用户名: 密码: 验证码:
原子氧自由基阴离子诱导的微生物失活及材料表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用原子氧自由基阴离子(O~-)的强氧化性和反应性特点,结合我们研发的o~-储存发射材料(C12A7-O~-)以及高纯度O~-制备方法,首次开展了(1)原子氧自由基阴离子诱导的微生物失活和相互作用机理研究;(2)原子氧自由基阴离子诱导的聚合物表面改性及其机理研究;(3)原子氧自由基阴离子诱导的硅片表面氧化和二氧化硅薄膜形成研究。研究结果表明,O~-和O~-储存发射材料在微生物失活、聚合物材料改性和氧化硅薄膜制备等领域具有重要的潜在应用价值。
     本论文的主要研究内容与结果包括:
     1.原子氧自由基阴离子诱导的微生物失活和相互作用机理研究
     1)高纯原子氧自由基阴离子束的产生:C12A7-O~-材料是一种具有储存、发射原子氧自由基阴离子(O~-)的功能材料,我们利用等离子镀膜技术,将该材料镀在镶嵌有加热丝的陶瓷支撑体表面,制成O~-发生器。研究结果表明,由该O~-发生器产生的最大O~-束强度为220μA,发射的O~-束纯度大于90%。
     2)O~-水溶液的制备与表征:利用氩气为载气,将O~-发生器产生的O~-离子通入去离子水中制成O~-水溶液:形成的O~-水溶液一般呈酸性,利用电子顺磁共振(EPR)和紫外—可见分光光度计(UV-VIS)等表征方法,测量了O~-水溶液中O~-和H_2O_2等活性氧物种的浓度。
     3)气相原子氧自由基阴离子的微生物失活和机理研究:利用由O~-发生器产生的高纯O~-束,研究了气相原子氧自由基阴离子诱导的微生物失活和机理。主要考察了O~-束强度、处理温度、微生物初始浓度等对微生物失活效果的影响以及细胞结构的变化。结果表明,1.5μA/cm~2O~-束在120 min内可以引起3个对数量级以上的微生物数目的减少,失活效率随O~-束强度、处理温度的增加而增加;微生物初始浓度对失活效率没有显著性影响;O~-束诱导的不同种类的微生物的失活效果不同,与微生物的结构有关。场发射扫描电镜(FESEM)、四极质谱(Q-MS)和时间飞行质谱(TOF-MS)结果显示大肠杆菌的细胞壁和细胞膜被O~-破坏,同时在失活过程中有CO和CO_2产物生成。
     4)O~-水溶液中微生物失活和机理研究:在不同条件下,考察了大肠杆菌在O~-水溶液中的失活过程,探讨了失活机理。结果表明,在60 min内,O~-水溶液[pH4.30±0.20,(2.5±0.8)×10~(-2)mmol/10 O~-;0.5±0.2 mmol/1 H_2O_2]可以使大肠杆菌的数目减少3个对数量级;在15—45℃的温度范围内,失活效率随温度的增加而增加;大肠杆菌的初始浓度升高,失活效率降低。O~-水溶液诱导的大肠杆菌失活过程中,存在大肠杆菌细胞的脂质过氧化反应,并出现核酸泄漏现象,FESEM观察发现细胞壁破损。因此,O~-诱导的细胞壁和细胞膜破损以及核酸泄漏可能是大肠杆菌死亡的潜在原因。
     2.原子氧自由基阴离子诱导的聚合物材料表面改性及其机理研究
     1)O~-水溶液对聚苯乙烯的表面改性研究:以O~-水溶液(0.03±0.01 mmol/1 O~-;0.5±0.1 mmol/1 H_2O_2)为反应液,研究了在常温下O~-水溶液对聚苯乙烯表面改性效果。利用接触角仪、原子力显微镜(AFM)、FESEM、X射线光电子能谱仪(XPS)、全反射傅立叶红外变换光谱仪(ATR-FTIR)等表征手段对改性后表面亲水性、粗糙度、表面形貌及表面物种进行了详细地分析。结果表明,O~-水溶液在48小时内使聚苯乙烯的接触角降低10°,引起表面能和亲水性提高:O~-水溶液改性后的表面变粗糙,引入了新的OH和C=O等亲水官能团。亲水官能团的引入是表面亲水性提高的原因。
     2)O~-水溶液对聚四氟乙烯的表面改性研究:O~-水溶液处理后的聚四氟乙烯表面有C—O,C—F和CF_3等新官能团生成,表明O~-引起了聚四氟乙烯表面化学键的断裂和氧化,同时未发现诸如C=O和OH等亲水官能团生成。常温下O~-水溶液处理48小时可使聚四氟乙烯表面的接触角提高14°,引起表面能和亲水性降低,疏水性提高。FESEM结果显示,O~-水溶液改性后的聚四氟乙烯表面变粗糙,这可能是表面疏水性提高的原因。
     3.原子氧自由基阴离子诱导的硅片表面氧化和二氧化硅薄膜形成研究利用O~-束对硅片表面氧化和二氧化硅薄膜形成过程进行了研究,并且由O~-氧化的硅片制备了金属-氧化物-半导体(MOS)电容器,测试了电容器的电学特性。
This dissertation presents a novel approach to the inactivation of microorganisms and surface modification of materials by using atomic oxygen radical anion(O~-)which is prepared by C12A7-O~- material.In this work we mainly focus on the inactivation efficacy and inactivation mechanism of microorganisms induced by O~-,alterations of surface properties of polymers after surface modification via O~-, and oxidation of silicon and formation of SiO_2 on silicon surface by O~-.The major conclusions have been summarized as follows:
     1.Study of the microorganisms' inactivation and inactivation mechanism induced by O~-
     1)The preparation of high pure O~- beam:O~- can be stored and emitted by C12A7-O~- material.An O~- generator was prepared through coating with C12A7-O~-material on the surface of ceramic in which was a heater.The maximum intensity of O~- beam emitted from O~- generator was 220μA and the purity of O~- beam was higher than 90%.
     2)The preparation and characteristics of O~- solution:The O~- solution was prepared by bubbling of the O~- beam into the deionized water for a duration time. The O~- solution was usually acid.The concentrations of active oxygen species such as O~- and H_2O_2 in the O~- solution were investigated by electron paramagnetic resonance(EPR)and ultraviolet-visible spectroscopy(UV-VIS).
     3)Inactivation of microorganisms with gaseous O~- beam:The inactivation of microorganisms mainly depends on the intensity of O~- beam,treatment temperature, and kinds of microorganism.The results indicate that the O~- beam shows a good ability for microorganisms' inactivation and the cell mortality is enhanced to more than 3-logarithm reduction with O~- beam of 1.5μA/cm~2 for 120 min.The inactivation efficacy increases with the increases of the intensity of O~- beam and treatment temperature,and independents on the concentration of microorganism.Different mortalities are obtained for different kind of microorganisms due to their different cytoarchitecture.Field emission scanning electron micrographs(FESEM)reveals that the cell structures are destroyed by the exposure to O~- beam.The observed anionic intermediates by a time-of-flight mass spectrometer(TOF-MS)and the neutral volatile products(CO,CO_2)by a Quadruple mass spectrometer(Q-MS)provide an evidence of the reactions between O~- and microorganism.
     4)Inactivation of microorganism with O~- solution:Effective inactivation of Escherichia coli through O~- solution has been obtained.Escherichia coli cells are reduced by more than 3 logarithm in the O~- solution[pH 4.30±0.20,(2.5±0.8)×10~(-2)mmol/l O~-;0.5±0.2 mmol/l H_2O_2]within 60 min at 30℃.Significant temperature dependent on the surviving populations is observed within our tested temperature range(15-45℃).Lipid peroxidation reaction and nucleic acid release induced by O~- solution are identified.The treated cells by O~- solution also appear dramatically collapsed by FESEM observation.The release of nucleic acid and the disrepair of cell wall caused by O~- are responsible for the inactivation of Escherichia coli cells.
     2.Study of the surface modification of polymer materials with O~-
     1)Surface modification of polystyrene with O~- solution:The O~- solution(0.03±0.01 mmol/l O~-;0.5±0.1 mmol/l H_2O_2)treatment has caused an obvious increase of the surface hydrophilicity,surface energy,surface roughness and also caused an alteration of the surface chemical composition for polystyrene surfaces,which are indicated by the variety of contact angle and material characterization by atomic force microscope(AFM)imaging,FESEM,X-ray photoelectron spectroscopy(XPS),and attenuated total-reflection Fourier transform infrared(ATR-FTIR)measurements. Particularly,it is found that some hydrophilic groups such as hydroxyl(OH)and carbonyl(C=O)groups are introduced onto the polystyrene surfaces via the O~-solution treatment,leading to the increases of surface hydrophilicity and surface energy.
     2)Surface modification of polytetrafluorethylene with O~- solution:C—O,C—F, and CF_3 chemical bonds have been formed after O~- solution(0.03±0.01 mmol/l O~-; 0.5±0.1 mmol/l H_2O_2)treatment,which indicate O~- solution leads to chain scission and oxidation.At the same time,no hydrophilic groups such as C=O,OH appeared. The contact angle on polytetrafluorethylene surface increases by 14°treated by O~-solution for 48 h at room temperature.The O~- solution treatments lead to the decreases of surface energy and hydrophilicity,the increase of hydrophobicity. FESEM results indicate the surface of polytetrafluorethylene become rougher after O~-solution treatment,which might be the reason for the increase of hydrophobicity.
     3.Study of the surface oxidation of silicon with O~-Surface oxidation of silicon(Si)wafers by O~- beam and production of metal-oxide-semiconductor(MOS)capacitors with the O~- -oxidized Si substrates were examined.The features of the MOS capacitor were investigated by measuring capacitance-voltage(C-V)and current-voltage(I-V)curves.
引文
[1]D.M.Neumark,K.R.Lykke,T.Andersen,W.C.Lineberger,Phys.Rev.A.32,1890(1985).
    [2]J.Lee,J.J.Grabowski,Chem.Rev.92,1611(1992).
    [3]F.C.Fehsenfeld,A.L.Schmeltekopf,H.L.Schiff,E.E.Ferguson,Planet Space Sci.15,373(1967).
    [4]D.K.Bohme,Interactions between ions and molecules.Plenum Press:New York,1975;489-504.
    [5]E.E.Ferguson,F.C.Feshenfeld,A.L.Schmeltekopf,Adv Chem Set.80,83(1969).
    [6]C.Lifshitz,R.Tassa,Int J Mass Spectrom.Ion Phys.12,433(1973).
    [7]F.C.Feshenfeld,C.J.Howard,A.L.Schmeltekopf,J Chem Phys.63,2835(1975).
    [8]Y.Guo,J.J.Grabowski,Int J Mass Spectrom Ion Process.117,299(1992).
    [9]M.Mcfarland,D.L.Albritton,F.C.Fehsenfeld,E.E.Ferguson,A.L.Schmeltekopf,J Chem Phys.59,6629(1973).
    [10]D.A.Parkes,J Chem Soc Faraday Trans.68,613(1972).
    [11]F.C.Fehsenfeld,E.E.Ferguson,J Chem Phys.61,3181(1974).
    [12]J.M.VanDoren,S.E.Barlow,C.H.Depuy,V.M.Bierbaum,J Am Chem Soc.109,4412(1987).
    [13]J.H.Futrell,T.O.Tieman,Ion-Molecule Reactions.Plenum Press:New York,1972,Vol 2,Chapter 11.
    [14]C.E.Hamilton,M.A.Duncan,T.S.Zwier,J.C.Weisshaar,G.B.Ellison,V.M. Bierbaum,S.R.Leone,Chem Phys Lett.94,4(1983).
    [15]J.F.Paulson,J Chem Phys.52,963(1970).
    [16]J.H.J.Dawson,A.J.Noest,N.M.M.Nibbering,Int J Mass Spectrom Ion Phys.29,205(1979).
    [17]J.H.J.Dawson,K.R.Jennings,J Chem Soc Faraday Trans 2.72,700(1976).
    [18]R.Houriet,D.Stahl,F.Winkler,J Environ Health Persp.36,63(1980).
    [19]G.C.Goode,K.R.Jennings,Adv Mass Spectrom.6,797(1974).
    [20]R.Wander,M.Z.Hoffrnan,L.M.Dorfman,J Phys Chem.74,1819(1970).
    [21]M.Simie,B.L.Gall,M.Ebert,J Phys Chem.77,1117(1973).
    [22]P.Neta,R.H.Schuler,J Phys Chem.79,1(1975).
    [23]M.Simie,P.Neta,E.Hayon,J Phys Chem.77,2662(1973).
    [24]H.C.Christensen,K.Sehested,E.J.Hart,J Phys Chem.77,983(1973).
    [25]J.H.Lunsford,Adv Catal.22,265(1972).
    [26]M.Che,A.J.Tenth,Adv Catal.22,1(1983).
    [27]J.S.Valentine.Active Oxygen in Biochimistry;Blackie Academic &Professional:London,UK,1995.
    [28]K.Aika,J.H.Lunsford.J Phys Chem.81,1393(1977).[
    [29]M.Henchman,P.M.Hierl,J.F.Paulson,J Am Chem Soc.107,2812(1985).
    [30]E.Kfishnakumar,S.K.Srivastava,Phys Rev A.41,2445(1990).
    [31]P.J.Chantry,J Chem Phys.51,3369(1969).
    [32]P.J.Chantry,J Chem Phys.51,3380(1969).
    [33]P.J.Chantry,J Chem Phys.57,3180(1972).
    [34]S.G.Nephytides,D.Tsplakides,C.G Vayenas.J Catal.178,414(1998).
    [35]Y.Torimoto,A.Harano,T.Suda,M.Sadakata,Jpn J Appl Phys.36,L238(1997).
    [36]Y.Torimoto,T.Nishioka,M.Sadakata,J Chem Eng Jpn.33,557(2000).
    [37]M.Nishioka,Y.Torimoto,H.Kashiwagi,Q.X.Li,M.Sadakata,J Catal.215,1 (2003).
    [38]Y.Torimoto,T.Nishioka,M.Sadakata,J Catal.209,256(2002).
    [39]S.L.Kaliaguine,B.N.Shelimov,V.B.Kazansky,J Catal.55,384(1978).
    [40]Y.Takita,M.Iwamoto,J.H.Lunsford,J Phys Chem.84,1710(1950).
    [41]G.A.Rankin,F.E.Wright,Am J Sci.39,1(1915).
    [42]W.Bussem,A.Eitel,Z Kristallogr.95,175(1936).
    [43]A.K Chatterjee,G.I.Zhmoidin,J Mater Sci.7,93(1972).
    [44]B.Hallstedt,J Am Ceram Soc.73,15(1990).
    [45]K.Hayashi;M.Hirano,S.Matsuishi;H.Hosono,J Am Chem Soc.124,738(2002).
    [46]Q.X.Li,K.Hayashi,M.Nishioka,H.Kashiwagi,M.Hirano,Y.Torimoto,H.Hosono,M.Sadakata,Appl Phys Lett.80,4259(2002).
    [47]Q.X.Li,K.Hayashi,M.Nishioka,H.Kashiwagi,M.Hirano,Y.Torimoto,H.Hosono,M.Sadakata,Jpn J Appl Phys.41,L530(2002).
    [48]Q.X.Li,H.Hosono,M.Hirano,K.Hayashi,M.Nishioka,H.Kashiwagi,Y.Torimoto,M.Sadakata,Surf Sci.527,100(2003).
    [49]T.Dong,J.Li,F.Huang,L.Wang,J.Tu,Y.Torimoto,M.Sadakata,Q.X.Li,Chem Communications.21,2724(2005).
    [50]Z.X.Wang,Y.Pan,T.Dong,X.F.Zhu,T.Kan,L.X.Yuan,Y.Torimoto,M.Sadakata,Q.X.Li,Appl Cata A,320,24(2007).
    [51]Y.Pan,Z.X.Wang,K.Tao,X.F.Zhu,Q.X.Li,Chin J Chem Phys.19(3),190(2006).
    [52]季君辉,史维明,抗菌材料(化学工业出版社,2003).
    [53]徐孝华,微生物世界(农业大学出版社,1989).
    [54]G.Bitton,Wastewater Microbiology.John Wiley and Sons,New York,1994.
    [55]S.Farooq,C.N.Kurucz,T.D.Waite,W.J.Cooper,S.R.Mane,J.H.Greenfield, Water Sci Technol.26,1265(1992).
    [56]T.T.Chau,K.C.Kao,G.Blank,F.Madrid,Biomaterials.17,1273(1996).
    [57]M.Cho,H.Chung,W.Choi,J.Yoon,Water Res.38,1069(2004).
    [58]I.Hua,J.E.Thompson,Water Res.34,3888(2000).
    [59]N.K.Hunt,B.J.Marinas,Water Res.31,1355(1997).
    [60]M.Moisan,J.Barbeau,S.Moreau,J.Pelletier,M.Tabrizian,L'H.Yahia,Int J Pharm.226,1(2001).
    [61]T.Ohshima,K.Okuyama,M.Sato,J Electrostat.55,227(2002).
    [62]A.G.Rincon,C.Pulgarin,Appl Catal.44,263(2003).
    [63]R.Sommer,T.Haider,A.Cabaj,W.Pribil,M.Lhotsky,Water Sci Technol.38,145(1998).
    [64]K.Sunada,T.Watanabe,K.Hashimoto,J Photoch Photobio A.156,227(2003).
    [65]R.J.Watts,S.Kong,M.P.Orr,G.C.Miller,B.E.Henry,Water Res.29,95(1995).
    [66]G.C.White,The Handbook of Chlorination and Alternative Disinfectants.Van Nostrand,New York,1992.
    [67]李汴生,阮征,非热杀菌技术与应用(化学化工出版社,2004).
    [68]W.Harm,Biological effects of ultraviolet radiation(Cambridge Univ Press,1980).
    [69]J.R.Bolton,Water Res.34,3315(2000).
    [70]J.C.H.Chang,S.F.Osoff,D.C.Lobe,M.H.Dorfman,C.M.Dumais,R.G.Quails,J.D.Johnson,Appl Environ Microb.49,1361(1985).
    [71]L.Tavera,M.Brena,M.Perez,J.Serment,M.Balcazar,Radiat Meas.36,591(2003).
    [72]K.P.Rawat,A.Sharma,S.M.Rao,Water Res.32,737(1998).
    [73]C.H.Sommers,S.Bhaduri,FoodMicrobiol.18,367(2001).
    [74]G.Blank,D.Corrigan,Int J Food Microbiol.26,269(1995).
    [75]J.Farkas,Int J FoodMicrobiol.44,189(1998).
    [76]P.Ballestra,A.A.D.Silva,J.L.Cuq,J Food Sci.61,829(1996).
    [77]O.Erkmen,Food Microbiol.17,225(2000).
    [78]O.Erkmen,C.Dogan,Food Microbiol.21,181(2004).
    [79]H.Karaman,O.Erkmen,Food Microbiol.18,119(2001).
    [80]M.Ritz,,F.Jugiau,F.Rama,P.Courcoux,M.Semenou,M.Federighi,Food Microbiol.17,375(2000)382.
    [81]曾庆孝,芮汉明,李汴生,食品加工与保藏原理(化学工业出版社,2002).
    [82]G.J.Fleischman,S.Ravishankar,V.M.Balasubramaniam,Food Microbiol.21,91(2004).
    [83]S.Jeyamkondan,D.S.Jayas,R.A.Holley,J Food Protect.62,1088(1999).
    [84]S.Q.Li,Q.H.Zhang,Y.Z.Lee,T.V.Pham,J Food Sci.68,1201(2003).
    [85]B.H.Lado,A.E.Yousef,Appl Environ Microb.69,2223(2003).
    [86]M.Furuta,M.Yamaguchi,T.Tsukamoto,B.Yim,C.E.Stavarache,K.Hasiba,Y.Maeda,Ultrson Sonochem.11,57(2004).
    [87]E.Ananta,D.Voigt,M.Zenker,V.Heirz,D.Knorr,J Appl Microbiol.99,271(2005).
    [88]J.Raso,R.Pagan,S.Condon,F.J.Sala,Appl Environ Microb.64,465(1998).
    [89]D.Purevdorj,N.Igura,O.Ariyada,I.Hayakawa,Lett Appl Microbiol 37,31(2003).
    [90]D.Purevdorj,N.Igura,I.Hayakawa and O.Ariyada,J Food Eng.53,341(2002).
    [91]D.E.Huffman,T.R.Slifko,K.Salisbury,J.B.Rose,Water Res.34,2491(2000).
    [92]C.Leadley,Food Sci Technol.17,40(2003).
    [93]G.D.Ward,I.A.Watson,D.E.S.Stcwart-Tull,A.C.Wardlaw,R.K.Wang,M.A.Nutley,A.Cooper,J Appl Microbiol.89,517(2000).
    [94]H.L.Pape,F.Solano-Serena,P.Contini,C.Devillers,A.Maftah,P.Leprat,J Inorg Biochem.98,1054(2004).
    [95]Y.Inoue,M.Hoshino,H.Takahashi,T.Noguchi,T.Murata,Y.Kanzaki,H.Hamashima,M.Sasatsu,J Inorg Biochem.92,37(2002).
    [96]V.Siva Kumar,B.M.Nagaraja,V.Shashikala,A.H.Padmasri,S.Shakuntala Madhawndra,B.David Raju,K.S.Rana Rao,J Mol Catal A-Chem.223,313(2004).
    [97]C.H.Hu,Z.R.Xu,M.S.Xia,Vet Microbiol.109,83(2005).
    [98]O.Yamamoto,J.Sawai,T.Sasanoto,Int J Inorg Mater.2,451(2000).
    [99]J.Sawai,H.Igarashi,A.Hashimoto,T.Kokugan,M.Shimizu,J Chem Eng Jpn.28,288(1995).
    [100]J.Sawai,H.Igarashi,A.Hashimoto,T.Kokugan,M.Shimizu,J.Chem.Eng.Jpn.28,556(1995).
    [101]J.Sawai,K.Sagara,H.Igarashi,A.Hashimoto,T.Kokugan,M.Shimizu,J.Chem.Eng.Jpn.28,294(1995).
    [102]J.Sawai,E.Kawada,F.kanou,H.Igarashi,A.Hashimoto,T.Kokugan,M.Shimizu,J.Chem.Eng.Jpn.29,627(1996).
    [103]L.Huang,D.Q.Li,Y.J.Li,M.Wei,D.G.Evans,X.Duan,J Inorg Biochem.99,986(2005).
    [104]T.Matsunaga,R.Tomoda,T.Nakajima,H.Wake,FEMS Microbiol Lett.29,211(1985).
    [105]Y.Kikuchi,K.Sunada,T.Iyoda,K.Hashimoto,A.Fujishima,J Photoch Photobio A.106,51(1997).
    [106]P.C.Maness,S.Smolinski,D.M.Blake,Z.Huang,E.J.Wolfrum,W.A.Jacoby,Appl Environ Microb.65,4094(1999).
    [107]M.Sokmen,F.Candan,Z.Sumer,J Photoch Photobio A.143,241(2001).
    [108]K.Sunada,T.Watanabe and K.Hashimoto,J Photoch Photobio A.156, 227(2003).
    [109]M.Cho,H.Chung,W.Choi and J.Yoon,Water Res.38,1069(2004).
    [110]周晓谦,周文淮,辽宁化工,31,448(2002).
    [111]S.Kayano,Y.Kikuchi,K.Hashzzmoto,Environ Sci Tech.32,726(1998).
    [112]R.S.Armstrong,R.G.Sohal,R.G.Culcrand T.F.Slater(eds)Free Radicals Moleculer Biology,Aging and Disease Raven,New York(1984).
    [113]E.Cadenas,Annu Rev Biochem.51,79(1989).
    [114]B.Hlliwell,J.M.C.Gutteridge,Biochem J.219,1(1984).
    [115]P.H.Proctor,E.S.Reynolds.Physiol chem Phys.16,175(1984).
    [116]W.A.Pryor,Annu Rev Physiol.48,657(1986).
    [117]N.R.Webster,J.P.Nunn,Br J Anaesth.60,98(1988).
    [118]B.Hlliwell,J.M.C.Gutteridge,Free Radicals in Biology andMedicine.2nd edn,Oxford University Press,Clarendon,Oxford.(1989)
    [119]J.M.McCord,Am J Med.108,652(2000).
    [120]方允中,郑荣梁,自由基生物学的理论与应用(科学出版社,2002).
    [121]李培峰,方允中,生物化学杂志.9,417(1993).
    [122]张文玲,魏丽勤,王林嵩,徐存拴,河北师范大学学报,(自然科学往版).28,69(2000).
    [123]王玉秋,何锡文,生理科学进展29,3(1998).
    [124]G.Minotti,Chem Res toxicol.6,134(1993).
    [125]吴培熙,张留城,聚合物共混改性(中国轻工业出版社,1996).
    [126]筏羲人,高分子表面的基础与应用(化学工业出版社,1990).
    [127]张开,高分子界面科学(中国石油化工出版社,1997).
    [128]王国全,王秀芬,聚合物改性(中国轻工业出版社,2000).
    [129]J.Z.Zhang,X.J.Yu,H.D.Li,X.H.Li,Appl Surf Sci.185,255(2002).
    [130]何炜德,现代塑料加应用.4,40(1989).
    [131]I.Mathieson,R.H.Bradley,Int,J Adhes Adhes.16,29(1996).
    [132]D.O.H.Teare,C.Ton-That,R.H.Bradley,Surf Interface Anal.29,276(2000).
    [133]R.H.Bradley,I.Sutherland,E.Sheng,J Chem Soc Faraday Trans.91,3201(1995).
    [134]E.Sheng,I.Sutherland,R.H.Bradley,P.K.Frealdey,Mater Chem Phys.50,25(1997).
    [135]R.H.Bradley,I.Mathieson,K.M.Byme.J Mater Chem.7,2477(1997).
    [136]C.Ton-That,D.O.H.Teare,P.A.Campbell,R.H.Bradley,Surf Sci.435,278(1999).
    [137]R.H.Bradley,I.Mathieson,J Colloid Interface Sci.194,338(1997).
    [138]C.Y.Kim,J.Exans,J Appl Polym Sci.15,1365(1971).
    [139]张述成.中国胶粘亮剂.1,29(1993).
    [140]宫晓颐,徐僖,粘接.5,(1985).
    [141]G.H.Yang,E.T.Kang,K.G.Neoh,J Polym Sci A:Polym Chem.35,3498(2000).
    [142]M.C.Zhang,E.T.Kang,K.G.Neoh,K.L.Tan,Colloids Surf A:Physicochem Eng Asp.176,139(2001).
    [143]N.Inagaki,S.Tasaka,K.Narushima,K.Mochizuki,Macromolecules.32,8566(1999).
    [144]N.Inagaki,S.Tasaka,T.Umehara,J Appl Polym Sci.71,2191(1999).
    [I45]Y.W.Park,S.Tasaka,N.Inagaki,J Appl Polym Sci.83,1258.(2002)
    [146]C.Y.Huang,C.L.Chen,Surf Coat Technol.153,194(2002).
    [147]C.Muhlhan,H.Nowack,Surf Coat Technol.98,1107(1998).
    [148]W.Petasch,E.Rauehle,M.Walher,P.Eisner,Surf Coat Technol.74-75,682(1999).
    [149]S.Bhowmik,P.K.Ghosh,S.Ray,J Appl Polym Sci.80,1140(2001).
    [150]钱风珍,塑料科技.5,50(1990).
    [151]刘金辉,焦书科,合成树脂及塑料.2,20(1995).
    [152]邹盛欧,化工新型材料.3,33(1996).
    [153]梁鹿亭,半导体器件表面钝化技术[M](北京科学出版社,1979).
    [154]E.L.Jordan,Electrochem Soc.108,478(1961).
    [155]J.R.Ligenza,J Appl Phys.36,2703(1965).
    [156]R.Ligenza,M.Kuhn,Solid-State Technol.13,33,(1970).
    [157]M.M.Atalla,in Properties of Elemental and Compound Semiconductors,Vol.5,H.Gatos,Ed.,Wiley-Interscience,New York,1960,pp.163-181.
    [158]李家值,半导体化学原理(科学出版社,1980).
    [159]J.Zhang,D.S.Wavhal,E.R.Fisher,J Vac Sci Technol A.22(1),201(2004).
    [160]S.C.Deshrnukh,E.S.Aydil,J Vac Sci Technol A.13(5),2355(1995).
    [161]M.L.Hitchman,Chem Vap Deposition.10(1),7(2004).
    [162]A.Schulze,J.Y.Jeong,S.E.Babayan,J.Park,G.S.Selwyn,R.F.Hicks,IEEE Trans Plasma Sci.26,1685(1998).
    [163]J.Park,J.Henins,H.W.Herrmann,G.S.Selwyn,Appl Phys Lett.76,288(2000).
    [164]S.G.Wang,V.S.Gathen,H.F.Doebele,Appl Phys Lett.83,3272(2003).
    [165]B.C.Chen,S.E.Holland,C.Hu,IEEE Trans Electron Devices.132,413(1985).
    [1]L.Fan,J.Song,P.D.Hildebrand,C.F.Fomey,J Appl Microbiol.93,144(2002).
    [2]K.Nishikawa,H.Nojima,Jpn J Appl Phys.40,L835(2001).
    [3]J.O.Noyce,J.F.Hughes,J Electrostat.54,179(2002).
    [4]Y.Tanimura,Refrigeration.71,351(1996).
    [5]Y.Tanimura,J.Hirotsuji,Proc Inst Electrostat Jpn.22,212(1998).
    [6]J.M.Shargawi,E.D.Theaker,D.B.Drucker,T.Macfarlane,A.J.Duxbury,J Appl Microbiol.87,889(1999).
    [7]J.Lee,J.J.Grabowski.Chem Rev.92,1611(1992).
    [8]M.Born,S.Ingemann,N.M.M.Nibbering,Mass Spectrom Rev.16,181(1997).
    [9]J.Ishikawa,Rev Sci Instrum.67,1410(1996)
    [10]Y.Guo,J.J.Grabowski,Int J Mass Spectrom Ion Proc.117,299(1992).
    [11]V.Dudnikov,Rev.Sci.Instrum.73,992(2002).
    [12]W.C.Wang,Y.Xu,W.G.Wang,A.M.Zhu,J Phys D:Appl Phys.37,1185(2004).
    [13]A.J.T.Holmes,Plasma Phys Control Fusion 34,653(1992).
    [14]A.B.Fialkov,Investigations on ions in flames.Prog Energy Combust Sci.23,399(1997).
    [15]L.E Gaunt,S.C.Higgins,J.F.Hughes.J Appl Microbiol.99,1324(2005).
    [16]M.Moisan,J.Barbeau,S.Moreau,J.Pelletier,M.Tabrizian,L H.Yahia,Int J Pharm.226,1(2001).
    [17]J.D.Lara,P.S.Fernandez,P.M.Periago,A.Palop,Innovative Food Science Emerging Technologies.3,379(2002).
    [18]G.D.Ward,I.A.Watson,D.E.S.Stewart-Tull,A.C.Wardlaw,R.K.Wang,M.A.Nutley,A.Cooper,J Appl Microbiol.89,517(2000).
    [19]J.H.Lunsford,Adv Catal.22,265(1972).
    [20]M.Che,A.J.Teneh,Adv Catal.22,1(1983).
    [21]J.S.Valentine.Active Oxygen in Biochimistry;Blackie Academic &Professional:London,UK,1995.
    [22]K.Aika,J.H.Lunsford.J Phys Chem 81,1393(1977).
    [23]M.Henchman,P.M.Hierl,J.F.Paulson,J Am Chem Soc.107,2812(1985).
    [24]Q.X.Li,H.Hosono,M.Hirano,K.Hayashi,M.Nishioka,H.Kashiwagi,Y. Torimoto,M.Sadakata,Surf Sci.527,100(2003).
    [25]M.L.Speck.Compendium of Methods for The Microbio-Logical Examination of Foods,vol.107-131.DC:American Publish Health Association.pp341-387(1976).
    [26]D.Purevdorj,N.Igura,O.Ariyada,I.Hayakawa,Lett Appl Microbiol.37,31(2003).
    [27]D.Purevdorj,N.Igura,I.Hayakawa and O.Ariyada,J Food Eng.53,341(2002).
    [28]U.Zimmermann,Rev Physiol Biochem Pharmacol.105,175(1986).
    [29]T.T.Chau,K.C.Kao,G.Blank,F.Madrid,Biomaterials.17,1273(1996).
    [1]J.Hoigne,H.Bader,Water Res.10,377(1976).
    [2]J.Hoigne,H.Bader,Prog Water Technol.10,657(1978).
    [3]L.R.Beuchat,R.Chmielewski,J.Keswani,S.E.Law,J.F.Frank,Lett Appl Microbiol.29,202(1999).
    [4]J.M.Vaughn,Y.S.Chen,K.Lindburg,D.Morales,Appl Environ Microb.53,2218(1987).
    [5]I.R.Komanapalli,B.H.S.Lau,Appl Microbiol Biotechnol.49,766(1998).
    [6]J.M.Vaughn,Y.-S.Chen,J.F.Novotny,D,Strout,Canadian J Microbiol.36,557(1990).
    [7]T.Yamazaki,M.Inoue,M.Ogawa,S.Shiga,T.Kishimoto,T.Hagiwara,T. Matsumoto,T.Hayashi,Lett Appl Microbio138,406(2004).
    [8]刘天庆,T.R.Bott,水处理技术.25,30(1999).
    [9]K.S.Venkitanarayana,G.O.Ezeike,Y.-C.Hung,M.P.Doyle,Appl Environ Microb 65,4276(1999).
    [10]C.Kim,Y.-C.Hung,R.E.Brackett,Int J Food Microbiol.61,199(2000).
    [11]M.A.Deza,M.Araujo,M.J.Garrido,Lett Appl Mierobiol.40,341(2005).
    [12]章恩明,杜林,黄鸿志,食品与机械 03,30(1999).
    [13]J.H.Lunsford,Adv Catal.22,265(1972).
    [14]M.Che,A.J.Tenth,Adv Catal.22,1(1983).
    [15]J.S.Valentine.Active Oxygen in Biochimistry;Blackie Academic &Professional:London,UK,1995.
    [16]K.Aika,J.H.Lunsford.J Phys Chem.81,1393(1977).
    [17]M.Henchman,P.M.Hierl,J.F.Paulson,J Am Chem Soc.107,2812(1985).
    [18]J.Li,F.Huang,L.Wang,S.Q.Yu,Y.Torimoto,M.Sadakata,Q.X.Li,Chem Mater.17,2771(2005).
    [19]I.S.Woo,I.K,Rhee,H.D.Park,Appl Environ Microb.66,2243(2000).
    [20]P.C.Maness,S.Smolinski,D.M.Blake,Z.Huang,E.J.Wolfrum,W.A.Jacoby,Appl Environ Microb,65,4094(1999).
    [21]M.Sokmen,F.Candan,Z.Sumer,J Photoch Photobio A,143,241(2001).
    [22]R.G.Strauss,J Clin Pathol,34,800(1981).
    [23]J.Kiwi,V.Nadtochenko,J Phys Chem B.108,17675(2004).
    [24]C.Lifshitz,J Phys Chem.86,3634(1982).
    [25]G.V.Buxton,C.L.Greenstock,W.P.Helman,A.B.Ross,J Phys Chem Ref Data. 17, 513(1988).
    
    [26] M. Cho, H. Chung, W. Choi, J. Yoon, Water Res 38,1069(2004).
    [27] J. Lee, J.J. Grabowski, Chem Rev. 92,1611 (1992).
    [1]J.B.Park,Biomaterials Science and Engineering,Plenum Press,New York,1984.
    [2]D.F.Williams,Materials Science and Technology.Medical and Dental Materials,vol.14,VCH,Weinheim,1992.
    [3]Y.Hirano,T.M.Okada,Y.F.Miura,M.Sugi,T.Ishii,J Appl Phys.88,5194(2000).
    [4]J.Z.Zhang,X.J.Yu,H.D.Li,X.H.Liu,Appl Surf Sci.185,255(2002).
    [5]M.Dhayal,M.R.Alexander,J.W.Bradley,Appl Surf Sci.252,7957(2006).
    [6]M.H.Hung,R.R.Burch,J Appl Polym Sci.55,549(1995).
    [7]W.M.Lau,Nucl Instrum Meth B.131,341(1997).
    [8]X.D.Xu,R.W.M.Kwok,W.M.Lau,Thin Solid Films.514,182(2006).
    [9]M.C.Zhang,E.T.Kang,K.G.Neoh,K.L.Tan,Colloid Surface A.176,139(2001).
    [10]Nihon Kagakukai,Kagaku Sousetsu,vol.44,Gakkai Shuppan Center,Tokyo,1984.
    [11]K.Otsuka,I.Yamanaka,Catal Today.57,71(2000).
    [12]T.N.Murakami,Y.Fukushima,Y.Hirano,Y.Tokuoka,M.Takahashi,N.Kawashima,Colloid Surface.B.29,171(2003).
    [13]T.N.Murakami,M.Takahashi,N.Kawashima,Chem Lett.2000,1312(2000).
    [14]A.Olah,H.Hillborg,G.J.Vancso,Appl Surf Sci.239,410(2005).
    [15]X.D.Xu,R.W.M.Kwok,W.M.Lau,Thin Solid Films.514,182(2006).
    [16]T.Mieno,T.Kamo,D.Hayashi,T.Shoji,K.Kadota,Appl Phys Left.69,617(1996).
    [17]A.Tachibana,K.Sakata,T.Sato,Jpn J Appl Phys.37,4493(1998).
    [18]W.A.Loong,H.Chang,Jpn J Appl Phys.,Part 2.30,L 1319(1991).
    [19]M.Nishioka,H.Nanjyo,S.Hamakawa,K.Kobayashi,K.Sato,T.Inoue,F.Mizukami,M.Sadakata,SolidState Ionics.177,2235(2006).
    [20]J.Li,F.Huang,L.Wang,S.Q.Yu,Y.Torimoto,M.Sadakata,Q.X.Li,Chem Mater.17,2771(2005).
    [21]J.Schultz,K.Tsutsumi,J.B.Donnet,J Colloid Interface Sci.59,277(1977).
    [22]S.Bhowmik,P.K.Ghosh,S.Ray,J Appl Poly Sci.80,1140(2001).
    [23]M.Hirose,H.Ito,Y.Kamiyama,J Membr Sci.121,209(1996).
    [24]M.Pijolat,G.Hollinger,Analusis.10,8(1982).
    [25]G.Beamson,D.Briggs,High Resolution XPS of Organic Polymers.Wiley:Chichester,174(1992).
    [26]J.F.Moulder,W.F.Stickle,P.E.Sobol,K.D.Bomden,Handbook of X-ray Photoelectron Spectroscopy,Perkim-Elmer Corp,Eden Prairie,MN,1992.
    [27]T.N.Murakami,Y.Fuk-ushima,Y.Hirano,Y.Tokuoka,M.Takahashi,N.Kawashima,Appl Surf Sci.249,425(2005).
    [28]J.Lee,J,J.Grabowski,Chem Rev.92,1611(1992).
    [29]K.Hayashi,M.Hirano,S.Matsuishi,H.Hosono,J Am Chem Soc.124,738(2002).
    [30]T.Dong,J.Li,F.Huang,L.Wang,J.Tu,Y.Torimoto,M.Sadakata,Q.X.Li,Chem Commun.21,2724(2005).
    [31]K.I.Aika,J.H.Lunsford,J Phys Chem.81,1393(1977).
    [32]C.Lifshitz,J Phys Chem.86,3634(1982).
    [33]G.V.Buxton,C.L.Greenstoek,W.P.Helman,A.B.Ross,J Phys Chem RefData.17,513(1988).
    [34]P.L.Yue,Chem Eng Sci.48,1(1993).
    [35]A.Marmur,Langmuir.12,5704(1996).
    [36]G.Wolansky,A.Marmur,Langmuir.14,5292(1998).
    [1]谢苏江,化工新型材料,30,26(2002).
    [2]袁海根,曾金芳,杨杰,塑料工业,33,7(2005).
    [3]徐保国,化学与粘合,4,206(1996).
    [4]W.M.Lau,Nucl Instrum Meth B.131,3.41(1997).
    [5]X.D.Xu,R.W.M.Kwok,W.M.Lau,Thin solid films.514,182(2006).
    [6]K.P.Adhi,R.L.Owings,T.A.Railkar,W.D.Brown,A.P.Malshe,Appl SurfSci.225,324(2004).
    [7]J.Z.Zhang,X.J.Yu,H.D.Li,X.H.Liu,Appl Surf Sci.185,255(2002).
    [8]M.Dhayal,M.R.Alexander,J.W.Bradley,Appl Surf Sci.252,7957(2006).
    [9]何炜德,现代塑料加应用.4,40(1989).
    [10]钱凤珍,塑料科技.5,50(1990).
    [11]C.Combellas,S.Richardson,M.E.R.Shanahan,A.Thiebault,Int J Adhesion Adhensives.21,59(2001).
    [12]J.Li,F.Huang,L.Wang,S.Q.Yu,Y.Torimoto,M.Sadakata,Q.X.Li,Chem Mater.17,2771(2005).
    [13]J.F.Moulder,W.F.Stickle,P.E.Sobol,K.D.Bomden,Handbool of X-ray Photoelectron Spectroscopy,Perkim-Elmer Corp,Eden Prairie,MN,1992.
    [14]C.D.Wagner,Energy calibration of electron spectrometers,in:T.L.Davis,L.E.Davis(Eds.),Applied Surface Analysis,ASTM,Philadelphia,1980,p.137.
    [15]A.Chapiro,Radiation Chemistry of Polymeric Systems,Interscience,London,1962,p.354.
    [16] J.H.J. Dawson, A.J. Noest, N.M.M. Nibbering, Int J Mass Spectrom Ion Phys. 29,205(1979).
    [17] F. Hochart, J. Levalois-Mitjaville, R.D. Jaeger, L. Gengembre, J. Grimblot, Appl Surf Sci. 142,574(1999).
    [18] C.Y. Tu, C.P. Chen, Y.C. Wang, C.L. Li, H.A. Tsai, K.R. Lee, J.Y. Lai, Eur Polym J. 40, 1541(2004).
    [1]J.D.Plummer,M.D.Deal,P.B.Griffin,Silicon VLSI Technology,Englewood Cliffs,NJ:Printice-Hall,2000.
    [2]W.Q.Huang,S.R.Liu,Chin.Phys.15,389(2006).
    [3]S.W.Wang,W.Lu,H.Wang,D.Wang,M.Wang,X.C.Shen,Acta Phys.Sin.50,2461(2001).
    [4]J.P.Xu,W.B.Chen,P.T.Lai,Y.P.Li,C.L.Chan,Chin.Phys.16,529(2007).
    [5]Z.J.Peng,W.J.Si,M.N.Xie,H.J.Fu,H.Z.Miao,Acta Phys.Chim.Sin.19,97(2003).
    [6]H.Kakiuchi,H.Ohmi,M.Harada,N.Watanabe,K.Yasutake,Appl.Phys.Lett.90,091909-1(2007).
    [7]G.Aygun,E.Atanassova,A.Alacakir,L.Ozyuzer,R.Turan,J.Phys.D:Appl.Phys.37,1569(2004).
    [8]A.Tosaka,H.Nonaka,S.Ichimura,J.Appl.Phys.101,034909-1(2007).
    [9]A.Tachibana,K.Sakata,T.Sato,Jpn.J.Appl.Phys.37,4493(1998).
    [10]K.Imarnura,O.Maida,K.Hattori,M.Takahashi,H.Kobayashi,J.Appl.Phys.100,114910(2006).
    [11]S.Uehikoga,D.F.Lai,J.Robertson,W.I.Milne,N.Hatzopoulos,R.A.Yankov,M.Weiler,Appl.Phys.Lett.75,725(1999).
    [12]Q.X.Li,H.Hosono,M.Hirano,K.Hayashi,M.Nishioka,H.Kashiwagi,Y.Torimoto,M.Sadakata,Surf Scl.527,100(2003).
    [13]X.P.Zhu,T.Yukawa,M.Hirai,H.Suematsu,W.H.Jiang,K.Yatsui,H.Nishiyama,Y.Inoue,Appl.Surf.Sci.252,5776(2006).
    [14]J.S.Johannessen,W.E.Spicer,Y.E.Strausser,J.Appl.Phys.47,3028(1976).
    [15]M.H.Hecht,F.J.Grunthaner,P.Pianetta,L.I.Johansson,I.Lindau,J.Vac.Sci.Technol.A.2 584(1984).
    [16]J.Peeters,L.Li,J.Appl.Phys.72 15(1992).
    [17]A.Atkinson,Rev.Mod.Phys.57,437(1985).
    [18]T.L.Barr,Appl.Surf.Sci.15,1(1983).
    [19]黄均鼐,汤庭鳌,双极型与MOS半导体器件原理(复旦大学出版社,1990).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700