用户名: 密码: 验证码:
玻璃/莫来石复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电子工业的飞速发展使人们对电子封装基片材料的要求越来越高,必须制备出高质量的低温共烧封装基片材料,玻璃/莫来石复合材料是一种重要的低温共烧封装基片材料,国内对这方面的研究还比较少。本论文的主要任务是采用溶胶-凝胶法制备高质量的莫来石粉末和制备低介电常数的玻璃粉,使两种原料复合制备出玻璃/莫来石复合材料并研究其性能。
    溶胶-凝胶法是一种重要的制备粉体的方法。在溶胶-凝胶法制备莫来石粉末过程中,我们以正硅酸乙酯和硝酸铝为主要原料,采用该法制得了莫来石粉末,该粉末纯度很高,粒径较小并且分布均匀,我们按该法制得了约600g莫来石粉料,为接下来的实验打下了基础。
    在制粉过程中,我们借助XRD、DSC、IR、SEM等现代化测试手段,制定了工艺参数,研究了溶胶-凝胶形成机理及过程、干凝胶在热处理过程中向莫来石转变的过程,并对形成的粉末进行了粒径测试。干凝胶向莫来石的转变过程是:无定形→硅铝尖晶石→莫来石,制得的粉末平均粒径为0.54μm。沉淀法也是一种制备莫来石粉末的有效方法,在实验过程中,我们也采用该法制得了莫来石粉末,并和溶胶-凝胶法作了比较,结果发现采用沉淀法制备莫来石粉末其沉淀需要更高的热处理温度,并且制得粉末的粒径较粗、粒径分布范围较宽。
    作为低介常数的玻璃粉料,采用SiO2、硼酸等为原料,通过熔融、 研磨制得了玻璃粉料,其介电常数约为4.0,介质损耗为10×10-4。共熔制了约800 g玻璃料,为玻璃/莫来石复合材料的制备提供了原料保障。
    在制备玻璃/莫来石复合材料的过程中,我们研究了烧成后径向收缩率、试样的抗弯强度、介电常数、介质损耗及其影响因素,并测试了试样的热膨胀系数,通过SEM观测烧成试样的内部结构情况,找出性能和结构之间的关系。研究结果表明,当莫来石的含量为50 wt%、烧成温度为1000℃时,制得的玻璃/莫来石复合材料其介电常数约为4.6,介质损耗约为65×10-4,抗弯强度约为91Mpa。
The rapid development of micro-electron industry makes the requirement for electronic packing and substrates materials improve, people must prepare high-quality low temperature cofired packing and substrates materials. Glass/mullite composite material is an important kind of low temperature cofired packing and substrates materials, but there is few research on this kind of material in our country. In the paper, we prepared high-quality mullite powder by sol-gel method and prepared low dielectric constant glass powder, and mix these two kinds of powder together to prepare glass/mullite composite material and study its properties.
     Sol-gel is an important kind of method to prepare the powder. In the process of preparing mullite powder, we use TEOS and Al(NO3)3 as raw materials. The powder we prepared has high purity and its grain radius is relatively small and is distributed equality. By this method, we prepared about 600 g mullite powder and it provided basis for the next experiment.
     In the process of preparing powder, XRD, DSC, IR, SEM modern measuring method are used to determine the parameter of experiment, study on the forming mechanism of sol-gel and transition from dried gel to mullite after thermal treatment, and in the end radius of grain of forming powder is tested. The transition from dried gel to mullite is: amorphpus→Si-Al spinel→mullite, and the equal radius of the final powder is 0.54μm. Deposit method is another efficient kind of method to prepare mullite powder, we also prepared mullite powder by this method and compare with sol-gel method. Through the result, deposit method not only need relatively high temperature, but also the radius of grain is coarse, and the distribution is wide.
     In order to prepare low dielectric constant glass powder, we use SiO2, boracic acid etc as raw material to prepare glass powder. The result of testing is: its dielectric constant is about 4.0, and it is suit for our experiment. We prepared about 800 g glass powder totally, and it provided raw material guarantee for preparation of glass/mullite composite material.
     In the process of preparing glass/mullite composite material, research on shrink rate, bending strength, dielectric constant, dielectric loss tangent, etc have been carried out. In the experiment, the thermal expand coefficient of samples is tested, and through SEM, insides structure of sintered sample is studied, so the relationship of
    
    performance and structure can be researched. The test result show: when the concentration of mullite is 50wt%, sintering temperature is 1000℃, the dielectric constant of final material is 4.6, dielectric loss tangent is 65×10-4, and bending strength is about 91Mpa.
引文
[1]Varlry E R,Sillimanite London: London Her Majesty's Stationery Office,1965.3
    [2]陈树江,程继健. 用Sol-Gel法合成莫来石超细粉机理及过程的研究.硅酸盐通报,1995(3):41-46
    [3]Sadanaga R,Tokonam .The structure of mullite (2Al2O3·SiO2) and relationship with the structure of sillim andalusite, Acta Crystallo,1962,15:65-68
    [4]Padlewskis,Heine V, price G D. A model for the mullite structure. Phys. Chem.Minemals,1992,19:196-202
    [5]Angel J, P X, Sehneider H, Schmuker M. Crystal structure of Al-rich mullite .American Minera logist,1994,79:983-990
    [6]H.Saalfeld.A modificationofAl2O3 with sillimanite structure.Transactions Ⅷth Internation Ceramics Congress,Copenhagen,1962:71-74
    [7]S.Drovic and P.Fejdi. Synthesis and crystal structure of germanium mullite and crystalchemical parameters of D-mullites.Silikaty2,1976:97-112
    [8]C.W.Burnham.Crystal structure of mullite.Carnegie Inst.Washington Yearb, 1963(62),158-162;1964(63):223-227
    [9]R.J.Angel and C.T.Prewitt. Crystal structure of mullite:are-examination of the average stucture.Am.Mineral,1986(71):1476-1482
    [10]倪文,陈娜娜,赵万智等. 莫来石的工艺矿物学性质及其应用. 地质与勘探,1994(5):26-33
    [11]刘平,叶先贤. 莫来石研究及应用进展. 地质科技情报,1998(17):18-22
    [12]J.A.Pask. Solid state reactions and phase equilibria in the Al2O3-SiO2 system. 1993(76):436-452
    [13]吉木文平著,张绶成译, 非金属矿物工学, 科续出版社,1962
    [14]谈家琪、郑娟荣、沈继耀等.高纯电熔莫来石再烧结制品的研制.硅酸盐学报,1988,16(3):274-279
    [15]徐平坤、郭景荣、刘建中.合成莫来石工艺的研究. 耐火材料.1982,16(4):15-23
    [16]陈树江. 超细粉的生产方法及应用. 鞍山钢铁学院学报. 1994(17):22-25
    [17]丁子上,翁文剑. 溶胶-凝胶技术制备材料的进展. 硅酸盐学报. 1993(21):443-449
    [18]李大光,舒绪刚,张延霖等. 溶胶-凝胶法制备纳米氧化物. 韶关学院学报. 2001(22):5-9
    [19] Dong X L,Thomson W J. Mullite formation kinetics of a single-phase gel. J Am Ceram Soc,1990:73(4):964
    [20]Sankaran Sundaresan, Aksay I A. Mullitization of diphasic aluminosilicate gels. J Am Ceram
    
    Soc,1991:74(10):2388
    [21] Pask J A,zhang X W ,Tomsia A P. Effect of sol-gel mixing on mullite powder prepared by sol-gel processing. J Master Sci,1993(28):4904
    [22]禹剑 ,袁启明,杨正方等,双相硅铝凝胶Al2O3/SiO2比对莫来石陶瓷显微结构的影响. 硅酸盐学报. 1997(25):350-355
    [23]黄永前,郑昌琼,胡英等, 溶胶-凝胶法制备莫来石膜的研究.材料科学与工程. 1999(67):85-88
    [24]D.W.Hoffman, R.Roy and S.Komarneni. Diphasic xerogels,a new class of materials,phases in the system Al2O3-SiO2. J.Am. Ceram.Soc.1984(67):468-471
    [25]Y.M.M. Al-Jarsha, K.D.Biddle and A.K.Das. Mullite formation from ethyl silicate and aluminium chlorides.J.Mater.Sci,1985(20):1773-1781
    [26]田玉明,黄平,冷叔炎等. 沉淀法的研究及其应用现状. 材料导报. 2000(14):47-48
    [27]徐明霞,崔峰,靳正国等.超细莫来石粉末制备新工艺,硅酸盐学报. 1991(1):80-85
    [28]K.Okada and N.Otsuka. Characterization of spinel phase from SiO2-Al2O3 xerogel and the formation process of mullite.J.Am.Ceram.Soc.1986(69):652-656
    [29]O.Sakurai, M.Tokonami and Y.Takeuchi. Preparation of Mullite powers from metal alkoxides by ultrasonic spray pyrolys. J . Ceram .Soc .Jap. 1988(96):639-645
    [30]Schneider H, Okada K , Pask j . Mullite and Mullite Ceramics. Edited by Rahman S H .John Wiley & Sons, Chichester,1994,232
    [31]杜春生, 莫来石的工业应用. 硅酸盐通报. 1998(2):57-60
    [32]Tummala R R. Ceramic and glass -paking in the 1990s. J Am ceram Soc ,1991,74(5):895
    [33] 韩振宇, 马莒生, 徐忠华等, 低温共烧陶瓷基板制备技术研究进展. 电子元件与材料. 2000.12:31-33
    [34]Kumar A H, knickerbockers S, Tummala R R Sinterable glass-ceramic for high performance substrates(J). LEEE Trans Compon Hybrids Manuf Technol,1992.15:673
    [35]张强, 孙东立, 武高辉. 电子封装基片材料研究进展. 材料科学与工艺. 2000(8):66-72
    [36]Nmab.Materials for high-density electronic packaging and interconnection(J). Materials & Design. 1991,12(3):158-162
    [37]储章生. 集成电路封装用低温低介陶瓷材料的研制. 功能材料. 1998(31):10-11
    [38]石功奇,王健,丁培道. 陶瓷基片材料的研究现状[J]. 功能材料,1994.24(2):176-180
    [39]万群,钟俊辉, 电子信息材料[M].北京:冶金工业出版社,1990
    [40]高技术新材料要览编写组. 高技术新材料要览[M]. 北京:中国科学技术出版社,1993
    [41]高尚通,赵正平. 电子封装材料在中国的发展趋势. 世界电子元器件,1996(6):32-34
    [42]吴音, 缪卫国, 刘耀诚. 低温共烧多层AlN陶瓷基片. 材料研究学报. 1998(12):139-143
    
    
    [43]Markstein Howard W. A wide choice of materials for MC MS(J). Electronic Packaging & Production ,1997,37(3):34-38
    [44]喻学斌, 吴人洁, 张国定. 金属基电子封装复合材料的研究现状及发展[J]. 材料导报,1994,8(3):64-66
    [45]武全有. 电子技术领域的金属基复合材料. 电子工艺技术,1992,13(4):21-25
    [46]董兆文, 王岩. 低温共烧玻璃陶瓷基板材料的研究. 电子元件与材料. 1996(15):28-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700