用户名: 密码: 验证码:
生物医用Ti-Mn合金的组织结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了不同Mn元素添加量(2、5、8、10wt.%)的Ti-Mn合金的组织结构、拉伸性能、在模拟口腔环境中的和胆道环境的电化学腐蚀性能、离子溶出行为以及体外细胞毒性等,探讨了其作为牙科修复材料和胆道支架材料的可行性。采用光学金相显微镜、扫描电子显微镜、X射线衍射分析等测试手段分析研究了合金的显微组织及相组成随合金化元素含量变化的规律;利用万能材料试验机,研究了合金的拉伸性能;利用显微硬度计和球盘式摩擦磨损实验机研究了合金的维氏显微硬度和耐磨性;通过开路电位测试、电化学阻抗分析和动电位极化测试研究了合金在模拟唾液环境下的电化学腐蚀行为;利用浸泡法以及扫描电子显微镜和X射线衍射分析技术考察了合金在模拟体液环境下和人体胆汁环境下的耐腐蚀性;通过体外浸提法和四甲基偶氮唑盐(MTT)比色法考察了合金浸提液对L929细胞和MG63细胞的体外细胞毒性。
     铸态Ti-Mn合金的显微组织随Mn含量增加,由单一的等轴-Ti相逐渐演变成由-Ti和TiMn相组成的双相组织;当Mn含量达10wt.%时,合金中还会出现Ti0.48Mn0.52相。铸态Ti-Mn合金的屈服强度和断裂延伸率随Mn含量的增加先增加后降低,抗拉强度、维氏硬度和耐磨性能均随Mn含量增加而增加。与干摩擦条件下的磨损失重相比,在以模拟唾液为润滑的湿摩擦条件下,Ti及铸态Ti-Mn合金的磨损失重降低,耐磨性提高。与铸态Ti-5Mn合金相比,轧制态Ti-5Mn合金的晶粒尺寸明显长大,具有较高的显微硬度和耐磨性,但是力学性能明显下降,断裂延伸率下降了约65%。铸态Ti-5Mn合金具有最佳的强度和塑性配合。
     在未添加任何成分的模拟唾液中,铸态Ti-Mn合金的电化学腐蚀抗力与纯Ti相近;在含氟的模拟唾液中,纯Ti的耐腐蚀性恶化并发生再钝化,而铸态Ti-Mn合金的耐腐蚀性未明显恶化并未发生再钝化。铸态Ti-Mn合金在几种含有不同添加成分的模拟唾液中浸泡7d后,表面钝化膜发生破坏,引起基体中Ti离子和Mn离子的析出;合金在同时添加NaF和乳酸的模拟唾液中的Ti离子析出量最高。纯钛和铸态Ti-5Mn合金在人体胆汁中呈现钝化现象,维钝电流密度略大于0.1mA/cm2,具有较强的耐腐蚀性。铸态Ti-5Mn合金在pH6.8和pH7.0的人体胆汁中具有与纯钛相当的耐腐蚀性;在pH7.4的弱碱性人体胆汁中,具有较高的自腐蚀电位,耐腐蚀性略优于纯钛。
     不同锰含量的Ti-Mn合金与水和丙三醇的表面接触角均小于90°,为亲水表面;随合金中Mn元素含量的增加,Ti-Mn合金与水和丙三醇的表面接触角增加。Ti-5Mn合金的表面能在四种Ti-Mn合金中最小,其值与纯钛的表面能大小相当。Ti和Ti-5Mn合金与胆汁接触后,材料表面未发生游离态胆红素或胆红素钙等的聚集和粘附,对胆汁中胆红素的影响较小。纯钛和Ti-5Mn合金在胆汁中浸泡3d时与胆汁中的磷脂没有明显的相互作用;随着浸泡时间的延长(7d),两种材料与胆汁中的磷脂发生了一定的相互作用,引起红外谱图上磷脂的特征峰位置和强度发生变化。通过喷涂方法在纯Ti和Ti-5Mn合金表面制备的PTX/PLGA载药涂层,涂层表明均匀,具有一定的方向性;其接触角与裸金属表面接触角相近。PTX/PLGA载药涂层在人体胆汁中浸泡3d和7d后,对胆汁中胆红素和磷脂成分没有产生明显的影响。体外细胞毒性测试发现,铸态Ti-Mn合金对小鼠成纤维细胞L929和骨肉瘤细胞MG63的毒性级别为1级,属于微毒范畴。随合金中Mn含量的增加,培养的细胞的存活能力在明显下降,说明Mn离子溶出之后对L929细胞和MG63细胞的存活具有一定的毒性。
Ti-Mn alloys with different Mn content (2,5,8,10wt.%) were developed in the presentwork and various experiments have been carried out to investigate the microstructure andphase composition,tensile properties, in vitro electrochemical corrosion in simulated oralenvironment and bile environment, ion release behavior and the in vitro cytotoxicity, withpure titanium as control. The purpose of the study was to explore the feasibility of Ti-Mnalloys used as potential dental materials and biliray stent materials. Optical microscope,scanning electron microscope (SEM) and X-ray diffraction (XRD) were employed to studythe evolvement of microstructure and phase composition with the alloying element content.Tension property was investigated with universal materials testing machine. Microhardnessand wear resistance had been studied with digital hardness tester and ball-on-flat tribometer.Electrochemical behaviors in the artificial saliva were analyzed by methods of open circuitpotential (OCP), electrochemical impedance spectroscopy and dynamic polarization potential.The immersion corrosion behaviors of the alloys in artificial saliva had also been studied withInductively Coupled Plasma Optical Emission Spectrometer(ICP-OES), SEM and XRD.Furthermore, the in vitro toxicity of the alloys to L929and MG63cell lines had beenevaluated by MTT method.
     The microstructure of as-cast Ti-Mn alloys changes from single-Ti phase to-Ti+TiMn precipitation phase with the increase of Mn content, and Ti0.48Mn0.52phase wasobserved when Mn content arrived10wt.%. The yield strength and fracture elongation ofas-cast Ti-Mn alloy first increased and then decreased with the increase of Mn content, whilethe tensile strength, microhardness and wear resistance increased with the increase of Mncontent. Compared with the wear loss under dry condition, the wear loss of Ti and as-castTi-Mn alloy decreased under the wet condition with artificial saliva as lubricant, indicatingthe improved wear resistance. Compared with the as-cast Ti-5Mn alloy, the grain size ofhot-rolled Ti-5Mn alloy increased, and the microhardness and wear resistance of hot rolledTi-5Mn alloy was improved, while the tensile property decreased, especially the fractureelongation of hot-rolled Ti-5Mn alloy decreased by65%. The best combination of tensilestrength and elongation lies in Ti-Mn alloy with the composition point at5wt.%.
     The electrochemical tests indicated that Ti-Mn alloys showed similar corrosionresistance like pure Ti in artificial saliva without any addition, while in the fluorinatedartificial saliava, Ti-Mn alloys didn’t show obvious deterioration like pure Ti. However, Ti-Mn alloys, after the breakdown of the passivation at around1.2Volts, fail to repassivatelike pure Ti. After immersion in the different artificial saliva for7d, Ti ions and Mn ionsreleased from the substrate due to the damage of the passivation coating. The released amountof Ti ions was maximum in artificial saliva with addition of NaF and lactic acid. Pure Ti andTi-5Mn alloy were passivated in human bile environment, and the passive current density wasmore than0.1mA/cm2, indicating better corrosion resistance. The corrosion resistance ofas-cast Ti-5Mn alloy was similar to pure Ti in human bile with pH6.8and pH7.0, and it wasbetter than pure Ti in weakly alkaline human bile with pH7.4, which exhibited higher selfcorrosion potential.
     The contact anglesof Ti-Mn alloy with different Mn contents were less than90°whencontact with water and glycerol, suggesting hydrophilic property. The contact angle increasedwith increasing Mn content. The surface energy of as-cast Ti-5Mn alloy was least in the fourkinds of Ti-Mn alloys, which was similer to that of pure Ti. After the immersion of Ti andTi-5Mn alloy in human bile, the UV spectra showed the characteristic absorption peak,suggesting that there was no aggregation and adherence of the detached bilirubin and calciumbilirubinte on the surface of Ti and Ti-5Mn alloy and little influence on the composition ofbile. After immersion in human bile for3d, pure Ti and Ti-5Mn alloy had no effect on the thephospholipid of human bile, while with the increase of immersion time (7d), the alloysinteracted with the phospholipid of human bile, resulting in the change of characteristic peakof phospholipid on FT-IR spectra. The drug-loading paclitaxel/PLGA (PTA/PLGA)composite coating was prepared on pure Ti and Ti-5Mn alloy by sprying method, the surfaceof which was uniform and exhibited some directivity. The contact angle of Ti and Ti-5Mnalloy with drug-loading paclitaxel film didn’t change, indicating that there was no influenceof drug-loading film on the hydrophilicity. After immersion in human bile for3d and7d,PTX/PlGA drug loaded coating exhibited no effect on the composition of human bile, such asbilirubin and phospholipid. The in vitro cytotoxicity test shows that the in vitro cytotoxicitygrade of Ti-Mn alloys for L929fibroblast cells and MG63osteosarcoma cells is1grade,namely mild toxicity. Moreover, it has been found that the inhibition of the cell growthaggravates with the increase of Mn content in the testing alloys, which indicates slighttoxicity of Mn to the cultured cells.
引文
[1]宋涛.生物医用材料漫谈[J].东莞日报.2012.10.12,第A10版:1,2.
    [2]俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社.2000:1-3页.
    [3] Brunette DM, Tengvall P, Textor M, Thomsen P. Titanium in medicine: materialscience, surface science, engineering, biological responses and medical application [M].New York: Springer-Verlag Berlin Heidelberg New York.2006:7-10P.
    [4] Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedicalapplications [J]. Acta Biomaterialia.2012,8:3888-903P.
    [5] Niinomi M. Recent metallic materials for biomedical applications [J]. Metall MaterTrans A.2002,33:477-86P.
    [6] Wang K. The use of titanium for medical applications in the USA [J]. Mater Sci A.1996,213:134-7P.
    [7] Kuroda D, Kawasaki H, Hiromoto S, Hanawa T. Development of new Ti–Fe–Ta andTi–Fe–Ta–Zr system alloys for biomedical applications[J]. Mater Sci Eng C.2005,25:312-20P.
    [8] Miura K, Yamada N, Hanada S, Jung TK, Itoi E. The bone tissue compatibility of anew Ti–Nb–Sn alloy with a low Young’s modulus [J]. Acta Biomater.2011,7:2320-6P.
    [9] Matkovic′T, Slokar LJ, Matkovc′P. Effect of composition on the structure andproperties of Ti–Co–Cr alloys [J]. Metalurgija.2010,49:33-6P.
    [10] Zhou YL, Niinomi M, Akahori T. Changes in mechanical properties of Ti alloys inrelation to alloying additions of Ta and Hf [J]. Mater Sci Eng A.2008,483-484:153-6P.
    [11] Ikeda M, Ueda M, Matsunaga R, Ogawa M, Niinomi M. Isothermal aging behavior ofbeta titanium–manganese alloys [J]. Mater Trans.2009,50:2737-43P.
    [12] Uggowitzer PJ, B hre WF, Speidel MO. Metal injection moulding of nickel freestainless steels [J]. Adv Powder Metall Part Mater.1997,3:18.113-21P.
    [13] Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal-ions [J]. Free RadicBiol Med.1995,18:321-36P.
    [14] Basketter DA, Briaticovangosa G, Kaestner W, Lally C, Bontinck WJ. Nickel, cobaltand chromium in consumer products: a role in allergic contactdermatitis [J]. ContactDermatitis.1993,28:15-25P.
    [15] Domingo J. Vanadium and tungsten derivatives as antidiabetic agents [J]. Biol TraceElem Res.2002,88:97-112P.
    [16] Perl DP, Brody AR. Alzheimer’s disease: X-ray spectrometer evidence of aluminumaccu mulation in neurofibrillary tangle-bearing neurons [J]. Science.1980,208:297-9P.
    [17] Japan Aluminium Association. Aluminum and health [M]. Tokyo: Japan AluminiumAssociation;2002:1-6P.
    [18] Boyce B, Byars J, McWilliams S, Mocan M, Elder H, Boyle I. Histological andelectron microprobe studies of mineralization in aluminum-related osteomalacia [J]. BrMed J.1992,45:502-8P.
    [19] Niinomi M, Hattori T, Morikawa K, Kasuga T, Suzuki A, Fukui H. Development oflow rigidity b-type titanium alloy for biomedical applications [J]. Mater Trans.2002,43:2970-7P.
    [20] Niinomi M. Recent research and development in titanium alloys for biomedicalapplications and healthcare goods [J]. Sci Tech Adv Mater.2003,4:445-54P.
    [21] Menzel J, Kirschner W, Stein G. High nitrogen containing Ni-free austenitic steels formedical applications [J]. ISIJ.1996,36:893-900P.
    [22] Thomann UI, Uggowitzer PJ. Wear–corrosion behavior of biocompatible austeniticstainless steels [J]. Wear.2000,239:48-58P.
    [23] Walter MJ. Stainless steel for medical [J]. Adv Mater Process.2006,164:84-6P.
    [24] Koch S, Buscher R, Tikhovski I, Brauer H, Runiewicz A, Dudzinski W, Fischer A.Mechanical, chemical and tribological properties of the nickel-free highnitrogen steelX13CrMnMoN18-14-3(1.4452)[J]. Mat-wiss U Werkstofftech.2002,33(12):705-15P.
    [25] Kuroda D, Hanawa T, Hibaru T, Kuroda S, Kobayashi M, Kobayashi T. Newmanufacturing process of nickel-free austenitic stainless steel with nitrogen absorptiontreatment [J]. Mater Trans.2003,44:414-20P.
    [26] Niinomi M. Metallic biomaterials [J]. Jpn Soc Artif Org.2008;11:105-10P.
    [27] Yamamoto A, Kohama Y, Kuroda D, Hanawa T. Cytocompatibility evaluation ofNi-free stainless steel manufactured by nitrogen adsorption treatment [J]. Mater SciEng C.2004,24:737-43P.
    [28] Wang P, Ren Y, Zhang B, Yang K. Effect of nitrogen on blood compatibility ofnickel-free high nitrogen stainless steel for biomaterial [J]. Mater Sci Eng C.2010,30:1183-9P.
    [29] Yamanaka K, Mori M, Kurosu S, Matsumoto H, Chiba A. Ultrafine grain refinement ofbiomedical Co–29Cr–6Mo alloy during conventional hotcompression deformation [J].Metall Mater Trans A.2009,40:1980-94P.
    [30] Hanawa T. Metals for medicine [M]. Sendai: Japan Institute of Metals,2010-5P.
    [31] Chiba A, Kumagai K, Takeda H, Nomura N. Mechanical properties of forged low Niand C-containing Co–Cr–Mo biomedical implant alloy [J]. Mater Sci Forum.2005,475-479:2317-22P.
    [32] Mori M, Yamanaka K, Matsumoto H, Chiba A. Evolution of cold-rolledmicrostructures of biomedical Co–Cr–Mo alloys with and without N doping [J]. MaterSci Eng A.2010,528:614-21P.
    [33] Kurosu S, Matsumoto H, Chiba A. Grain refinement of biomedicalCo–27Cr–5Mo–0.16N alloy by reverse transformation [J]. Mater Lett2010,64:49-52P.
    [34] Semlitsch M. Classic and new titanium alloys for production of artificial hip joints [J].Titan1986,2:721-40P.
    [35] Browy K-H, Kramer K-H. On the properties of a new titanium alloy (TiAl5Fe2.5) asimplant material [M]. In: Lütjering G, Zwicker U, Bunk W, editors. Titanium scienceand technology, vol.2. Stuttgart: Deutsche Gesellshaft fur Metallkunde.1985:1381-6P.
    [36] Okazaki Y, Ito Y, Tateishi T, Ito A. Effect of heat treatment on microstructure andmechanical properties of new titanium alloys for surgical implantation [J]. J Jpn InstMet.1995,59:108-15P.
    [37] Mishra AK, Davidson JA, Poggie RA, Kovacs P, Fitzgerald TJ. Mechanical andtribological properties and biocompatibility of diffusion hardened Ti-13Nb-13Zr–anew titanium alloy for surgical implants [M]. In: Brown SA, Lemons JE, editors.Medical applications of titanium and its alloys, ASTM STP1272. West Conshohocken,PA: ASTM International.1996:96-116P.
    [38] Wang KK, Gustavson LJ, Dumbleton JH. Microstructure and properties of a new betatitanium alloy, Ti–12Mo–6Zr–2Fe, developed for surgical implants [M]. In: Brown SA,Lemons JE, editors. Medical applications of titanium and its alloys, ASTM STP1272.West Conshohocken, PA: ASTM International.1996:76-87P.
    [39] Zardiackas LD, Mitchell DW, Disegi JA. Characterization of Ti–15Mo beta titaniumalloy for orthopedic implant [M]. In: Brown SA, Lemons JE, editors. Medicalapplications of titanium and its alloys, ASTM STP1272. West Conshohocken, PA:ASTM International.1996:60-75P.
    [40] Steinemann SG, Mausli PA, Szmukler-Moncler S, Semlitsch M, Pohler Hintermann HE,Perren SM. Beta-titanium alloy for surgical implants [M]. In: Froes FH, Caplan I,editors. Titanium’92, science and technology. Warrendale, PA: TMS.1993:2689-96P.
    [41] Ahmed T, Long M, Silvestri J, Ruiz C, Rack HJ. A new low modulus, biocompatibletitanium alloy [M]. In: Blenkinsop PA, Evans WJ, Flower HM, editors. Titanium’95,science and technology, vol. II. London: Institute of Metals.1996:1760-7P.
    [42] Hatanaka S, Ueda M, Ikeda M, Niinomi M. Isothermal aging behavior in Ti–10Cr–Alalloys for medical applications [J]. Adv Mater Res.2010,89-91:232-7P.
    [43] Ikeda M, Ueda M, Kinoshita T, Ogawa M, Niinomi M. Influence of Fe content ofTi–Mn–Fe alloys on phase constitution and heat treatment behavior [J]. Mater SciForum.2012,706-709:1893-8P.
    [44] Ikeda M, Ueda M, Matsunaga R, Niinomi M. Phase constitution and heat treatmentbehavior of Ti–7mass%Mn–Al alloys [J]. Mater Sci Forum.2010,654-656:855-8P.
    [45] Ikeda M, Sugano D. The effect of aluminum content on phase constitution and heattreatment behavior of Ti–Cr–Al alloys for healthcare applications [J]. Mater Sci Eng C.2005,25:377-81P.
    [46] Ashida S, Kyogaku H, Hosoda H. Fabrication of Ti–Sn–Cr shape memory alloy by PMand its properties [J]. Mater Sci Forum.2012,706-709:1943-7P.
    [47] Murayama Y, Sasaki S. Mechanical properties of Ti-Cr-Sn-Zr alloys [J]. Bull NiigataInst Tech.2009,14:1-8P.
    [48] Kasano Y, Inamura T, Kanetaka H, Miyazaki S, Hosoda H. Phase constitution andmechanical properties of Ti–(Cr, Mn)–Sn biomedical alloys [J]. Mater Sci Forum.2010,654-656:2118-21P.
    [49] Nakai M, Niinomi M, Zhao XF, Zhao XL. Self-adjustment of Young’s modulus inbiomedical titanium alloy during orthopaedic operation [J]. Mater Lett.2011,65:688-90P.
    [50] Niinomi M, Hattori T, Kasuga T, Fukui H. Titanium and its alloys. In: Encyclopedia ofbiomaterials and biomedical engineering [M]. New York: Marcel Dekker.2006:1-8P.
    [51] Tane M, Akita S, Nakano T, Hagihara K, Umakoshi Y, Niinomi M, Nakajima H.Peculiar elastic behavior of Ti–Nb–Ta–Zr single crystals[J]. Acta Mater.2008,56:2856-63P.
    [52] Niinomi M, Fukui H, Hattori T, Kyo K, Suzuki A. Development of high biocompatibletitanium alloy [J]. Mater Jpn.2002,3:221-3P.
    [53] Valiev RZ, Islamgaliev R, Alexandrov IV. Bulk nanostructured materials from severeplastic deformation [J]. Prog Mater Sci.2000,45:103-89P.
    [54] Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-high straining process for bulkmaterials development of the accumulative roll-bonding (ARB) process [J]. Acta Mater.1999,47:579-83P.
    [55] Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing:fundamentals and applications [J]. Prog Mater Sci.2008,53:893-979P.
    [56] Yilmazer H, Niinomi M, Akahori T, Nakai M, Tsutsumi H. Effects of severe plasticdeformation and thermo-mechanical treatments on microstructures and mechanicalproperties of b-type of titanium alloys for biomedical applications [M]. In: Proceedingsof the18th international conference on processing and fabrication of advancedmaterials (PFAM XVIII),176th committee on process created materials function, JSPS.2009,2:1401-10P.
    [57] Yilmazer H, Niinomi M, Nakai M, Cho K, Hieda J, Todaka Y, Miyazaki T. Mechanicalproperties of a medical β-type titanium alloy with specific microstructural evolutionthrough high-pressure torsion.[J]. Mater Sci Eng C.2013,33(5):2499-507P.
    [58] Niiinomi M. Fatigue performance and cyto-toxicity of low rigidity titanium alloy,Ti–29Nb–13Ta–4.6Zr [J]. Biomaterials.2003,24:2673-83P.
    [59] Hao YL, Niinomi M, Kuroda D, Fukunaga K, Zhou YL, Yang R. Aging response ofYoung’s modulus and mechanical properties of Ti–29Nb–13Ta–4.6Zr for biomedicalapplications [J]. Metall Mater Trans A.2003,34:1007-12P.
    [60] Song X, Niinomi M, Nakai M, Tsutsumi H, Wang L. Improvement in fatigue strengthwhile keeping low Young’s modulus of a b-type titanium alloy through yttrium oxidedispersion [J]. Mater Sci Eng C.2012,32:542-9P.
    [61] Majumdar P, Singh SB, Chakraborty M. Fatigue behavior of boron free and boroncontaining heat treated Ti–13Zr–13Nb alloy for biomedical applications [J]. MaterCharact.2010,61:1394-9P.
    [62] Niinomi M, Hattori T, Niwa S. Material characteristics and biocompatibility of lowrigidity titanium alloys for biomedical applications [M]. In: Yaszemski MJ, Trantolo DJ,Lewandrowski KU, Hasirci V, Altobelli DE, Wise DL, editors. Biomaterials inorthopedics. New York: Marcel Dekker.2004:41-2P.
    [63] Sumitomo N, Noritake K, Hattori T, Morikawa K, Niwa S, Sato K, Niinomi M.Experiment study on fracture fixation with low rigidity titanium alloy: plate fixation oftibia fracture model in rabbit [J] J Mater Sci Mater Med.2008,9:1581-6P.
    [64] Guo Z, Fu J, Zhang YQ, Hu YY, Wu ZG, Shi L, Sha M,Li SJ,Hao YL,Yang R et al.Early effect of Ti–24Nb–4Zr–7.9Sn intramedullary nails on fractured bone [J]. MaterSci Eng C.2009,29:968-8P.
    [65] Niinomi M, Nakai M. Titanium-based biomaterials for preventing stress shieldingbetween implant devices and bone [J]. Int J Biomater.2011,1-10P.
    [66] Narita K, Niinomi M, Nakai M, Akahori T, Oribe K, Tamura T. Mechanical propertiesof implant rods made of low-modulus beta-type titanium alloy, Ti–29Nb–13Ta–4.6Zr,for spinal fixture[J]. J Jpn Inst Met.2008,72:674-8P.
    [67] Steib JP, Dumas R, Skalli W. Surgical correction of scoliosis by in situ contouring: adetorsion analysis [J]. Spine.2004,29:193-9P.
    [68] Nakai M. Titanium alloys for spinal fixation devices [J]. Mater Jpn.2010,49:437-40P.
    [69] Zhao XF, Niinomi M, Nakai M, Hieda J, Ishimoto T, Nakano T. Optimization of Crcontent of metastable b-type Ti–Cr alloys with changeable Young’s modulus for spinalfixation applications[J]. Acta Biomater.2012,8:2392-400P.
    [70] Zhao XF, Niinomi M, Nakai M, Hieda J. Beta type Ti–Mo alloys with changeableYoung’s modulus for spinal fixation applications[J]. Acta Biomater.2012,8:1990-7P.
    [71] Zhao XL, Niinomi M, Nakai M, Miyamoto G, Furuhara T. Microstructures andmechanical properties of metastable Ti–30Zr–(Cr, Mo) alloys with changeable Young’smodulus for spinal fixation applications [J]. Acta Biomater.2011,7:3230-6P.
    [72] Zhao XL, Niinomi M, Nakai M. Relationship between various deformationinducedproducts and mechanical properties in metastable Ti–30Zr–Mo alloys for biomedicalapplications [J]. J Mech Behav Biomed Mater.2011,4:2009-16P.
    [73] Kim HM, Miyaji F, Kokubo T, Nakamura T. Effect of heat treatment on apatiteformingability of Ti metal induced by alkali treatment[J]. J Mater Sci Mater Med.1997,8:341-7P.
    [74] Ban S, Maruno S. Morphology and microstructure of electrochemically depositedcalcium phosphates in a modified simulated body fluid [J]. Biomaterials.1998,19:1245-53P.
    [75] Hanawa T, Asami K, Asaoka K. Microdissolution of calcium ions from calciumion-implanted titanium [J]. Corros Sci.1996,38:1579-94P.
    [76] Ikarashi Y, Toyoda K, Kobayashi E, Doi H, Yoneyama T, Hamanaka H, Toshie T.Improved biocompatibility of titanium–zirconium (Ti–Zr) alloy: tissue reaction andsensitization to Ti–Zr alloy compared with pure Ti and Zr in rat implantation study [J].Mater Trans.2005,46:2260-7P.
    [77] Kobayashi E, Ando M, Tsutsumi Y, Doi H, Yoneyama T, Kobayashi M. Inhibitioneffect of zirconium coating on calcium phosphate precipitation of titanium to avoidassimilation with bone[J]. Mater Trans.2007,48:301-6P.
    [78] Tsutsumi Y, Nishimura D, Doi H, Nomura N, Hanawa T. Difference in surfacereactions between titanium and zirconium in Hanks’ solution to elucidate mechanismof calcium phosphate formation on titanium using XPS and cathodic polarization[J].Mater Sci Eng C.2009,29:1702-8P.
    [79] Hanawa T, Okuno O, Hamanaka H. Compositional change in surface of Ti–Zr alloys inartificial bioliquid [J]. J Jpn Inst Met.1992,56:1168-73P.
    [80] Takahashi M, Kobayashi E, Doi H, Yoneyama T, Hamanaka H. Phase stability andmechanical properties of biomedical B type titanium–zirconium based alloyscontaining niobium [J]. J Jpn Inst Met.2000,64:1120-6P.
    [81] Yang GJ, Zhang T. Phase transformation and mechanical properties of theTi50Zr30Nb10Ta10alloy with low modulus and biocompatible [J]. J Alloy Compd.2005,392:291-4P.
    [82] Kobayashi E, Doi H, Yoneyama T, Hamanaka H, Matsumoto S, Kudaka K. Evaluationof mechanical properties of dental-cast Ti–Zr based alloys[J]. J J Dent Mater.1995,14:321-8P.
    [83] Zhao XL, Niinomi M, Nakai M, Ishimoto T, Nakano T. Development of highZrcontaining Ti-based alloys with low Young’s modulus for use in removable implants[J]. Mater Sci Eng C.2011,1:1436-44P.
    [84] Kim HY, Ikehara Y, Kim JI, Hosoda H, Miyazaki S. Martensitic transformation shapememory effect and superelasticity of Ti–Nb–binary alloys [J]. Acta Mater.2006,54:2419-29P.
    [85] Kim JI, Kim HY, Hosoda H, Miyazaki S. Shape memory behavior ofTi–22Nb–(0.5–2.0)O (at%) biomedical alloys [J]. Mater Trans.2005,46:852-7P.
    [86] Takahashi E, Sakurai T, Watanabe S, Masahashi N, Hanada S. Effect of heat treatmentand Sn content on superelasticity in biocompatible TiNbSn alloys [J]. Mater Trans.2002,43:2978-83P.
    [87] Kim JI, Kim HY, Inamura T, Hosoda H, Miyazaki S. Shape memory characteristics ofTi–22Nb–(2–8)Zr (at%) biomedical alloys[J]. Mater Sci Eng A.2005,403:334-9P.
    [88] Al-Zain Y, Kim HY, Hosoda H, Nam TH, Miyazaki S. Shape memory properties ofTi–Nb–Mo biomedical alloys [J]. Acta Mater.2010,58:4212-23P.
    [89] Kim HY, Sasaki T, Okutsu K, Kim JI, Inamura T, Hosoda H, et al. Texture and shapememory behavior of Ti–22Nb–6Ta alloy [J]. Acta Mater.2006,54:423-33P.
    [90] Hosoda H, Hosoda N, Miyazaki S. Mechanical properties of Ti–Mo–Al biomedicalshape memory alloys [J]. Trans MRS-J.2001,26:243-6P.
    [91] Kim HY, Ohmatsu Y, Kim JI, Hosoda H, Miyazaki S. Mechanical properties and shapememory behavior of Ti–Mo–Ga alloys[J]. Mater Trans2004,45:1090-5P.
    [92] Maeshima T, Nishida M. Shape memory properties of biomedical Ti–Mo–Ag andTi–Mo–Sn alloys [J]. Mater Trans.2004,45:1096-100P.
    [93] Maeshima T, Nishida M. Shape memory and mechanical properties of biomedicalTi–Sc–Mo alloys [J]. Mater Trans.2004,45:1101-5P.
    [94] Keda M, Komatsu S, Nakamura Y. Effects of Sn and Zr additions on phase constitutionand aging behavior of Ti–50mass%Ta alloys quenched from b single phase region[J].Mater Trans.2004,45:1106-12P.
    [95] Ikeda M, Sugano D, Masuda S, Ogawa M. The influence of aluminum content onshape memory effect of Ti–7Cr–Al alloys fabricated using low grade sponge titanium[J]. Mater Trans.2005,46:604-9P.
    [96] Niinomi M. Shape memory, super elastic and low Young’s modulus alloys [M]. In:Biomaterials for spinal surgery. Cambridge: Woodhead Publishing.2012:62-90P.
    [97] Hosoda H, Miyazaki S. Recent topics of shape memory materials and relatedtechnology [J]. J Jpn Soc Mech Eng.2004,107:509-15P.
    [98] Kim HY, Hosoda H, Miyazaki S. Development of super elastic Ti–Nb system alloys forbiomedical applications [M]. In: Collected abstracts of the2007spring meeting of theJapan institute of metals.2007:91P.
    [99] Uyama E, Hamada K, Asaoka K. Magnetic susceptibility and mechanical property ofnon-magnetic AuPtNb alloys for biomedical application [J]. J J Dent Mater.2010,29:415P.
    [100] Nomura N, Tanaka Y, Suyalatu, Kondo R, Doi H, Tsutsumi Y, et al. Effects of phaseconstitution of Zr–Nb alloys on their magnetic susceptibilities[J]. Mater Trans.2009,50:2466-72P.
    [101] Kondo R, Nomura N, Suyalatu, Tsutsumi Y, Doi H, Hanawa T. Microstructure andmechanical properties of as-cast Zr–Nb alloys [J]. Acta Biomater.2011,7:4278-84P.
    [102] Suyalatu, Kondo R, Tsutsumi Y, Doi H, Nomura N, Hanawa T. Effects of phaseconstitution on magnetic susceptibility and mechanical properties of Zr-rich Zr–Moalloys [J]. Acta Biomater.2011,7:4259-66P.
    [103] Black J. Biologic performance of tantalum [J]. Clin Mater.1994,16:167-73P.
    [104] Findlay DM, Welldon K, Atkin GJ, Howie DW, Zannettino ACW, Bobyn D. Theproliferation and phenotypic expression of human osteoblasts on tantalum metal [J].Biomaterials.2004,25:2215-27P.
    [105] Levine BR, Sporer S, Poggie RA, Valle CJD, Jacobs JJ. Experimental and clinicalperformance of porous tantalum in orthopedic surgery [J]. Biomaterials.2006,27:4671-81P.
    [106] Bobyn JD, Toh K, Hacking SA, Tanzer M, Krygier JJ. Tissue response to poroustantalum acetabular cups [J]. J Arthroplasty.1999,14:347-54P.
    [107] Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of boneingrowth and interface mechanics of a new porous tantalum biomaterial [J]. J BoneJoint Surg.1999,81B:907-14P.
    [108] Bobyn JD, Poggie RA, Krygier JJ, Lewallen DG, Hanssen AD, Lewis RJ. Clinicalvalidation of a structural porous tantalum biomaterial for adult reconstruction [J]. JBone Joint Surgery.2004,86:123-9P.
    [109] Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA, Poggie RA.Structure, metallurgy, and mechanical properties of a porous tantalum foam [J]. JBiomed Mater Res.2001,58:180-7P.
    [110] Lenhart M, V lk M, Manke C, Nitz WR, Strotzer M, Feuerbach S. Stent appearance atcontrast-enhanced MR angiography: in vitro examination with14stents [J]. Radiology.2000,217:173-8P.
    [111] Maintz D, Tombach B, Juergens KU, Weigel S, Heindel W, Fischbach R. Revealingin-stent stenoses of the iliac arteries: comparison of multidetector CT with MRangiography and digital radiographic angiography in a phantom model [J]. Am JRoentgenol.2002,179:1319-22P.
    [112] DePalma VA, Baier RE, Ford JW, Gott VL, Furuse A. Investigation of threesurfaceproperties of several metals and their relation to blood compatibility [J]. J BiomedMater Res.1972,6:37-75P.
    [113] Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: a materials perspective[J]. Biomaterials.2007,28:1689-710P.
    [114] Bertrand OF, Sipehia R, Mongrain R, Rodés J, Tardif JC, Bilodeau L. Biocompatibilityaspects of new stent technology [J]. J Am College Cardiol.1998,32:562-71P.
    [115] Scott NA, Robinson KA, Nunes GL, Thomas CN, Viel K, King SB. Comparison of thethrombogenicity of stainless steel and tantalum coronary stents [J]. Am Heart J.1995,129:866-72P.
    [116] Chen JY, Leng YX, Tian XB, Wang LP, Huang N, Chu PK. Antithrombogenicinvestigation of surface energy and optical bandgap and hemocompatibility mechanismof Ti(Ta+5)O2thin films [J]. Biomaterials.2002,23:2545-52P.
    [117] Hanawa T. Materials for metallic stents [J]. J Artif Org.2009,12:73-9P.
    [118] Fontaine AB, Koelling K, Passos SD, Cearlock J, Hoffman R, Spigos DG. Polymericsurface modifications of tantalum stents [J]. J Endovasc Surg.1996,3:276-83P.
    [119] Papakyriacou M, Mayer H, Pypen C, Plenk H, Stanzl-Tschengg S. Effects of surfacetreatments on high cycle corrosion fatigue of metallic implant materials [J]. Int JFatigue.2000,22:873-86P.
    [120] Rubitschek E, Niendorf T, Karaman I, Maier HJ. Corrosion fatigue behavior of abiocompatible ultrafine-grained niobium alloy in simulated body fluid [J]. J MechBehav Biomed Mater.2012,5:181-92P.
    [121] O’Brien J, Stinson JS, Carroll WM. Development of a new niobium-based alloy forvascular stent applications [J]. J Mech Behav Biomed Mater.2008,1:303-12P.
    [122] O’Brien J, Stinson JS, Boismier DA, Carroll WM. Characterization of an NbTaWZralloy designed for magnetic resonance angiography compatible stents [J]. Biomaterials.2008,29:4540-5P.
    [123] Niinomi M, Watanabe N, Kitaide M, Fukui H, Hasegawa J. Effect of microstructure onfracture characteristics of cortical bone [J]. J Jpn Soc Mech Eng A.1998,64:312-8P.
    [124] Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedicalapplications [J]. J Mech Behav Biomed Mater.2008,1:30-42P.
    [125] Witte F. The histry of biodegradable magnesium: a review [J]. Acta Biomater.2010,6:1680-92P.
    [126] González S, Pellicer E, Fornell J, Barrios L, Ibán′ez E, Solsona P. Et zal. Improvedmechanical performance and delayed corrosion phenomena in biodegradableMg–Zn–Ca alloys through Pd-alloying [J]. J Mech Behav Biomed Mater.2012,6:53-61P.
    [127] Zhang S, Li J, Song Y, Zhao C, Zhang X, Xie C. In vitro degradation, hemolysis andMC3T3-E1cell adhesion of biodegradable Mg–Zn alloy [J]. Mater Sci Eng C.2009,29:1907-12P.
    [128] Wang HX, Guan SK, Wang X, Ren CX, Wang LG. In vitro degradation and mechanicalintegrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulseelectrodeposition process [J]. Acta Biomater.2010,6:1743-8P.
    [129] Gu XN, Li N, Zhou WR, Zheng YF, Zhao X, Cai QZ. Corrosion resistance and surfacebiocompatibility of a microarc oxidation coating on a Mg–Ca alloy [J]. Acta Biomater.2011,7:1880-9P.
    [130] Kannan MB, Raman RKS. Evaluating the stress corrosion cracking susceptibility ofMg–Al–Zn alloy in modified-simulated body fluid for orthopaedic implant application[J]. Scripta Mater.2008,59:175-8P.
    [131] Li J, Song Y, Zhang S, Zhao C, Zhang F, Zhang X. In vitro responses ofhuman bonemarrow stromal cell to a fluoridated hydroxyapatite coated biodegradable Mg–Zn alloy[J]. Biomaterials.2010,31:5782-8P.
    [132] Song Y, Zhang S, Li J, Zhao C, Zhang X. Electrodeposition of Ca-P coatings onbiodegradable Mg alloy: in vitro biomineralization behavior [J]. Acta Biomater.2010,6:1736-42P.
    [133] Wang H, Zhao C, Chen Y, Li J, Zhang X. Electrochemical property and in vitrodegradation of DCPD-PCL composite coating on the biodegradable Mg–Zn alloy [J].Mater Lett.2012,68:435-8P.
    [134] Gu XN, Zheng W, Cheng Y, Zheng YF. A study on alkaline heat treated Mg–Ca alloyfor the control of the biocorrosion rate [J]. Acta Biomater.2009,5:2790-9P.
    [135] Chen B, Liang C. Preparation of hydroxyapatite coating by the use of a sacrificial Mganode method [J]. Ceram Int.1997,33:701-3P.
    [136] González S, Pellicer E, Frnell J, Blanquer A, Barrios L, Ibaán′es E. Improvedmechanical performance and delayed corrosion phenomena in biodegradableMg–Zn–Ca alloys through Pd-alloying [J]. J Mech Behav Biomed Mater.2012,6:53-62P.
    [137] Zhu S, Huang N, Xu L, Zhang Y, Liu H, Sun H, Leng YX et al. Biocompatibility ofpure iron: in vitro assessment of degradation kinetics and cytotoxicity on endothelialcells[J]. Mater Sci Eng C.2009,29:1589-92P.
    [138] Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Longtermbiocompatibility of a corrodible peripheral iron stent in the porcine descending aorta [J].Biomaterials.2006,27:4955-62P.
    [139] Peuster M, Wohlsein P, Brugmann M, Ehlerding M, Seidler K, Fink C, Brauer H,Fischer A, Hausdorf G. A novel approach to temporary stenting: degradablecardiovascular stents produced from corrodible metal–results6–18months afterimplantation into New Zealand white rabbits [J]. Heart.2001,86:563-9P.
    [140] Hermawan H, Dube D, Mantovani D. Degradable metallic biomaterials: design anddevelopment of Fe–Mn alloys for stents [J]. J Biomed Mater Res A.2010,93:1-11P.
    [141] Schinhammer M, H nzi AC, L ffler JF, Uggowitzer PJ. Design strategy forbiodegradable Fe-based alloys for medical applications [J]. Acta Biomater.2010,6:1705-13P.
    [142]赵信义,易超.牙科修复材料学[M].西安:世界图书出版公司.2006:1-10页.
    [143] Davis, J R. Handbook of Materials for Medical Devices [M]. The United States ofAmerica: ASM International.2003:1-3P.
    [144]徐丽娟.牙科用钛合金组织与性能的研究[D].哈尔滨工业大学博士论文,2007:9-21页.
    [145]王庆宇.齿科用Ti-In系合金的组织结构与性能研究[D].哈尔滨工程大学博士论文.2011:1-17页.
    [146] Nakagawa M, Matono Y, Matsuya S, Udoh K, Ishikawa K. The effect of Pt and Pdalloying additions on the corrosion behavior of titanium in fluoride-containingenvironments [J]. Biomaterials.2005,26:2239-46P.
    [147] Takemoto S, Hattori M, Yoshinari M, Kawada E, Asami K, Oda Y. Corrosionmechanism of Ti-Cr alloys in solution containing fluoride [J]. Dent Mater.2009,25:467-72P.
    [148] Ho W F. A comparison of tensile properties and corrosion behavior of cast Ti-7.5Mowith c.p. Ti, Ti-15Mo and Ti-6Al-4V alloys [J]. Journal of Alloys and Compounds.2008,464:580-3P.
    [149] Ho WF, Chen WK, Wu SC, Hsu HC. Structure, mechanical properties, and grindabilityof dental Ti-Zr alloys [J]. Journal of Materials Science-Materials in Medicine.2008,19:3179-86P.
    [150] Sato H, Kikuchi M, Komatsu M, Okuno O, Okabe T. Mechanical properties of castTi-Hf alloys [J]. Journal of Biomedical Materials Research-Part B: AppliedBiomaterials.2005,72:362-7P.
    [151]张斌斌. Ti-Ag基合金的组织结构与生物性能[D].哈尔滨工程大学博士论文.2012.
    [152]林文娇. Ti-X(Ge、Ga)合金的显微组织和生物性能研究[D].哈尔滨工程大学硕士论文.2011.
    [153] Kikuchi M, Takada Y, Kiyosue S, Yoda M, Woldu M, Cai Z. Mechanical properties andmicrostructures of cast Ti-Cu alloys [J]. Dental Materials.2003,19:174-81P.
    [154]朱艳萍,蒋丹娜,赵芮.胆管支架的临床应用及其生物相容性[J].中国组织工程研究与临床康复.2009,13:8556-8559页.
    [155] Joseph J.Y.Sung. Endoscopic stenting for palliation malignant biliary obstructionareview of progress in the last15years [J]. Dig Dis Sci.1995,40:1167-1173P.
    [156] Christian Gerges, Brigitte Schumacher, Grischa Terheggen, Horst Neuhaus.Expandable metal stents for malignant hilar biliary obstruction [J]. GastrointestinalEndoscopy Clinics of North America.2011,21(3):481-497.
    [157]高杰,赵文华,崔凯.胆道支架的临床应用现状[J].国际外科学杂志.2011,38:325-328页.
    [158]赵冬梅,蒋丹娜,刘侠.塑料与金属胆管支架的材料特征及其生物相容性[J].中国组织工程研究与临床康复.2011,15:1463-1466页.
    [159] Yu JL, Andersson R. Protein Adsorption and Bacterial Adhesion to Biliary StentMaterials [J]. Journal of Surgical Research.1996,62:69-73P.
    [160] Gianfranco Donelli, Emilio Guaglianone, Roberta Di Rosa. Plastic Biliary StentOcclusion: Factors Involved and Possible Preventive Approaches [J]. Clinical Medicine&Research.2007,5:53-60P.
    [161] Carrasco CH, Charnsangavej C. Expandable biliary endoprosthesisan experimentalstudy [J].AJR.1985,145:1279-81P.
    [162] Mouen A. Khashab, Susan Hutfless, Katherine Kim. A Comparative Evaluation ofEarly Stent Occlusion Among Biliary Conventional Versus Wing Stents [J]. Dig Dis Sci.2012,57:1708-16P.
    [163] Dong Uk Kim, Chang-ⅡKwon,Dae Hwan Kang. New antireflux self-expandablemetal stent for malignant lower biliary obstruction: In vitro and in vivo preliminarystudy [J]. Digestive Endoscopy.2013,25:60-6P.
    [164] Isayama H, Komatsu Y, Tsujino T. A prospective randomised study of ‘‘covered’’versus‘uncovered’diamond stents for the management of distal malignant biliaryobstruction [J]. Gut.2004,53:729-734P.
    [165] Dong Ⅱ Gwon,Gi-Young Ko,Jin Hyoung Kim. A Comparative Analysis ofPTFECovered and Uncovered Stents for Palliative Treatment of MalignantExtrahepatic Biliary Obstruction [J]. Vascularand Interventional Radiology OriginalResearch.2010,195:463-469P.
    [166] Liu Hengquan, Huang Nan, Leng Yongxiang. Inhibition of Bacterial Adherence on theSurface of Biliary Stent Materials Modified With Chitosan [J]. Sci Ed.2010,25:795-798P.
    [167] Sung Ill Jang, Jie-Hyun Kim, Jung Whan You. Efficacy of a Metallic Stent Coveredwith a Paclitaxel-Incorporated Membrane Versus a Covered Metal Stent for MalignantBiliary Obstruction: A Prospective Comparative Study [J]. Dig Dis Sci.2013,58:865-71P.
    [168]马纪伟,张爱东,涂海洋.金基片的清洗与其接触角和表面能[J].化工之友.2006,11:38-9页.
    [169] Dong Ki Lee, Hyun Soo Kim, Kyung-Sik Kim. The effect on porcine bile duct of ametallic stent covered with a paclitaxel-incorporated membrane [J]. GastrointestianalEndoscopy.2005,61(2):297-301P.
    [170] Berman E. Toxic Metals and their Analysis [M]. London: Heyden&Son Ltd.1980.
    [171]蒋雨卉.胆管支架临床应用进展[J].医学教育探索.2009,8(9):1170-73页.
    [172]刘玉金,杨仁杰.胆管支架应用研究进展[J].介入放射学杂质.2009,18(4):317-20页.
    [173] Lemm W, Unger V. Blood compatibility of polymers: in vitro and in vivo tests. MedBiol Eng Comput,1980(18):521-6P.
    [174] Murray J L. Phase diagrams of binary titanium alloys [M]. Metals Park, Ohio: ASMInternational.1987:1-354P.
    [175]杨海珉,吴杰,周明非,许贤芳,周建莉,和丽军.正交偏光镜下人体胆汁液晶光学性质的研究[J].中国医学物理学杂质.1994,11(4):3-6页.
    [176] Rezende M, Alves APR, Codaro EN, Dutra CAM. Effect of commercial mouthwasheson the corrosion resistance of Ti-10Mo experimental alloy [M]. Annual WinterMeeting of the American-Society-Mechanical-Engineers. Chicago, IL: Springer.2003:149-54P.
    [177] Kabe S. Studies on attrition of CP titanium as metal teeth [J]. Tsurumi Univ Dent J.1998,24:69-79P.
    [178] Shimura I. In vitro study evaluated the relative wear resistance of CP titanium andartificial teeth materials [J]. Tsurumi Univ Dent J.2001,27:45-58P.
    [179] Ohkubo C, Shimura I, Aoki T, Hanatani S, Hosoi T, Okabe T. In vitro wear assessmentof titanium alloy teeth [J]. Journal of Prosthodontics.2002,11(4):263-9P.
    [180]俞耀庭.生物医用材料[M].天津:天津大学出版社.2000:12-39页.
    [181] Baron PW, Heneghan MA, Suhoeki PV. Biliary strieture secondary to donor B-celllymphoma after orthotopic liver transplantation [J]. Liver Transpl.2001,7(1):62-5P.
    [182] Raute M, Podleeh P, Jaschke W. Management of bile duct injures and stricturesfollowing cholecystectomy [J]. Word J Surg.1993,17,553-62P.
    [183] England RE, Martin DF, Morris J. A prospective randomized multieentre trialcomparing10Fr Teflon Tannenbaum stents with10Fr polyethylene Cotton-Leungstents in patients with malignant common duct stricture [J]. Gut.2000,46(3):395-400P.
    [184]王勇.新型可降解载药复合涂层的制备与表征[D].哈尔滨工程大学硕士论文.2010
    [185]陈纪林.冠心病介入治疗的前景和展望[J].中国介入心脏病学大会.北京.2006:326-32页.
    [186]王学东.药物洗脱支架的研究进展[J].中国医药导刊.2005,7(5):325-327页.
    [187]杜文婷,胡永洲.紫杉醇水溶性衍生物的研究进展[J].中国现代应用药学杂志.2005,22:29页.
    [188]傅墩,袁杰,黄雄伟.植物抗癌药紫杉醇的研究进展[J].现代中药研究与实践.2006,20(3):58-61页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700