-free ferroelectrics. Proceedings of the 2000 12th IEEE international of symposium on applications of ferroelectrics, 2000, 1: 45-51
    [101] Zhou X Y, Gu H S, Wang Y et al. Piezoelectric properties of Mn-doped (Bi0.5Na0.5)0.92Ba0.08TiO3 ceramics. Mater. Lett., 2006, 59: 1649-1652
    [102] Wang X X, Chan H L W, Choy C L. Piezoelectric and dielectric properties of CeO2-added (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Solid State Communications, 2003, 125: 395-399
    [103] Wang X X, Chan H L W, Choy C L. (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics with simultaneous addition of CeO2 and La2O3. Appl. Phys.: Mater.Sci. and Proc., 2005, A80: 333-336
    [104] Li H D, Feng C D, Yao W L. Some effects of different additive on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3- BaTiO3 morphotropic phase boundary composition. Mater. Lett., 2004, 58: 1194-1198
    [105]周桃生,李秋红,徐林芳等.无铅压电陶瓷钛酸铋钠(BNT)的掺杂改性研究.哈尔滨理工大学学报.2002, 7(6): 96-97
    [106]曲远方.功能陶瓷及应用.北京:化学工艺出版社,1990. 81-88
    [107]刘世宏,王当憨,潘承璜. X射线光电子能谱分析.北京:科学出版社,1988.
    [108] Wang X X, Chan H L W, Choy C L. (Bi1/2Na1/2)TiO3-Ba(Cu1/2W1/2)O3 lead-free piezoelectric ceramics. J.Am.Ceram.Soc., 2003, 86(10): 1809-1811
    [109] Cheng S Y, Fu S L, Wei C C et al. The properties of low-temperature fired piezoelectric ceramics. J. Mater.Sci., 1986, 21: 571-576
    [110] Aparna M, Bhimasankaram T, Kumar G S et al. Systhesis and characterization of Lanthanum doped Sodium Bismuth titanate. Modern Physics Letters B, 2002, 16(26):1007-1019
    [111]李远,秦自楷,周志刚.压电与铁电材料的测量.北京:科学出版社,1984.
    [112] Matsubara M, Yamaguchi T, Kikuta K et al. Effect of Li substitution on the piezoelectric properties of Potassium Sodium Niobate ceramics. Jpn.J.Appl.Phys., 2005, 44(8): 6136-6142
    [113] Smolensky G A, Isupov V A. Phase changes of certain solid solutions having electrical properties of rachelle salt. Dokl Akad Nank,USSR.1954, 96: 53-54
    [114]姚喜,陈至立.弛豫型铁电体.压电与声光.1984, 6: 3-11
    [115]郭常霖,吴毓琴,王天宝. Bi0.5K0.5TiO3- Bi0.5Na0.5TiO3系统铁电陶瓷相界的x射线研究.物理学报.1982. 81(8):1119-1121
    [116] Wada T, Fukui A, Matsuo Y. Preparation of Bi0.5K0.5TiO3 ceramics by polymerized complex method and their properties. Jpn.J.Appl.Phys., 2002, 41: 7025-7028
    [117] Hiruma Y, Aoyagi R, Nagata H et al. Ferroelectric and piezoelectric properties of (Bi1/2K1/2)TiO3 ceramics. Jpn.J.Appl.Phys., 2005, 44(7A): 5040-5044
    [118] Li Z F, Wang C L, Zhong W L et al. Dielectric relaxor properties of Bi0.5K0.5TiO3 ferroelectrics prepared by sol-gel method. Jpn.J.Appl.Phys., 2003, 94: 2548-2552
    [119]王天宝,王列娥,卢永康等. Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3系富钠区陶瓷固溶体的相变研究.硅酸盐学报.1987, 15:248-255
    [120] Elkechai O, Manier M, Mercurio J P. Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 system: a structural and electrical study. Phys.Stat.solid., 1996, 157: 499-506
    [121] Said S, Mercurio J P. Relaxor behaviour of low lead and lead-free ferroelectric ceramics of Bi0.5Na0.5TiO3-PbTiO3 and Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 system. J.Eur.Ceram.Soc., 2001, 21:1333-1336
    [122] Dai X H, Digiiovanni A, Viehland D. Dielectric properties of tetragonal lanthanum modified lead zirconate titanate ceramics. J.Appl.Phys., 1993,74(5):3399-3405
    [123] Chu F, Setter N, Tagantsev A V. The spontaneous relaxor-ferroelectric transition of Pb(Sc0.5Ta0.5)O3. J.Appl.Phys., 1993, 74(8):5129-5134
    [124] ]Yoon M S, Jang H M. Relaxor-normal ferroelectric transition in tetragonal-rich field of Pb(Ni1/3Nb2/3)O3-PbTiO3-PbZrO3 system. J.Appl.Phys., 1995, 77 (8):3991-4001
    [125] Krumins A, Shiosaki T, Koizum S. Spontaneous transition between relaxor and ferroelectric states in lanthanum-modified lead zirconate titanate (6-7)/65/35. Jpn.J.Appl.Phys., 1994, 33(9A):4940-4945
    [126]李月明,陈文,徐庆等. Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3系铁电体的相变研究.功能材料.2004, 35(3):341-343
    [127] Setter N,Cross L E. The role of B-site cation disorder in diffuse phase transition behavior in ferroelectrics. J.Appl.Phys., 1980, 51(8):4356-4360
    [128] Chu F, Reaney I M, Setter N. Spontaneous (zero-field) relaxor-to-ferroelectric-phase transition in disordered Pb(Sc0.5Nb0.5)O3. J.Appl.Phys., 1995, 77(4):1671-1676
    [129]许顺生.金属X射线学.上海:上海科学技术出版社,1962.
    [130]崔秀兰,杨桔材,刘源等.钙钛矿型LaMnO3-δ及La1-xSrxMnO3-δ纳米粒子的XPS表征.稀土.2000, 21 (3):23-27
    [131] Shzrane G, Danner H, Pavlovic A et al. XPS studies on the oxygen species ofLaMn1-xCuxO3+λ. Applied Catalysis A: General , 1998, 170:245-254
    [132] Moulder J F, Stickl E W F, Sobol P E et al. Handbook of X-ray photoelectron spectroscopy [M]. Perkin-Elmer, Minneapolis, 1992.
    [133]张凤鸣.陶瓷添加剂MnO2、Fe2O3、LiCO3的热分析.压电与声光.1998, 20(5):358-360
    [134]候育冬,杨祖培,高峰等.锰掺杂对0.2PZN-0.8PZT材料压电性能的影响.无机材料学报.2003, 18(3): 590-594
    [135]何伯珩,张有志,王琼林.结构化学基础.武汉:华中师范大学出版社,1992. 337-378
    [136] Shzrane G, Danner H, Pavlovic A et al. Phase transition in ferroelectric KNbO3. Physical Review, 1954, 93(4):672-673
    [137] Tashiro S, Nagamatau H, Nagata K. Sinterability and piezoelectric properties of KNbO3 ceramics after substituting Pb and Na for K. Jpn.J.Appl.Phys., 2002, 41:7113-7118
    [138]任宁,张建军.一水合草酸钾的热分解动力学研究.河北师范大学学报(自然版).2005, 29 (4): 377-380
    [139] Wada T, Toyoike K, Imanaka Y. Dielectric and piezoelectric properties of (A0.5Bi0.5)TiO3-ANbO3 (A=Na, K) systems. Jpn.J.Appl.Phys., 2001, 40: 5703-5705
    [140] Kakimoto K I, Masuda I, Ohsato H. Ferroelectric and piezoelectric properties of KNbO3 ceramics. Jpn.J.Appl.Phys., 2003, 42: 6102-6105
    [141]马如璋,徐祖雄主编.材料物理现代研究方法.北京:冶金工业出版社,1997.
    [142]钟维烈.铁电体物理学.北京:科学出版社,1996. 155-258
    [143] Subbarrao E C, Hrizo J. Ferroelectric phase transition in the system PbTiO3-KNbO3. J.Amer.Ceram.Soc., 1962, 45: 572-575
    [144] Rovez J, Simon A. Relaxor ferroelectricity in ceramics with composition Ba1-xKx(Ti1-xNbx)O3. Materials Letters, 1998, 36: 81-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700