用户名: 密码: 验证码:
滇池鱼类典型环境内分泌干扰物生物富集及毒性效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境内分泌干扰物(EDCs)是指干扰生物体内保持自身平衡和调节发育过程中天然激素合成、分泌、运输、代谢、结合、反应或消除的外源性化学物质。这类物质的存在会干扰人类及野生动物内分泌系统,从而对机体的生殖发育、免疫系统、神经系统等多方面产生异常效应,如野生鱼类雌雄同体和雌性化现象的频发,人类睾丸癌、前列腺癌、乳腺癌、子宫癌发病率的增加等。EDCs,尤其是类固醇类和酚类EDCs,因其对环境暴露生物体正常生长发育和繁殖带来的潜在危害而成为当前科学界和公众共同关注的热点问题之一
     目前,各国均在河流和湖泊中发现了类固醇类和酚类EDCs污染,其在水体及底泥中的污染来源、分布特征和环境归宿等研究已日益完善。但是对鱼类及其它水生生物中此类物质污染特征和富集水平的研究却十分有限,EDCs较低的含量和复杂基质的干扰致使其分析检测成为了较大的挑战。因此,建立生物样品中准确、灵敏的化学分析方法已成为EDCs研究亟需解决的问题。此外,国际上大部分毒性效应研究主要是针对成熟的实验鱼类(如斑马鱼、青鳉和黑头软口鲦)进行实验室急性毒性试验或高浓度暴露实验,缺乏实验室长期环境浓度暴露的数据,难以将实验结果应用于实际水域中生物效应及环境风险的评价。
     本论文以前期研究中发现的滇池水体中普遍存在的类固醇类和酚类EDCs为切入点,包括雌酮(E1)、17-β-雌二醇(E2)、17-a-乙炔基雌二醇(EE2)、雌三醇(E3)、辛基酚(4-t-OP)、壬基酚(4-NP)、双酚A (BPA)和枯烯基酚(4-CP),深入研究滇池鱼类(鲫鱼、鲤鱼和银白鱼)中8种类固醇类和酚类EDCs的富集特征和组织分布,并进一步以滇池特有鱼类高背鲫鱼为实验鱼类,从滇池网式放养、污水处理厂网箱暴露和实验室模拟暴露三方面开展毒性效应研究。将环境分析化学与污染物暴露引起的毒理学效应相结合,综合评估滇池水体中EDCs的生物效应和毒性危害。研究成果可以为滇池水系此类污染物治理对策与措施的制定提供科学依据,具有明显的理论意义、社会环境意义和应用价值。
     (1)建立了生物样品中8种类固醇类和酚类EDCs的分析方法,包括样品的采集、微波辅助萃取(MAE)、凝胶渗透色谱净化(GPC)、固相萃取(SPE)、衍生化和气相色谱-质谱联用(GC-MS)检测。对生物样品前处理过程进行条件优化,并将GPC技术应用到生物样品的净化中。结果表明,MAE的最佳条件是以30mL甲醇为萃取溶剂,在110℃下萃取20min; GPC的最佳条件是以乙酸乙酯/环己烷(1:1,v/v)为流动相,选择7-14min为目标化合物馏分的收集时间段;SPE的最佳条件是选择Sep-Pak C18柱富集目标化合物,以15mL乙酸乙酯为洗脱溶剂。该方法平均回收率为51.5%-100.6%,相对标准偏差为2.3%-12.7%,检出限为0.3-0.7ng/g,具有良好的回收率和重现性。应用该方法对急性暴露鱼样中的类固醇类和酚类EDCs进行了分析检测,充分验证该方法可应用于环境生物样品中痕量类固醇类和酚类EDCs的定量测定。
     (2)完成了滇池典型鱼类(鲤鱼、鲫鱼和银白鱼)肌肉及各组织器官中类固醇类和酚类EDCs的分布特征及生物富集规律研究。结果表明,肌肉样品中酚类EDCs (4-t-OP、4-CP、4-NP和BPA)的浓度分别为ND-4.6ng/g、ND-4.4ng/g、ND-18.9ng/g和10.1-83.5ng/g;类固醇类EDCs污染相对较轻,其浓度均低于11.3ng/g。由于食性、生活习性以及在食物链中所处营养级的差别,不同鱼类中类固醇类和酚类EDCs的污染水平存在较大的差异。银白鱼中目标化合物浓度最高,是鲫鱼肌肉中浓度的2-3倍,鲤鱼介于银白鱼和鲫鱼之间。鲤鱼和鲫鱼各组织中类固醇类和酚类EDCs的浓度也存在明显的差异,基本符合肝脏>鳃>肌肉这一规律。在已知水体和鱼类肌肉中酚类EDCs浓度的基础上,计算出滇池鱼类中酚类EDCs的生物富集因子(BCF)为18-97。通过分析类固醇类EDCs实验室BCF值及其在肌肉中的浓度,预测出滇池水体中类固醇类EDCs的浓度为4.4-18.0ng/L,接近其它水体中已报道的浓度。研究结果证明,滇池鱼类中存在着不容忽视的EDCs污染和危害,部分EDCs污染已达到产生生物毒性效应的水平,并可能对暴露人群产生一定的健康风险。此外,滇池鱼类肌肉及组织中EDCs的污染水平也可以用来作为评价滇池水体EDCs污染的一个重要指标。
     (3)以滇池固定区域网式放养的高背鲫鱼为真实环境对照组,同步进行昆明第五污水处理厂出水暴露实验,综合评价污水处理厂出水中多种EDCs长期复合暴露对高背鲫鱼的生物富集和毒性效应。结果表明,污水处理厂出水存在着一定浓度的类固醇类和酚类EDCs,对暴露鱼类产生了一系列的毒性效应,如性腺生长的抑制、肝脏指数和血浆中Vtg含量的增加,并发现评价指标的变化与污水处理厂出水中类固醇类和酚类EDCs在鱼体内的富集积累程度有关。因此,类固醇类和酚类EDCs在暴露鱼类中的富集浓度也可以作为衡量污水处理厂出水中该类物质毒性效应的评价指标。
     (4)通过鱼类急性毒性试验得到E2和EE2对高背鲫鱼鱼苗的96h半致死浓度(LC50)分别为0.403mg/L和0.149mg/L。建立了实验室流水暴露系统,对高背鲫鱼进行16个月低剂量典型EDCs(E2和EE2)的单一及复合暴露实验。结果表明,实验室长期低剂量E2和EE2暴露对高背鲫鱼产生了显著的生物富集作用。E2和EE2对高背鲫鱼具有较强的毒性效应,如生长状况和性腺生长的抑制、肝脏指数和血浆中Vtg含量的增加,且EE2的毒性强于E2。此外,低浓度E2和EE2的混合暴露对脏器指数和Vtg含量的影响强于单一暴露。急性毒性试验和实验室长期暴露实验的结果均表明高背鲫鱼对典型EDCs(E2和EE2)具有较强的敏感性,可以作为潜在的模型动物用于EDCs的野外及实验室暴露研究。
Endocrine disrupting chemicals (EDCs) are defined as exogenous agents that interfere with the production, release, transport, metabolism, binding, action, or elimination of natural hormones in the body. These compounds are responsible for the maintenance of homeostasis and the regulation of developmental processes. EDCs may disturb the function of endocrine system in human and wildlife and consequently cause adverse effects on development, reproduction, immune and nervous system of organism. The adverse effects, such as hermaphrodism (male and female gonads in a single individual) and feminization in wild fish, and breast, prostate and testicular cancer in human, have been widely reported. EDCs, particularly steroids and phenols, have attracted a great deal of scientific and public attention worldwide due to their potential adverse effects on the normal reproduction and development of environmentally exposed organisms.
     Currently, steroids and phenols have been detected in rivers and lakes all over the world. Sources, distribution characteristics and environmental fate of steroids and phenols in water and sediment were also estimated. However, their occurrence in fish and other aquatic organisms has been reported in only a limited number of studies and their bioaccumulation has not been well studied. The low levels of EDCs and complex matrix (contain a number of potentially interfering compounds) make measurement and monitoring of these contaminants in biological samples challenging. Thus, the development of an analytical method for the accurate determination of EDCs in biological samples is of crucial importance. In addition, toxicity studies are popular in the use of ideal experimental fish, such as zebrafish (Danio rerio), medaka (Oryzias latipes) and fathead minnow (Pimephales spromelas). Most toxicity data available are restricted to acute toxicity test or short-term exposure experiment in laboratory. Therefore, the lack of long-term exposure data often limits their application in the assessment of biological effects and environmental risk of EDCs in aquatic environment.
     In this study, typical representatives of steroidal and phenolic EDCs, including estrone (El),17β-estradiol (E2),17a-ethynylestradiol (EE2), estriol (E3),4-tert-octylphenol (4-t-OP),4-cumylphenol (4-CP),4-nonylphenol (4-NP) and bisphenol A (BPA), are collectively selected as target compounds, which have been found in water samples collected from Dianchi Lake in our previous studies. The objective of this study was to investigate the bioaccumulation characteristic and tissue distribution of steroidal and phenolic EDCs in wild fish collected from Dianchi Lake, including crucian carp(Carassius auratus), carp (Cyprinus carpio) and silvery minnow (Anabarilius alburnops), and to estimate the effects of steroidal and phenolic EDCs on high-back crucian carp(Carassius auratus) by exposure experiment in WWTP effluents, Dianchi Lake and laboratory. Biological effects and environmental risks of EDCs on fish in Dianchi lake were also comprehensively examined by combining the experiments of environmental analytical chemistry and toxicological exposure. The research results would provide scientific basis for making strategies and measures of EDCs in Dianchi catchment, which has remarkable significances in theory, social, environmental health and engineering application.
     (1) An improved method was developed for the simultaneous determination of eight steroidal and phenolic EDCs in biological samples. The proposed method were consisted of sample collection, microwave-assisted extraction (MAE), automated gel permeation chromatography (GPC), solid phase extraction (SPE), derivatization and gas chromatography-mass spectrometry (GC-MS) analysis. The optimal extraction and cleanup procedures were investigated using MAE, GPC and SPE. Experimental results indicated that the most efficient extraction was achieved by using MAE with methanol as solvent at an extraction temperature of110℃for20min. The cleanup of extracts was carried out by GPC on a Biobeads S-X3column with cyclohexane/ethyl acetate (1:1, v/v) as mobile phase. Target compounds were eluted in the fraction from7-14min retention time. Moreover, the cleanest extracts were obtained by solid phase extraction with C-18cartridges after the elution with15mL ethyl acetate. The method was validated by spiked samples which showed good recovery and reproducibility. The overall recoveries ranged between55.1%and100.6%, with relative standard deviations (RSD) of2.3-12.7%for the entire procedure. Method detection limits (MDL) ranged from0.3to0.7ng g-1dry weight (dw). Performance of the method was demonstrated by its application on tissues from fish exposed to high concentration of EDCs in the laboratory. The developed method is a promising approach for the analysis of steroid and phenolic endocrine disrupting chemicals in various biological samples.
     (2) The distribution and bioaccumulation of steroidal and phenolic EDCs were studied in various tissues of wild fish species from Dianchi Lake, China. In muscle tissue, phenols (4-t-OP,4-CP,4-NP and BPA) were detected in fish from each sampling site, with maximal concentrations of4.6,4.4,18.9and83.5ng/g dw, respectively. Steroids were found at lower levels (<11.3ng/g dw) and less frequently in muscle samples. An interspecies difference in concentrations was evident due to their feeding preference, general behavior and trophic level. Indeed, it was found at the highest levels in silvery minnow but at levels2-3times lower in crucian carp, carp showed intermediate levels. Moreover, the concentrations of steroids and phenols in the gill, liver, and muscle were very variable. The highest concentrations were found in the liver, followed by those in the gill and the lowest in muscle. The field BCF values of phenols in the18to97range were calculated in different fish species. The estimated concentrations of steroids in water were in the range of4.4-18.0ng/L, which were in the proper range compared with those reported by other researchers. These results showed that steroidal and phenolic EDCs were likely ubiquitous contaminants in wild fish. In addition, muscle and tissue concentrations could be a valid means by which to assess the contamination of EDCs in surface water.
     (3) Compared with fish controls caged in Dianchi Lake, the biological effects and bioaccumulation of steroidal and phenolic EDCs were assessed in high-back crucian carp exposed to WWTP effluents. The results indicated that high-back crucian carp readily accumulated steroidal and phenolic EDCs from WWTP effluents, resulting in the enhanced synthesis of vitellogenin (Vtg), the inhibition of gonad growth and the increase of liver metabolism. Some of the differences in biological response appeared to relate to differences in EDCs uptake and metabolism. Therefore, the presence of steroidal and phenolic EDCs in muscle samples of high-back crucian carp could be used as an effective biomarker of exposure to WWTP effluents, considering the capacity of bioaccumulation of this species.
     (4) In acute toxicity test, the96h half-lethal concentrations (LC50) of E2and EE2to juvenile high-back crucian carp were0.403mg/L and0.149mg/L, respectively. The biological bioaccumulation and toxicological effects of E2and EE2were assessed in high-back crucian carp exposed to low concentrations of E2and EE2(single and binary mixture exposure) in flow-through exposure system for16months. The results showed that high-back crucian carp readily accumulated E2and EE2from single and binary mixture exposure group, resulting in the inhibition of growth status and gonad growth, the increase of Vtg levels and liver metabolism. High-back crucian carp were generally more sensitive to EE2than E2exposure. Moreover, the biological effects of binary mixture of E2and EE2at the low concentration were more potent than that of individual compounds when GSI, HSI and Vtg were used as endpoint. The results of acute toxicity test and long-term exposure experiment in laboratory indicated that high-back crucian carp were sensitive to typical EDCs and may be chosen as potential model species in field and laboratory studies.
引文
[1]Kavlock R J. Overview of endocrine in the disruptor research activity United States. Chemosphere, 1999,39(8):1227-1236.
    [2]Tsutsumi O. Assessment of human contamination of estrogenic endocrine-disrupting chemicals and their risk for human reproduction. J Steroid Biochem,2005,93 (2-5):325-330.
    [3]Tyler C R, Jobling S, Sumpter J P. Endocrine disruption in wildlife:A critical review of the evidence. Crit Rev Toxicol,1998,28 (4):319-361.
    [4]Colborn T, Dumanoski D, Myers J P. Our stolen future. New York:Dutton Books,1996.
    [5]EDSTAC. Endocrine disruptor screening and testing advisory committee final report.1998.
    [6]夏星辉,杨居荣,许嘉琳.环境激素污染研究进展.上海环境科学,2001,20(2):56-59.
    [7]WHO/IPCS. Global assessment of the state-of-the-science of endocrine disruptors.2002.
    [8]Petrovic M, Eljarrat E, de Alda M J L, et al. Endocrine disrupting compounds and other emerging contaminants in the environment:A survey on new monitoring strategies and occurrence data. Anal Bioanal Chem,2004,378 (3):549-562.
    [9]Hulkab S, Liu E T, Lininger R A. Steroid-hormones and risk of breast-cancer. Cancer,1994,74 (3): 1111-1124.
    [10]Severi G, Morris H A, MacInnis R J, et al. Circulating steroid hormones and the risk of prostate cancer. Cancer Epidem Biomar,2006,15 (1):86-91.
    [11]Hansen P D, Dizer H, Hock B, et al. Vitellogenin-a biomarker for endocrine disruptors. Trac-Trend Anal Chem,1998,17 (7):448-451.
    [12]Scholz S, Kluver N. Effects of endocrine disrupters on sexual, gonadal development in fish. Sex Dev,2009,3 (2-3):136-151.
    [13]绿色和平.“毒”隐于江—长江鱼体内有毒有害物质调查.2010.
    [14]Wu J P, Luo X J, Zhang Y, et al. Biomagnification of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls in a highly contaminated freshwater food web from South China. Environ Pollut,2009,157 (3):904-909.
    [15]Zhou H Y, Wong M H. Screening of organochlorines in freshwater fish collected from the pearl River Delta, People's Republic of China. Arch Environ Contam Toxicol,2004,46 (1):106-113.
    [16]查金苗.鱼类实验动物建立与环境内分泌干扰物长期慢性毒性机理的研究:[硕士学位论文]. 北京:中国科学院生态环境研究中心,2005.
    []7]杨丽华.环境内分泌干扰物的分析方法建立、环境监测和生殖内分泌毒理研究:[博士学位论文].广州:中山大学,2006.
    [18]Toppari E, Larsen J C, Christiansen P. Male reproductive health and environmental xenoestrogens. Environ Health Perspect,1996,104 (4):741-803.
    [19]Desbrow C, Routledge E J, Brighty G C, et al. Identification of estrogenic chemicals in STW effluent.1. Chemical fractionation and in vitro biological screening. Environ Sci Technol,1998,32 (11):1549-1558.
    [20]Kolpin D W, Barbash J E, Gilliom R J. Occurrence of pesticides in shallow groundwater of the United States:Initial results from the National Water-Quality Assessment Program. Environ Sci Technol,1998,32 (5):558-566.
    [21]Sonnenschein C, Soto A M. An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem,1998,65 (1-6):143-150.
    [22]Fu C T, Wu S C. Bioaccumulation of polychlorinated biphenyls in mullet fish in a former ship dismantling harbour, a contaminated estuary, and nearby coastal fish farms. Mar Pollut Bull,2005, 51 (8-12):932-939.
    [23]de Boer J, Wester P G, Klammer H J C, et al. Do flame retardants threaten ocean life? Nature,1998, 394 (6688):28-29.
    [24]Hooper K, McDonald T A. The PBDEs:An emerging environmental challenge and another reason for breast-milk monitoring programs. Environ Health Persp,2000,108 (5):387-392.
    [25]Fromme H, Kuchler T, Otto T, et al. Occurrence of phthalates and bisphenol A and F in the environment. Water Res,2002,36 (6):1429-1438.
    [26]Staples C A, Dorn P B, Klecka G M, et al. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere,1998,36 (10):2149-2173.
    [27]Ying G G, Williams B, Kookana R. Environmental fate of alkylphenols and alkylphenol ethoxylates-a review. Environ Int,2002,28 (3):215-226.
    [28]Haeseler F, Blanchet D, Druelle V, et al. Analytical characterization of contaminated soils from former manufactured gas plants. Environ Sci Technol,1999,33 (6):825-830.
    [29]Ying G G, Kookana R S, Ru Y J. Occurrence and fate of hormone steroids in the environment. Environ Int,2002,28 (6):545-551.
    [30]Liu R, Zhou J L, Wilding A. Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction-gas chromatography-mass spectrometry. J Chromatogr A,2004,1022 (1-2):179-189.
    [31]Servos M R. Review of the aquatic toxicity, estrogenic responses and bioaccumulation of alkylphenols and alkylphenol polyethoxylates. Water Qual Res J Can,1999,34 (1):123-177.
    [32]Matsushima A, Teramoto T, Okada H, et al. ERR gamma tethers strongly bisphenol A and 4-alpha-curnylphenol in an induced-fit manner. Biochem Bioph Res Co,2008,373 (3):408-413.
    [33]Lu G H, Yan Z H, Wang Y H, et al. Assessment of estrogenic contamination and biological effects in Lake Taihu. Ecotoxicology,2011,20 (5):974-981.
    [34]刘阿朋,王卫民.环境内分泌干扰物对鱼类的影响.水利渔业,2007,27(1):1-3.
    [35]Liney K E, Jobling S, Shears J A, et al. Assessing the sensitivity of different life stages for sexual disruption in roach (Rutilus rutilus) exposed to effluents from wastewater treatment works. Environ Health Persp,2005,113 (10):1299-1307.
    [36]Rodgers-Gray T P, Jobling S, Morris S, et al. Long-term temporal changes in the estrogenic composition of treated sewage effluent and its biological effects on fish. Environ Sci Technol,2000, 34(8):1521-1528.
    [37]邓南圣,吴峰.环境中的内分泌干扰物.北京:化学工业出版社,2004.
    [38]Gray M A, Teather K L, Metcalfe C D. Reproductive success and behavior of Japanese medaka (Oryzias latipes) exposed to 4-tert-octylphenol. Environ Toxicol Chem,1999,18 (11):2587-2594.
    [39]Nash J P, Kime D E, Van der Ven L T M, et al. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Persp, 2004,112(17):1725-1733.
    [40]Brion F, Tyler C R, Palazzi X, et al. Impacts of 17 beta-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile-and adult-life stages in zebrafish (Danio rerio). Aquat Toxicol,2004,68 (3):193-217.
    [41]Sohoni P, Tyler C R, Hurd K, et al. Reproductive effects of long-term exposure to bisphenol a in the fathead minnow (Pimephales promelas). Environ Sci Technol,2001,35 (14):2917-2925.
    [42]尹德玉,汝少国,田华.环境内分泌干扰物对鱼类性别决定的影响研究进展.生态毒理学报,2009,4(4):467-474.
    [43]赵劲松,袁星.环境激素对鱼的影响.环境科学研究,2001,14(3):12-16.
    [44]Matthiessen P, Allen Y, Allchin C R, et al. Oestrogenic endocrine disruption in folunder (Platichthys flesus) from United Kingdom estuarine and marine waters. Sci Ser Tech Pep,1998,107:48.
    [45]Purdom C E, Hardiman P A, Bye V J, et al. Estrogenic effects of effluents from sewage treatment works. Chem Ecol,1994,8:275-285.
    [46]Andersen L, Holbech H, Gessbo A, et al. Effects of exposure to 17 alpha-ethinylestradiol during early development on sexual differentiation and induction of vitellogenin in zebrafish (Danio rerio). Comp Biochem Phys C,2003,134 (3):365-374.
    [47]王有基,胡梦红.环境内分泌干扰物对鱼类影响的研究进展.渔业现代化,2006,3:41-44.
    [48]Pawlowski S, van Aerle R, Tyler C R, et al. Effects of 17 alpha-ethinylestradiol in a fathead minnow (Pimephales promelas) gonadal recrudescence assay. Ecotox Environ Safe,2004,57 (3):330-345.
    [49]Schubert S, Peter A, Burki R, et al. Sensitivity of brown trout reproduction to long-term estrogenic exposure. Aquat Toxicol,2008,90 (1):65-72.
    [50]江桂斌.环境样品前处理技术.北京:化学工业出版社,2004.
    [51]戴树桂,张东梅,张仁江,等.固相萃取技术预富集环境水样中邻苯二甲酸酯.环境科学,2000,21(2):66-69.
    [52]龚诚,刁悦,沈卫阳,等.环境内分泌干扰物的检测分析研究近况.药学进展,2008,32(12):548-555.
    [53]Internet website:http://www.epa.gov/.
    [54]Morris S, Bersuder P, Allchin C R, et al. Determination of the brominated flame retardant, hexabromocyclodocane, in sediments and biota by liquid chromatography-electrospray ionisation mass spectrometry. Trac-Trend Anal Chem,2006,25 (4):343-349.
    [55]Peng J H, Huang C W, Weng Y M, et al. Determination of polybrominated diphenyl ethers (PBDEs) in fish samples from rivers and estuaries in Taiwan. Chemosphere,2007,66 (10):1990-1997.
    [56]Dodder N G, Strandberg B, Augspurger T, et al. Lipophilic organic compounds in lake sediment and American coot (Fulica americana) tissues, both affected and unaffected by avian vacuolar myelinopathy. Sci Total Environ,2003,311 (1-3):81-89.
    [57]de Castro M D L, Garcia-Ayuso L E. Soxhlet extraction of solid materials:an outdated technique with a promising innovative future. Anal Chim Acta,1998,369 (1-2):1-10.
    [58]Fitzpatrick L J, Zuloaga O, Etxebarria N, et al. Environmental applications of pressurised fluid extraction. Rev Anal Chem,2000,19 (2):75-122.
    [59]Janska M, Tomaniova M, Hajslova J, et al. Appraisal of "classic" and "novel" extraction procedure efficiencies for the isolation of polycyclic aromatic hydrocarbons and their derivatives from biotic matrices. Analy Chim Acta,2004,520 (1-2):93-103.
    [60]Liguori L, Heggstad K, Hove H T, et al. An automated extraction approach for isolation of 24 polyaromatic hydrocarbons (PAHs) from various marine matrixes. Analy Chim Acta,2006,573: 181-188.
    [61]Johansson I, Heas-Moisan K, Guiot N, et al. Polybrominated diphenyl ethers (PBDEs) in mussels from selected French coastal sites:1981-2003. Chemosphere,2006,64 (2):296-305.
    [62]Purcaro G, Moret S, Conte L S. Optimisation of microwave assisted extraction (MAE) for polycyclic aromatic hydrocarbon (PAH) determination in smoked meat. Meat Sci,2009,81 (1): 275-280.
    [63]Navarro P, Bustamante J, Vallejo A, et al. Determination of alkylphenols and 17beta-estradiol in fish homogenate. Extraction and clean-up strategies. J Chromatogr A,2010,1217 (38):5890-5895.
    [64]Mills L J, Chichester C. Review of evidence:Are endocrine-disrupting chemicals in the aquatic environment impacting fish populations? Sci Total Environ,2005,343 (1-3):1-34.
    [65]Barriada-Pereira M, Gonzalez-Castro M J, Muniategui-Lorenzo S, et al. Determination of 21 organochlorine pesticides in tree leaves using solid-phase extraction clean-up cartridges. J Chromatogr A,2004,1061 (2):133-139.
    [66]Barriada-Pereira M, Gonzalez-Castro M J, Muniategui-Lorenzo S, et al. Organochlorine pesticides accumulation and degradation products in vegetation samples of a contaminated area in Galicia (N W Spain). Chemosphere,2005,58 (11):1571-1578.
    [67]Pena T, Pensado L, Casais C, et al. Optimization of a microwave-assisted extraction method for the analysis of polycyclic aromatic hydrocarbons from fish samples. J Chromatogr A,2006,1121 (2): 163-169.
    [68]Bayen S, Wurl O, Karuppiah S, et al. Persistent organic pollutants in mangrove food webs in Singapore. Chemosphere,2005,61 (3):303-313.
    [69]Barker S A, Long A R, Short C R. Isolation of drug residues from tissues by solid phase dispersion. J Chromatogr A,1989,475:353-3361.
    [70]Body D, O'Keeffe M, Smyth M R. Matrix solid-phase dispersion as a multiresidue extraction technique for beta-agonists in bovine liver tissue. The Analyst,1994,119(7):1467-1470.
    [71]Zhao M, van der Wielen F, de Voogt P. Optimization of a matrix solid-phase dispersion method with sequential clean-up for the determination of alkylphenol ethoxylates in biological tissues. J Chromatogr A,1999,837 (1-2):129-138.
    [72]Pensado L, Casais M C, Mejuto M C, et al. Application of matrix solid-phase dispersion in the analysis of priority polycyclic aromatic hydrocarbons in fish samples. J Chromatogr A,2005,1077 (2):103-109.
    [73]Martinez A, Ramil M, Montes R, et al. Development of a matrix solid-phase dispersion method for the screening of polybrominated diphenyl ethers and polychlorinated biphenyls in biota samples using gas chromatography with electron-capture detection. J Chromatogr A,2005,1072 (1):83-91.
    [74]Carro A M, Lorenzo R A, Fernandez F, et al. Multi-residue screening of chlorinated and brominated compounds from aquaculture samples using matrix solid-phase dispersion-Gas chromatography-mass spectrometry. J Chromatogr A,2005,1071 (1-2):93-98.
    [75]Pojana G, Gomiero A, Jonkers N, et al. Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environ Int,2007,33 (7):929-936.
    [76]Stolker A A M, Zoontjes P W, van Ginkel L A. The use of supercritical fluid extraction for the determination of steroids in animal tissues. Analyst,1998,123 (12):2671-2676.
    [77]Wolkers H, Hammill M O, van Bavel B. Tissue-specific accumulation and lactational transfer of polychlorinated biphenyls, chlorinated pesticides, and brominated flame retardants in hooded seals (Cistophora cristata) from the Gulf of St. Lawrence:Applications for monitoring. Environ Pollut, 2006,142 (3):476-486.
    [78]Zhang X, Gao Y J, Li Q Z, et al. Estrogenic Compounds and Estrogenicity in Surface Water, Sediments, and Organisms from Yundang Lagoon in Xiamen, China. Arch Environ Contam Toxicol, 2011,61 (1):93-100.
    [79]Tsuda T, Takino A, Muraki K, et al. Evaluation of 4-nonylphenols and 4-tert-octylphenol contamination of fish in rivers by laboratory accumulation and excretion experiments. Water Res, 2001,35(7):1786-1792.
    [80]Blackburn M A, Kirby S J, Waldock M J. Concentrations of alkyphenol polyethoxylates entering UK estuaries. Mar Pollut Bull,1999,38(2):109-118.
    [81]Liu Y, Guan Y T, Mizuno T, et al. A Pretreatment Method for GC-MS Determination of Endocrine Disrupting Chemicals in Mollusk Tissues. Chromatographia,2009,69 (1-2):65-71.
    [82]Vives I, Grimalt J O, Fernandez P, et al. Polycyclic aromatic hydrocarbons in fish from remote and high mountain lakes in Europe and Greenland. Sci Total Environ,2004,324 (1-3):67-77.
    [83]Fuoco R, Giannarelli S. Onor M, et al. Optimized cleanup methods of organic extracts for the determination of organic pollutants in biological samples. Microchem J,2005,79 (1-2):69-76.
    [84]Xiong G H, He X Q, Zhang Z X. Microwave-assisted extraction or saponification combined with microwave-assisted decomposition applied in pretreatment of soil or mussel samples for the determination of polychlorinated biphenyls. Anal Chim Acta,2000,413 (1-2):49-56.
    [85]Malavia J, Santos E. Galceran M T. Gas chromatography-ion trap tandem mass spectrometry versus GC-high-resolution mass spectrometry for the determination of non-ortho-polychlorinated biphenyls in fish. J Chromatogr A,2004,1056 (1-2):171-178.
    [86]Nerin C, Batlle R, Sartaguda M, et al. Supercritical fluid extraction of organochlorine pesticides and some metabolites in frogs from National Park of Ordesa and Monte Perdido. Anal Chim Acta,2002, 464 (2):303-312.
    [87]Haib J, Hofer 1, Renaud J M. Analysis of multiple pesticide residues in tobacco using pressurized liquid extraction, automated solid-phase extraction clean-up and gas chromatography-tandem mass spectrometry. J Chromatogr A,2003,1020 (2):173-187.
    [88]Allchin C R, Law R J, Morris S. Polybrominated diphenylethers in sediments and biota downstream of potential sources in the UK. Environ Pollut,1999,105 (2):197-207.
    [89]Christensen J H, Glasius M, Pecseli M, et al. Polybrominated diphenyl ethers (PBDEs) in marine fish and blue mussels from southern Greenland. Chemosphere,2002,47 (6):631-638.
    [90]高立勤,刘文英.固相萃取技术及其在生物样本分析中的应用与进展.药学进展,1997,21(1):8-13.
    [91]Appelblad P, Irgum K. Separation and detection of neuroactive steroids from biological matrices. J Chromatogr A,2002,955 (2):151-182.
    [92]Rossi D T, Zhang N. Automating solid-phase extraction:current aspects and future prospects. J Chromatogr A,2000,885 (1-2):97-113.
    [93]Shackleton C H L, Witney J O. Use of Sep-pak(?) cartridges for urinary steroid extraction: Evaluation of the method for use prior to gas chromatographic analysis. Clin Chim Acta,1980,107: 231-243.
    [94]Fuh M R, Huang S Y, Lin T Y. Determination of residual anabolic steroid in meat by gas chromatography-ion trap-mass spectrometer. Talanta,2004,64 (2):408-414.
    [95]Pedersen S N, Lindholst C. Quantification of the xenoestrogens 4-tert.-octylphenol and bisphenol A in water and in fish tissue based on microwave assisted extraction, solid-phase extraction and liquid chromatography-mass spectrometry. J Chromatogr A,1999,864 (1):17-24.
    [96]Datta S, Loyo-Rosales J E, Rice C P. A simple method for the determination of trace levels of alkylphenolic compounds in fish tissue using pressurized fluid extraction, solid phase cleanup, and high-performance liquid chromatography fluorescence detection. J Agric Food Chem,2002,50 (6): 1350-1354.
    [97]Moore J C. Gel permeation chromatography-A new method for molecular weight distribution of high polymers. J Polym Sci A,1964,2 (2):938-843.
    [98]Fidalgo-Used N, Blanco-Gonzalez E, Sanz-Medel A. Sample handling strategies for the determination of persistent trace organic contaminants from biota samples. Anal Chim Acta,2007, 590(1):1-16.
    [99]Snyder S A, Keith T L, Pierens S L, et al. Bioconcentration of nonylphenol in fathead minnows (Pimephales promelas). Chemosphere,2001,44 (8):1697-1702.
    [100]Smith K E C, Grant L N B, Jones K C. Influence of the extraction methodology on the analysis of polycyclic aromatic hydrocarbons in pasture vegetation. J Chromatogr A,2006,1116 (1-2):20-30.
    [101]Norstrom R J, Simon M, Moisey J, et al. Geographical distribution (2000) and temporal trends (1981-2000) of brominated diphenyl ethers in Great Lakes herring gull eggs. Environ Sci Technol, 2002,36 (22):4783-4789.
    [102]Easton M D L, Luszniak D, Von der Geest E. Preliminary examination of contaminant loadings in farmed salmon, wild salmon and commercial salmon feed. Chemosphere,2002,46 (7):1053-1074.
    [103]Kuzyk Z A, Stow J P, Burgess N M, et al. PCBs in sediments and the coastal food web near a local contaminant source in Saglek Bay, Labrador. Sci Total Environ,2005,351:264-284.
    [104]Pan J, Yang Y L, Xu Q, et al. PCBs, PCNs and PBDEs in sediments and mussels from Qingdao coastal sea in the frame of current circulations and influence of sewage sludge. Chemosphere,2007, 66(10):1971-1982.
    [105]Suchan P, Pulkrabova J, Hajslova J, et al. Pressurized liquid extraction in determination of polychlorinated biphenyls and organochlorine pesticides in fish samples. Anal Chim Acta,2004,520 (1-2):193-200.
    [106]杜会芳.环境内分泌干扰物检测与分析方法研究进展.卫生研究,2005,34(4):493-495.
    [107]Fang K, Pan X J, Huang B, et al. Progress on keto groups derivatization of steroid hormones in gas chromatography-mass spectrometric analysis. Chin J Anal Chem,2010,38 (5):743-751.
    [108]Giese R W. Measurement of endogenous estrogens:analytical challenges and recent advances. J Chromatogr A,2003,1000 (1-2):401-412.
    [109]Zhang Z L, Hibberd A, Zhou J L. Optimisation of derivatisation for the analysis of estrogenic compounds in water by solid-phase extraction gas chromatography-mass spectrometry. Anal Chim Acta,2006,577(1):52-61.
    [110]Quintana J B, Carpinteiro J, Rodriguez I, et al. Determination of natural and synthetic estrogens in water by gas chromatography with mass spectrometric detection. J Chromatogr A,2004,1024 (1-2): 177-185.
    [111]Zhang K, Zuo Y G. Pitfalls and solution for simultaneous determination of estrone and17α-ethinylestradiol by gas chromatography-mass spectrometry after derivatization with N,O-bis(trimethylsilyl)trifluoroacetamide. Anal Chim Acta,2005,554 (1-2):190-196.
    [112]Schummer C, Delhomme O, Appenzeller B M R, et al. Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta,2009,77 (4): 1473-1482.
    [113]Lopez-Espinosa M J, Freire C, Arrebola J P, et al. Nonylphenol and octylphenol in adipose tissue of women in Southern Spain. Chemosphere,2009,76 (6):847-852.
    [114]Wang B, Wan X, Zhao S M, et al. Analysis of six phenolic endocrine disrupting chemicals in surface water and sediment. Chromatographia,2011,74 (3-4):297-306.
    [115]Fang K, Pan X J, Huang B, et al. Simultaneous Derivatization of Hydroxyl and Ketone Groups for the Analysis of Steroid Hormones by GC-MS. Chromatographia,2010,72 (9-10):949-956.
    [116]Huang B, Pan X J, Liu J L, et al. New Discoveries of Heating Effect on Trimethylsilyl Derivatization for Simultaneous Determination of Steroid Endocrine Disrupting Chemicals by GC-MS. Chromatographia,2010,71 (1-2):149-153.
    [117]Huang B, Pan X J, Liu J L, et al. Hydroxyl Group Derivatization of Steroid Environmental Endocrine Disrupting Chemicals. Chin J Anal Chem,2009,37 (11):1651-1656.
    [118]Chace D H. Mass spectrometry in the clinical laboratory. Chem Rev,2001,101 (2):445-477.
    [119]Tomer K B. Separations combined with mass spectrometry. Chem Rev,2001,101 (2):297-328.
    [120]Vekey K. Mass spectrometry and mass-selective detection in chromatography. J Chromatogr A, 2001,921 (2):227-236.
    [121]Stanford B D, Weinberg H S. Isotope dilution for quantitation of steroid estrogens and nonylphenols by gas chromatography with tandem mass spectrometry in septic, soil, and groundwater matrices. J Chromatogr A,2007,1176 (1-2):26-36.
    [122]Wolthers B G, Kraan G P B. Clinical applications of gas chromatography and gas chromatography-mass spectrometry of steroids. J Chromatogr A,1999,843 (1-2):247-274.
    [123]Shackleton C H L. Inborn errors of steroid biosynthesis:Detection by a new mass-spectrometric method. Clin Chem Lab Med,1983,29 (2):246-249.
    [124]Houghton E, Dumasia M C, Wellby J K. The use of combined high performance liquid chromatography negative ion chemical ionization mass spectrometry to confirm the administration of synthetic corticosteroids to horses. Biomed Mass Spectro,1981,8 (11):558-564.
    [125]Kenyon C N, Melera A, Erni F. Utilization of direct liquid inlet LC/MS in studies of pharmacological and toxicological importance. J Anal Toxicol,1981,5 (5):216-230.
    [126]Shao B, Zhao R, Meng J, et al. Simultaneous determination of residual hormonal chemicals in meat, kidney, liver tissues and milk by liquid chromatography-tandem mass spectrometry. Anal Chim Acta,2005,548 (1-2):41-50.
    [127]Dermaux A, Sandra P. Applications of capillary electrochromatography. Electrophoresis,1999,20 (15-16):3027-3065.
    [128]Nishi H, Terabe S. Micellar electrokinetic chromatography perspectives in drug analysis. J Chromatogr A,1996,735(1-2):3-27.
    [129]Seo J, Kim H Y, Chung B C, et al. Simultaneous determination of anabolic steroids and synthetic hormones in meat by freezing-lipid filtration, solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr A,2005,1067 (1-2):303-309.
    [130]Hartmann S, Steinhart H. Simultaneous determination of anabolic and catabolic steroid hormones in meat by gas chromatography-mass spectrometry. J Chromatogr B,1997,704:105-117.
    [131]Devier M H, Labadie P, Togola A, et al. Simple methodology coupling microwave-assisted extraction to SPE/GC/MS for the analysis of natural steroids in biological tissues:Application to the monitoring of endogenous steroids in marine mussels Mytilus sp. Anal Chim Acta,2010,657(1): 28-35.
    [132]Saravanabhavan G, Helleur R, Hellou J. GC-MS/MS measurement of natural and synthetic estrogens in receiving waters and mussels close to a raw sewage ocean outfall. Chemosphere,2009, 76(8):1156-1162.
    [133]Shao B, Hu J Y, Yang M, et al. Nonylphenol and nonylphenol ethoxylates in river water, drinking water, and fish tissues in the area of Chongqing, China. Arch Environ Contam Toxicol,2005,48 (4): 467-473.
    [134]Rice C P, Schmitz-Afonso I, Loyo-Rosales J E, et al. Alkylphenol and alkylphenol-ethoxylates in carp, water, and sediment from the Cuyahoga River, Ohio. Environ Sci Technol,2003,37 (17): 3747-3754.
    [135]Snyder S A, Keith T L, Naylor C G, et al. Identification and quantitation method for nonylphenol and lower oligomer nonylphenol ethoxylates in fish tissues. Environ Toxicol Chem,2001,20 (9): 1870-1873.
    [136]Keith T L, Snyder S A, Naylor C G, et al. Identification and quantitation of nonylphenol ethoxylates and nonylphenol in fish tissues from Michigan. Environ Sci Technol,2001,35 (1): 10-13.
    [137]Thibaut R, Jumel A, Debrauwer L, et al. Identification of 4-n-nonylphenol metabolic pathways and residues in aquatic organisms by HPLC and LC-MS analyses. Analusis,2000,28 (9):793.
    [138]Tavazzi S, Benfenati E, Barcelo D. Accelerated solvent extraction then liquid chromatography coupled with mass Spectrometry for determination of 4-t-octyl phenol,4-nonylphenols, and bisphenol ain fish liver. Chromatographia,2002,56 (7-8):463-467.
    [139]Bennett E R, Metcalfe C D. Distribution of degradation products of alkylphenol ethoxylates near sewage treatment plants in the lower Great Lakes, North America. Environ Toxicol Chem,2000,19 (4):784-792.
    [140]Bennett E R, Metcalfe C D. Distribution of alkylphenol compounds in Great Lakes sediments, United States and Canada. Environ Toxicol Chem,1998,17 (7):1230-1235.
    [141]Ferrara F, Ademollo N, Orru M A, et al. Alkylphenols in adipose tissues of Italian population. Chemosphere,2011,82 (7):1044-1049.
    [142]Li W, Seifert M, Xu Y, et al. Comparative study of estrogenic potencies of estradiol, tamoxifen, bisphenol-A and resveratrol with two in vitro bioassays. Environ Int,2004,30.(3):329-335.
    [143]Behnisch P A, Hosoe K, Sakai S. Bioanalytical screening methods for dioxins and dioxin-like compounds-a review of bioassay/biomarker technology. Environ Int,2001,27 (5):413-439.
    [144]李剑,马梅,王子健.环境内分泌干扰物的作用机理及其生物检测方法.环境监控与预警,2010,2(3):18-22.
    [145]Orlando E F, Denslow N D, Folmar L C, et al. A comparison of the reproductive physiology of largemouth bass, Micropterus salmoides, collected from the Escambia and Blackwater Rivers in Florida. Environ Health Persp,1999,107 (3):199-204.
    [146]Korach K S, Mclachlan L A. Techniques for Detection of Estrogenieity. Environ Health Persp, 1995,103:5-8.
    [147]张莹,高宁宁,张承科,等.生物学方法在环境内分泌干扰物检测及评价中的应用.环境化学,2008,27(5):684-687.
    [148]胡军,李杰.环境内分泌干扰物筛检方法研究进展.预防医学文献信息,2002,8(6):706-708.
    [149]Gomes R L, Scrimshaw M D, Lester J N. Determination of endocrine disrupters in sewage treatment and receiving waters. Trac-Trend Anal Chem,2003,22 (10):697-707.
    [150]Nishikawa J, Saito K, Goto J, et al. New screening methods for chemicals with hormonal activities using interaction of nuclear hormone receptor with coactivator. Toxicol Appl Pharm,1999,154 (1): 76-83.
    [151]Tim Z. In vitro bioassays for assessing estrogenic substances. Environ Sci Technol,1997,331: 613-623.
    [152]Nelson J, Bishay F, van Roodselaar A, et al. The use of in vitro bioassays to quantify endocrine disrupting chemicals in municipal wastewater treatment plant effluents. Sci Total Environ,2007,374 (1):80-90.
    [153]Estevez M C, Kreuzer M, Sanchez-Baeza F, et al. Analysis of nonylphenol:Advances and improvements in the immunochemical determination using antibodies raised against the technical mixture and hydrophilic immunoreagents. Environ Sci Technol,2006,40 (2):559-568.
    [154]Zeravik J, Skryjova K, Nevorankova Z, et al. Development of direct ELISA for the determination of 4-nonylphenol and octylphenol. Anal Chem,2004,76 (4):1021-1027.
    [155]Zhao M P, Li Y Z, Guo Z Q, et al. A new competitive enzyme-linked immunosorbent assay (ELISA) for determination of estrogenic bisphenols. Talanta,2002,57 (6):1205-1210.
    [156]Jobling S, Nolan M, Tyler C R, et al. Widespread sexual disruption in wild fish. Environ Sci Technol,1998,32 (17):2498-2506.
    [157]APHA, AWWA, WWF. Standard methods for the examination of water and wastewater. APHA, AWWA, WWF, Washington, DC,1998.
    [158]OECD. OECD guidelines for testing of chemicals. OECD, Paris,1993.
    [159]USEPA. Effects of the synthetic pyrethroids AC 222,705, permethrin and fenvalerate on sheepshead minnows in early life stage toxicity tests, EPA-600/J-83-106. USEPA, Gulf Breeze, FL, 1983.
    [160]周永欣,成水平,胡炜.稀有鮈鲫——一种新的鱼类毒性试验材料.动物学研究,1995,16(1):59-63.
    [161]Lv X F, Shao J, Song M Y, et al. Vitellogenic effects of 17 beta-estradiol in male Chinese loach (Misgurnus anguillicaudatus). Comp Biochem Phys C,2006,143 (1):127-133.
    [162]Lv X, Zhou Q F, Song M Y, et al. Vitellogenic responses of 17 beta-estradiol and bisphenol A in male Chinese loach (Misgurnus anguillicaudatus). Environ Toxicol Phar,2007,24 (2):155-159.
    [163]Yang L H, Lin L, Weng S P, et al. Sexually disrupting effects of nonylphenol and diethylstilbestrol on male silver carp (Carassius auratus) in aquatic microcosms. Ecotox Environ Safe,2008,71 (2): 400-411.
    [164]周忠良,李康,于静,等.壬基酚对鲫鱼的雌激素效应研究.环境科学研究,2004,17(3):60-62.
    [165]Arcand-Hoy L D, Benson W H. Fish reproduction:An ecologically relevant indicator of endocrine disruption. Environ Toxicol Chem,1998,17 (1):49-57.
    [166]Patyna P J, Davi R A, Parkerton T F, et al. A proposed multigeneration protocol for Japanese medaka (Oryzias latipes) to evaluate effects of endocrine disrupters. Sci Total Environ,1999,233 (1-3):211-220.
    [167]Yamamoto T. Artificially induced sex-reversal in genotypic males of the medaka (Oryzias latipes). J Exp Zoo,1953,123:571-594.
    [168]Yamamoto T. Artificial induction of the functional sex reversal in genotypic females of the medaka (Oryzias latipes). J Exp Zoo,1958,137(2):227-263.
    [169]Shioda T, Wakabayashi M. Effect of certain chemicals on the reproduction of medaka (Oryzias latipes). Chemosphere,2000,40 (3):239-243.
    [170]Tabata A, Kashiwada S, Ohnishi Y, et al. Estrogenic influences of estradiol-17 beta, p-nonylphenol and bis-phenol-A on Japanese Medaka (Oryzias latipes) at detected environmental concentrations. Water Sci Technol,2001,43 (2):109-116.
    [171]Oshima Y, Kang I J, Kobayashi M, et al. Suppression of sexual behavior in male Japanese medaka (Oryzias latipes) exposed to 17 beta-estradiol. Chemosphere,2003,50 (3):429-436.
    [172]Nimrod A C, Benson W H. Reproduction and development of Japanese medaka following an early life stage exposure to xenoestrogens. Aquat Toxicol,1998,44 (1-2):141-156.
    [173]Kramer V J, Miles-Richardson S, Pierens S L, et al. Reproductive impairment and induction of alkaline-labile phosphate, a biomarker of estrogen exposure, in fathead minnows (Pimephales promelas) exposed to waterborne 17 beta-estradiol. Aquat Toxicol,1998,40 (4):335-360.
    [174]Jensen K M, Korte J J, Kahl M D, et al. Aspects of basic reproductive biology and endocrinology in the fathead minnow (Pimephales promelas). Comp Biochem Phys C,2001,128 (1):127-141.
    [175]Kahl M D, Jensen K M, Korte J J, et al. Effects of handling on endocrinology and reproductive performance of the fathead minnow. J Fish Biol,2001,59 (3):515-523.
    [176]Panter G H, Hutchinson T H, Lange R, et al. Utility of a juvenile fathead minnow screening assay for detecting (anti-)estrogenic substances. Environ Toxicol Chem,2002,21 (2):319-326.
    [177]Brian J V, Harris C A, Scholze M, et al. Accurate prediction of the response of freshwater fish to a mixture of estrogenic chemicals. Environ Health Persp,2005,113 (6):721-728.
    [178]Orn S, Holbech H, Madsen T H, et al. Gonad development and vitellogenin production in zebrafish (Danio rerio) exposed to ethinylestradiol and methyltestosterone. Aquat Toxicol,2003,65 (4):397-411.
    [179]Segner H, Caroll K, Fenske M, et al. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates:report from the European IDEA project. Ecotox Environ Safe,2003,54 (3):302-314.
    [180]Rose J, Holbech H, Lindholst C, et al. Vitellogenin induction by 17 beta-estradiol and 17 alpha-ethinylestradiol in male zebrafish (Danio rerio). Comp Biochem Phys C,2002,131 (4): 531-539.
    [181]Van den Belt K, Verheyen R, Witters H. Effects of 17 alpha-ethynylestradiol in a partial life-cycle test with zebrafish (Danio rerio):effects on growth, gonads and female reproductive success. Sci Total Environ,2003,309 (1-3):127-137.
    [182]马陶武,王子健.环境内分泌干扰物筛选和测试研究中的鱼类实验动物.环境科学学报,2005,25(2):135-142.
    [183]Thorpe K L, Hutchinson T H, Hetheridge M J, et al. Assessing the biological potency of binary mixtures of environmental estrogens using vitellogenin induction in juvenile rainbow trout (Oncorhynchus mykiss). Environ Sci Technol,2001,35 (12):2476-2481.
    [184]Ackermann G E, Schwaiger J, Negele R D, et al. Effects of long-term nonylphenol exposure on gonadal development and biomarkers of estrogenicity in juvenile rainbow trout (Oncorhynchus mykiss). Aquat Toxicol,2002,60 (3-4):203-221.
    [185]Thorpe K L, Cummings R I, Hutchinson T H, et al. Relative potencies and combination effects of steroidal estrogens in fish. Environ Sci Technol,2003,37 (6):1142-1149.
    [186]马陶武,王子健,陈剑锋,等.乙炔基雌二醇对稀有鮈鲫肾脏的毒性效应.环境科学学报,2004,24(3):487-491.
    [187]钟雪萍,徐盈,梁勇,等.稀有鮈鲫生命早期的己烯雌酚暴露对生长发育与繁殖的影响.水生生物学报,2005,29(6):667-671.
    [188]Zha J M, Sun L W, Spear P A, et al. Comparison of ethinylestradiol and nonylphenol effects on reproduction of Chinese rare minnows (Gobiocypris rarus). Ecotox Environ Safe,2008,71 (2): 390-399.
    [189]崔悦礼.雌核发育高背鲫鱼成熟分裂前期的细胞学研究.云南大学学报,1998,20(3):182-184.
    [190]Zan R G. Studies of sex chromosomes and C-banding karyotypes of two forms of Carassius auratus in Kunming Lake. Acta Genetica Sinica,1982,9:32-39.
    [191]Zhou L, Wang Y, Gui J F. Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio bloch) as revealed by RAPD assays. J Mol Evol,2000,51: 498-506.
    [192]Xiao J, Zou T M, Chen Y B, et al. Coexistence of diploid, triploid and tetraploid crucian carp (Carassius auratus) in natural waters. BMC Genetics,2011,12:20.
    [193]昌雪飞.卵黄蛋白原在环境内分泌干扰物研究中的应用:[博士学位论文].北京:中国科学研究院,2007.
    [194]Metcalfe C D, Metcalfe T L, Kiparissis Y, et al. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ Toxicol Chem,2001,20 (2):297-308.
    [195]Panter G H, Thompson R S, Sumpter J P. Adverse reproductive effects in male fathead minnows (Pimephales promelas) exposed to environmentally relevant concentrations of the natural oestrogens, oestradiol and oestrone. Aquat Toxicol,1998,42 (4):243-253.
    [196]Kang I J, Yokota H, Oshima Y, et al. Effect of 17 beta-estradiol on the reproduction of Japanese medaka (Oryzias latipes). Chemosphere,2002,47 (1):71-80.
    [197]Koger C S, Teh S J, Hinton D E. Determining the sensitive developmental stages of intersex induction in medaka (Oryzias latipes) exposed to 17 beta-estradiol or testosterone. Mar Environ Res, 2000,50 (1-5):201-206.
    [198]Bjerselius R, Lundstedt-Enkel K, Olsen H, et al. Male goldfish reproductive behaviour and physiology are severely affected by exogenous exposure to 17 beta-estradiol. Aquat Toxicol,2001, 53(2):139-152.
    [199]Gimeno S, Komen H, Jobling S, et al. Demasculinisation of sexually mature male common carp, Cyprinus carpio, exposed to 4-tert-pentylphenol during spermatogenesis. Aquat Toxicol,1998,43 (2-3):93-109.
    [200]Gimeno S, Komen H, Gerritsen A G M, et al. Feminisation of young males of the common carp, Cyprinus carpio, exposed to 4-tert-pentylphenol during sexual differentiation. Aquat Toxicol,1998, 43 (2-3):77-92.
    [201]Scholz S, Gutzeit H O.17-alpha-ethinylestradiol affects reproduction, sexual differentiation and aromatase gene expression of the medaka (Oryzias latipes). Aquat Toxicol,2000,50 (4):363-373.
    [202]Seki M, Yokota H, Matsubara H, et al. Effect of ethinylestradiol on the reproduction and induction of vitellogenin and testis-ova in medaka (Oryzias latipes). Environ Toxicol Chem,2002,21 (8): 1692-1698.
    [203]Lange R, Hutchinson T H, Croudace C P, et al. Effects of the synthetic estrogen 17 alpha-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ Toxicol Chem,2001,20 (6):1216-1227.
    [204]Harries J E, Runnalls T, Hill E, et al. Development of a reproductive performance test for endocrine disrupting chemicals using pair-breeding fathead minnows (Pimephales promelas). Environ Sci Technol,2000,34 (14):3003-3011.
    [205]Giesy J P, Pierens S L, Snyder E M, et al. Effects of 4-nonylphenol on fecundity and biomarkers of estrogenicity in fathead minnows (Pimephales promelas). Environ Toxicol Chem,2000,19 (5): 1368-1377.
    [206]Kortenkamp A, Altenburger R. Approaches to assessing combination effects of oestrogenic environmental pollutants. Sci Total Environ,1999,233 (1-3):131-140.
    [207]Berenbaum M C. What is synergy? Pharmacol Rev,1989,41:93-141.
    [208]张晖,孔繁翔,王世和,等.双酚A与内源性雌激素联合作用的探讨.安全与环境工程,2008,15(2):13-17.
    [209]张晖,孔繁翔,王世和,等.4种环境雌激素对淡水鱼卵黄蛋白原诱导的混合物效应研究.环境科学,2008,29(7):2005-2011.
    [210]张晖,孔繁翔,王世和,等.环境雌激素联合作用的分析与预测.东南大学学报(自然科学版),2008,38(3):488-492.
    [211]Konemann W H, Pieters M N. Confusion of concepts in mixture toxicology. Food Chem Toxicol, 1996.34 (11-12):1025-1031.
    [212]Altenburger R, Backhaus T, Boedeker W, et al. Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri:Mixtures composed of similarly acting chemicals. Environ Toxicol Chem, 2000,19 (9):2341-2347.
    [213]Backhaus T, Altenburger R, Boedeker W, et al. Predictability of the toxicity of a multiple mixtures of dissimilarly acting chemicals to Vibrio Fischeri. Environ Toxicol Chem,2000,19 (9):2348-2356.
    [214]Zha J M, Wang Z J, Wang N, et al. Histological alternation and vitellogenin induction in adult rare minnow (Gobiocypris rarus) after exposure to ethynylestradiol and nonylphenol. Chemosphere,2007, 66 (3):488-495.
    [215]周群芳,江桂斌.双酚-A对Medaka的类雌激素效应研究.环境科学学报,2005,25(11):1550-1554.
    [216]Sumpter J P, Jobling S. Vitellogenesis as a Biomarker for estrogenic contamination of the aquatic environment. Environ Health Persp,1995,103:173-178.
    [217]Heppell S A, Denslow N D, Folmar L C, et al. Universal assay of vitellogenin as a biomarker for environmental estrogens. Environ Health Persp,1995,103:9-15.
    [218]Marin M G, Matozzo V. Vitellogenin induction as a biomarker of exposure to estrogenic compounds in aquatic environments. Mar Pollut Bull,2004,48 (9-10):835-839.
    [219]Navas J M, Segner H. Vitellogenin synthesis in primary cultures of fish liver cells as endpoint for in vitro screening of the (anti) estrogenic activity of chemical substances. Aquat Toxicol,2006,80 (1):1-22.
    [220]Xu H, Yang J, Wang Y X, et al. Exposure to 17 alpha-ethynylestradiol impairs reproductive functions of both male and female zebrafish (Danio rerio). Aquat Toxicol,2008,88 (1):1-8.
    [221]Schwaiger J, Spieser O H, Bauer C, et al. Chronic toxicity of nonylphenol and ethinylestradiol: haematological and histopathological effects in juvenile Common carp (Cyprinus carpio). Aquat Toxicol,2000,51 (1):69-78.
    [222]Bjerregaard L B, Lindholst C, Korsgaard B, et al. Sex hormone concentrations and gonad histology in brown trout (Salmo trutta) exposed to 17 beta-estradiol and bisphenol A. Ecotoxicology, 2008,17 (4):252-263.
    [223]Zha J M, Sun L W, Zhou Y Q, et al. Assessment of 17 alpha-ethinylestradiol effects and underlying mechanisms in a continuous, multigeneration exposure of the Chinese rare minnow (Gobiocypris rarus). Toxicol Appl Pharm,2008,226 (3):298-308.
    [224]Soares A, Guieysse B, Jefferson B, et al. Nonylphenol in the environment:A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int,2008,34 (7):1033-1049.
    [225]Lei B L, Huang S B, Zhou Y Q, et al. Levels of six estrogens in water and sediment from three rivers in Tianjin area, China. Chemosphere,2009,76 (1):36-42.
    [226]Yan C Z, Zhang X, Li Q Z, et al. Levels of estrogenic compounds in Xiamen Bay sediment, China. Mar Pollut Bull,2009,58 (8):1210-1216.
    [227]Peng X Z, Yu Y J, Tang C M, et al. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci Total Environ,2008,397 (1-3):158-166.
    [228]Hu J Y, Zhang H F, Chang H. Improved method for analyzing estrogens in water by liquid chromatography-electrospray mass spectrometry. J Chromatogr A,2005,1070 (1-2):221-224.
    [229]Feng Y Q, Wen Y, Zhou B S, et al. Analysis of estrogens in environmental waters using polymer monolith in-polyether ether ketone tube solid-phase microextraction combined with high-performance liquid chromatography. J Chromatogr A,2006,1133 (1-2):21-28.
    [230]Isobe T, Takada H, Kanai M, et al. Distribution of polycyclic aromatic hydrocarbons (PAHs) and phenolic endocrine disrupting chemicals in south and southeast Asian mussels. Environ Monit Assess, 2007,135 (1-3):423-440.
    [231]Wenzel A, Bohmer W, Muller J, et al. Retrospective monitoring of alkylphenols and alkylphenol monoethoxylates in aquatic biota from 1985 to 2001:Results from the German Environmental Specimen Bank. Environ Sci Technol,2004,38 (6):1654-1661.
    [232]Lye C M, Frid C L J, Gill M E, et al. Estrogenic alkylphenols in fish tissues, sediments, and waters from the UK Tyne and Tees estuaries. Environ Sci Technol,1999,33 (7):1009-1014.
    [233]Ahel M, McEvoy J, Giger W. Bioaccumulation of the lipophilic metabolites of nonionic surfactants in freshwater organisms. Environ Pollut,1993,79 (3):243-248.
    [234]Dussault E B, Balakrishnan V K, Borgmann U, et al. Bioaccumulation of the synthetic hormone 17 alpha-ethinylestradiol in the benthic invertebrates Chironomus tentans and Hyalella azteca. Ecotox Environ Safe,2009,72 (6):1635-1641.
    [235]Janer G, Porte C. Sex steroids and potential mechanisms of non-genomic endocrine disruption in invertebrates. Ecotoxicology,2007,16 (1):145-160.
    [236]Al-Ansari A M, Saleem A, Kimpe L E, et al. Bioaccumulation of the pharmaceutical 17 alpha-ethinylestradiol in shorthead redhorse suckers (Moxostoma macrolepidotum) from the St. Clair River, Canada. Environ Pollut,2010,158 (8):2566-2571.
    [237]Ferrara F, Fabietti F, Delise M, et al. Alkylphenols and alkylphenol ethoxylates contamination of crustaceans and fishes from the Adriatic Sea (Italy). Chemosphere,2005,59 (8):1145-1150.
    [238]Kannan K, Keith T L, Naylor C G, et al. Nonylphenol and nonylphenol ethoxylates in fish, sediment, and water from the Kalamazoo River, Michigan. Arch Environ Contam Toxicol,2003,44 (1):77-82.
    [239]Tsuda T, Takino A, Kojima M, et al.4-nonylphenols and 4-tert-octylphenol in water and fish from rivers flowing into Lake Biwa. Chemosphere,2000,41 (5):757-762.
    [240]Hutchinson T H, Ankley G T, Segner H, et al. Screening and testing for endocrine disruption in fish-Biomarkers as "signposts," not "traffic lights," in risk assessment. Environ Health Persp,2006, 114:106-114.
    [241]Tan B L L, Hawker D W, Mueller J F, et al. Modelling of the fate of selected endocrine disruptors in a municipal wastewater treatment plant in South East Queensland, Australia. Chemosphere,2007, 69 (4):644-654.
    [242]Bertanza G, Pedrazzani R, Dal Grande M, et al. Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater:An integrated assessment procedure. Water Res,2011,45 (8):2473-2484.
    [243]Lange A, Paull G C, Hamilton P B, et al. Implications of Persistent Exposure to Treated Wastewater Effluent for Breeding in Wild Roach (Rutilus rutilus) Populations. Environ Sci Technol, 2011,45(4):1673-1679.
    [244]Tyler C R, Spary C, Gibson R, et al. Accounting for differences in estrogenic responses in rainbow trout (Oncorhynchus mykiss:Salmonidae) and roach (Rutilus rutilus:Cyprinidae) exposed to effluents from wastewater treatment works. Environ Sci Technol,2005,39 (8):2599-2607.
    [245]Thorpe K L, Maack G,Benstead R, et al. Estrogenic wastewater treatment works effluents reduce egg production in fish. Environ Sci Technol,2009,43 (8):2976-2982.
    [246]Routledge E J, Sheahan D, Desbrow C, et al. Identification of estrogenic chemicals in STW effluent.2. In vivo responses in trout and roach. Environ Sci Technol,1998,32 (11):1559-1565.
    [247]Ying G G, Kookana R S, Kumar A, et al. Occurrence and implications of estrogens and xenoestrogens in sewage effluents and receiving waters from South East Queensland. Sci Total Environ,2009,407 (18):5147-5155.
    [248]Aerni H R, Kobler B, Rutishauser B V, et al. Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents. Anal Bioanal Chem,2004,378 (3): 688-696.
    [249]Brian J V, Harris C A, Scholze M, et al. Evidence of estrogenic mixture effects on the reproductive performance of fish. Environ Sci Technol,2007,41 (1):337-344.
    [250]Zhang H, Kong F X, Yu Y, et al. Assessing the combination effects of environmental estrogens in fish. Ecotoxicology,2010,19 (8):1476-1486.
    [251]Fenlon K A, Johnson A C, Tyler C R, et al. Gas-liquid chromatography-tandem mass spectrometry methodology for the quantitation of estrogenic contaminants in bile of fish exposed to wastewater treatment works effluents and from wild populations. J Chromatogr A,2010,1217 (1):112-118.
    [252]Gibson R, Smith M D, Spary C J, et al. Mixtures of estrogenic contaminants in bile of fish exposed to wastewater treatment works effluents. Environ Sci Technol,2005,39 (8):2461-2471.
    [253]陈自明,杨君兴,苏瑞风,等.滇池土著鱼类现状.生物多样性,2001,9(4):407-413.
    [254]European Commission Decision 2002/657/EC. Off J Eur Communities L221,2002, L221 (8).
    [255]Liu J L, Pan X J, Yu F, et al. Distribution characteristics of PCBs and phenols in surface water of dianchi lake, China. Organohalogen Compounds,2009,71:1773-1778.
    [256]Huang B, Pan X J, Wan X, et al. Simultaneous Determination of Steroid Environmental Endocrine Disrupting Chemicals in Water by Solid Phase Extraction-Derivatization-Gas Chromatography- Mass Spectrometry. Chin J Anal Chem,2011,39 (4):449-454.
    [257]Yu F, Pan X J, Wang B. Determination of four phenolic endocrine disrupting chemicals in Dianchi Lake, China. Int J Environ Anal Chem,2011, DOI:10.1080/03067319.2010.548604.
    [258]Wang B, Wan X, Zhao S M, et al. Development and validation of a method for the analysis of six phenolic endocrine disrupting chemicals in surface water and sediment. Chromatographia,2011,74: 297-306.
    [259]Belfroid A, van Velzen M, van der Horst B, et al. Occurrence of bisphenol A in surface water and uptake in fish:evaluation of field measurements. Chemosphere,2002,49 (1):97-103.
    [260]陈荣圻.烷基酚聚氧乙烯醚的生态环保问题探讨.染料与染色,2003,40(5):290-292.
    [261]Ahel M, Giger W. Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic solvents. Chemosphere,1993,26:1471-1478.
    [262]Lai K M, Scrimshaw M D, Lester J N. Prediction of the bioaccumulation factors and body burden of natural and synthetic estrogens in aquatic organisms in the river systems. Sci Total Environ,2002, 289(1-3):159-168.
    [263]Zhou R B, Zhu L Z, Kong Q X. Persistent chlorinated pesticides in fish species from Qiantang river in east China. Chemosphere,2007,68 (5):838-847.
    [264]Moon T W, Walsh P J, Mommsen T P. Fish hepatocytes:a model metabolic system. Canadian J Fish Aquat Sci,1985,42:1772-1782.
    [265]Bjerregaard P, Andersen S B, Pedersen K L, et al. Orally administered bisphenol a in rainbow trout (Oncorhynchus mykiss):Estrogenicity, metabolism, and retention. Environ Toxicol Chem,2007,26 (9):1910-1915.
    [266]Fernandes C, Fontainhas-Fernandes A, Peixoto F, et al. Bioaccumulation of heavy metals in Liza saliens from the Esmoriz-Paramos coastal lagoon, Portugal. Ecotox and Environ Safe,2007,66 (3): 426-431.
    [267]Arnot J A, Gobas F. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev,2006,14 (4):257-297.
    [268]Nichols J W, Jensen K M, Tietge J E, et al. Physiologically based toxicokinetic model for maternal transfer of 2,3,7,8-tetrachlorodibenzo-p-dioxin in brook trout (Salvelinus fontinalis). Environ Toxicol Chem,1998,17 (12):2422-2434.
    [269]Russell R W, Gobas F, Haffner G D. Maternal transfer and in ovo exposure of organochlorines in oviparous organisms:A model and field verification. Environ Sci Technol,1999,33 (3):416-420.
    [270]Mackay D, Fraser A. Bioaccumulation of persistent organic chemicals:mechanisms and models. Environ Pollut,2000,110 (3):375-391.
    [271]Lindholst C, Pedersen K L, Pedersen S N. Estrogenic response of bisphenol A in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol,2000,48 (2-3):87-94.
    [272]Ferreira-Leach A M R, Hill E M. Bioconcentration and distribution of 4-tert-octylphenol residues in tissues of the rainbow trout (Oncorhynchus mykiss). Mar Environ Res,2001,51 (1):75-89.
    [273]Hernando M D, Mezcua M, Gomez M J, et al. Comparative study of analytical methods involving gas chromatography-mass spectrometry after derivatization and gas chromatography-tandem mass spectrometry for the determination of selected endocrine disrupting compounds in wastewaters. J Chromatogr A,2004,1047(1):129-135.
    [274]Pacakova V, Loukotkova L, Bosakova Z, et al. Analysis for estrogens as environmental pollutants-A review. J Sep Sci,2009,32 (5-6):867-882.
    [275]Baronti C, Curini R, D'Ascenzo G, et al. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ Sci Technol,2000,34 (24): 5059-5066.
    [276]Lagana A, Bacaloni A, De Leva I, et al. Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. Anal Chim Acta, 2004,501 (1):79-88.
    [277]Duong C N, Schlenk D, Chang N I, et al. The effect of particle size on the bioavailability of estrogenic chemicals from sediments. Chemosphere,2009,76 (3):395-401.
    [278]肖晶.双酚A和烷基酚的检测与暴露评估:[博士学位论文].北京:中国疾病预防控制中心,2008.
    [279]West G. Methods of assessing ovarian development in fishes-a review. Aus J Mar Freshwater Res 1990,41:199-222.
    [280]林浩然.鱼类生理学.广州:广东高等教育出版社,1999.
    [281]Manzoori J L, Karim-Nezhad G. Selective cloud point extraction and preconcentration of trace amounts of silver as a dithizone complex prior to fame atomic absorption spectrometric determination. Anal Chim Acta,2003,484 (2):155-161.
    [282]Sole M, Raldua D, Barcelo D, et al. Long-term exposure effects in vitellogenin, sex hormones, and biotransformation enzymes in female carp in relation to a sewage treatment works. Ecotox Environ Safe,2003,56 (3):373-380.
    [283]Nakada N, Tanishima T, Shinohara H, et al. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res,2006, 40 (17):3297-3303.
    [284]Stasinakis A S, Gatidou G, Mamais D, et al. Occurrence and fate of endocrine disrupters in Greek sewage treatment plants. Water Res,2008,42 (6-7):1796-1804.
    [285]Zhou H D. Huang X, Wang X L, et al. Behaviour of selected endocrine-disrupting chemicals in three sewage treatment plants of Beijing, China. Environ Monit Assess,2010,161 (1-4):107-121.
    [286]Larsson D G J, Adolfsson-Erici M, Parkkonen J, et al. Ethinyloestradiol-an undesired fish contraceptive? Aquat Toxicol,1999,45 (2-3):91-97.
    [287]Tan B L L, Hawker D W, Muller J F, et al. Comprehensive study of endocrine disrupting compounds using grab and passive sampling at selected wastewater treatment plants in South East Queensland, Australia. Environ Int,2007,33 (5):654-669.
    [288]Sousa A, Schonenberger R, Jonkers N, et al. Chemical and Biological Characterization of Estrogenicity in Effluents from WWTPs in Ria de Aveiro (NW Portugal). Arch Environ Contam Toxicol,2010,58(1):1-8.
    [289]Samaras V, Thomaidis N, Stasinakis A, et al. An analytical method for the simultaneous trace determination of acidic pharmaceuticals and phenolic endocrine disrupting chemicals in wastewater and sewage sludge by gas chromatography-mass spectrometry. Anal Bioanal Chem,2011,399 (7): 2549-2561.
    [290]Pothitou P, Voutsa D. Endocrine disrupting compounds in municipal and industrial wastewater treatment plants in Northern Greece. Chemosphere,2008,73 (11):1716-1723.
    [291]Petrovic M, Sole M, de Alda M J L, et al. Endocrine disruptors in sewage treatment plants, receiving river waters, and sediments:Integration of chemical analysis and biological effects on feral carp. Environ Toxicol Chem,2002,21 (10):2146-2156.
    [292]Johnson A C, Aerni H R, Gerritsen A, et al. Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices. Water Res,2005,39(1):47-58.
    [293]Vethaak A D, Lahr J, Schrap S M, et al. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere,2005,59 (4): 511-524.
    [294]Svenson A, Allard A S, Ek M. Removal of estrogenicity in Swedish municipal sewage treatment plants. Water Res,2003,37 (18):4433-4443.
    [295]Filby A L, Shears J A, Drage B E, et al. Effects of Advanced Treatments of Wastewater Effluents on Estrogenic and Reproductive Health Impacts in Fish. Environ Sci Technol,2010,44 (11): 4348-4354.
    [296]Braga O, Smythe G A, Schafer A I, et al. Fate of steroid estrogens in Australian inland and coastal wastewater treatment plants. Environ Sci Technol,2005,39 (9):3351-3358.
    [297]Suzuki Y, Maruyama T. Fate of natural estrogens in batch mixing experiments using municipal sewage and activated sludge. Water Res,2006,40 (5):1061-1069.
    [298]Diniz M S, Peres I, Magalhaes-Antoine I, et al. Estrogenic effects in crucian carp (Carassius carassius) exposed to treated sewage effluent. Ecotox Environ Safe,2005,62 (3):427-435.
    [299]Barber L B, Lee K E, Swackhamer D L, et al. Reproductive responses of male fathead minnows exposed to wastewater treatment plant effluent, effluent treated with XAD8 resin, and an environmentally relevant mixture of alkylphenol compounds. Aquat Toxicol,2007,82 (1):36-46.
    [300]Thorpe K L, Benstead R, Eccles P, et al. A practicable laboratory flow-through exposure system for assessing the health effects of effluents in fish. Aquat Toxicol,2008,88 (3):164-172.
    [301]Diniz M S, Peres I, Pihan J C. Comparative study of the estrogenic responses of mirror carp (Cyprinus carpio) exposed to treated municipal sewage effluent (Lisbon) during two periods in different seasons. Sci Total Environ,2005,349 (1-3):129-139.
    [302]Kime D E, Nash J P, Scott A P. Vitellogenesis as a biomarker of reproductive disruption by xenobiotics. Aquaculture,1999,177(1-4):345-352.
    [303]Folmar L C, Denslow N D, Kroll K, et al. Altered serum sex steroids and vitellogenin induction in walleye (Stizostedion vitreum) collected near a metropolitan sewage treatment plant. Arch Environ Contam Toxicol,2001,40 (3):392-398.
    [304]Mitchelmore C L, Rice C P. Correlations of nonylphenol-ethoxylates and nonylphenol with biomarkers of reproductive function in carp (Cyprinus carpio) from the Cuyahoga River. Sci Total Environ,2006,371 (1-3):391-401.
    [305]Rodgers-Gray T P, Jobling S, Kelly C, et al. Exposure of juvenile roach (Rutilus rutilus) to treated sewage effluent induces dose-dependent and persistent disruption in gonadal duct development. Environ Sci Technol,2001,35 (3):462-470.
    [306]Yen J H, Lin K H, Wang Y S. Acute lethal toxicity of environmental pollutants to aquatic organisms. Ecotox Environ Safe,2002,52 (2):113-116.
    [307]严美姣,严爱青.四种药物对异育银鲫鱼苗的急性毒性试验.河北渔业,2008(1):11-13.
    [308]张志杰,张维平.环境污染生物监测与评价.北京:中国环境科学出版社,1991.
    [309]Trudeau V L, Hogan N S, Lean D R S. Exposures to estradiol, ethinylestradiol and octylphenol affect survival and growth of Rana pipiens and Rana sylvatica tadpoles. J Toxicol Env Heal A,2006, 69(16):1555-1569.
    [310]Kashiwada S, Ishikawa H, Miyamoto N, et al. Fish test for endocrine-disruption and estimation of water quality of Japanese rivers. Water Res,2002,36 (8):2161-2166.
    [311]Zhong X P, Xu Y, Liang Y, et al. Vitellogenin in rare minnow (Gobiocypris rarus):identification and induction by waterborne diethylstilbestrol. Comp Biochem Phys C,2004,137 (3):291-298.
    [312]Panter G H, Thompson R S, Sumpter J P. Intermittent exposure of fish to estradiol. Environ Sci Technol,2000,34 (13):2756-2760.
    [313]Van den Belt K, Verheyen R, Witters H. Reproductive effects of ethynylestradiol and 4t-octylphenol on the zebrafish (Danio rerio). Arch Environ Contam Toxicol,2001,41 (4):458-467.
    [314]Zaroogian G, Gardner G, Horowitz D B, et al. Effect of 17 beta-estradiol, o,p'-DDT, octylphenol and p,p'-DDE on gonadal development and liver and kidney pathology in juvenile male summer flounder (Paralichthys dentatus). Aquat Toxicol,2001,54 (1-2):101-112.
    [315]Van den Belt K, Verheyen R, Witters H. Comparison of vitellogenin responses in zebrafish and rainbow trout following exposure to environmental estrogens. Ecotox and Environ Safe,2003,56 (2): 271-281.
    [316]Kime D E, Nash D. A strategy for assessing the effects of xenobiotics on fish reproduction. Sci Total Environ,1999 (1-2):3-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700