用户名: 密码: 验证码:
基于广域动态信息的电力系统暂态稳定评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统暂态稳定评估(TSA)一直是关系到电力系统安全稳定运行的重要问题。随着大区电网互联、电力市场化改革和大规模可再生能源的接入,系统的动态行为更加复杂多变,控制变得更加困难,电网暂态稳定破坏的后果也更加严重。时域仿真法、直接法等现有的TSA方法,难以满足电网运行对在线稳定评估的要求。近年来,基于模式识别技术的TSA方法(PRTSA)受到各国学者的广泛关注,取得了较大的进展。其主要任务是建立系统变量和系统稳定结果问的关系映射,具有学习能力强、评估速度快、能提供潜在有用信息等优势,在电网在线安全稳定分析领域有着良好的应用前景。
     本文系统地研究了PRTSA的特征选择、分类器构建、在线学习、拓扑变化适应性及规则提取等问题。首先,研究从广域测量系统(WAMS)可提供的故障后信息中抽取有效表征系统暂态稳定性的模式特征集,通过特征选择方法筛选出最优特征子集,降低输入空间维数;然后研究暂态稳定评估分类器的构建,提出一种基于优化极限学习机的暂态稳定评估模型;接着研究评估模型的在线学习机制,提出一种基于集成在线序贯极限学习机的暂态稳定评估方法;最后研究了暂态稳定评估网络拓扑变化的适应性及暂态稳定规则的提取问题。论文的主要研究成果包括:
     1、提出一种基于改进最大相关最小冗余(mRMR)判据的TSA特征选择方法。首先,基于WAMS可提供的故障后信息,建立稳定分类的原始特征集,然后对mRMR判据进行改进后应用于特征选择和特征集压缩。通过增量搜索算法得到一组嵌套的候选特征子集,并使用支持向量机分类器验证各候选特征子集的分类性能,选择得到具有最大分类正确率的最优特征子集。
     2、提出一种基于优化极限学习机(ELM)的暂态稳定评估模型。基于所选的最优特征子集,采用极限学习机来构建TSA分类器,并采用基于综合混沌搜索策略的改进细菌群体趋药性算法优化选取ELM模型的参数,提升了评估模型的分类能力。
     3、提出一种基于集成在线序贯ELM的评估模型在线学习机制。针对评估模型不能在线更新的不足,采用增量式学习的在线序贯ELM作为弱分类器、在线Boosting算法作为集成学习算法进行多ELM模型的在线集成学习,提高了在线序贯ELM的稳定性和泛化能力。
     4、对暂态稳定评估方法的拓扑变化适应性进行了研究。基于本文依据WAMS信息建立的原始特征集,构造考虑网络拓扑变化的样本集,并采用本文的特征选择方法得到考虑系统拓扑变化的最优特征子集,然后采用ELM构建TSA模型对本文提出方法的拓扑变化适应性进行了研究评价。结果表明与已有PRTSA方法相比,本文方法适应电网拓扑变化的能力具有显著改进。
     5、提出一种基于极限学习机和改进蚁群挖掘算法的稳定评估规则提取方法。为了克服“黑箱型”学习机可理解性差、解释性差的缺陷,首先研究了蚁群挖掘算法进行规则挖掘的基本原理;然后基于所选最优特征子集,从训练好的ELM中产生示例样本集;最后,采用改进蚁群挖掘算法从示例样本集产生一组可以替代原ELM网络的分类规则。
Transient stability assessment (TSA) has been being an important task to ensure the secure and economical operation of power systems. With interconnection of large-scale power grids, electricity market reform and growing presence of large-scale intermittent renewable energy, the dynamic behaviors of the power systems are becoming more complex and difficult to be controlled, with more serious consequences resulted from loss of stability. The existing TSA methods, such as time domain simulation methods and direct methods, can not meet the needs of online applications required by the modern power systems. In recent years, pattern recognition-based TSA (PRTSA) technology has attracted great attention of researchers in such a field at home and abroad. Its main task is to establish a mapping relationship between system state variables and system stability conclusions. Compared to the other TSA methods, the PRTSA methods have a lot of advantages, such as strong learning ability, fast assessment speed and acquisition of potentially useful information. They have a good prospect in the field of the on-line security and stability analysis of power systems.
     This thesis systematically studies the relative problems of PRTSA, including feature selection, classifier construction, online learning, topology change adaptation and rule extraction. First, an original feature set is extracted from the post-fault system information which can be provided by the Wide-Area Measurement Systems (WAMS) to represent the characteristics of power system transient stability, and an optimal feature subset is then selected by a proposed feature selection method to reduce the input space dimension. Then, a TSA classifier based on the optimized extreme learning machine (ELM) is constructed. After that, an online learning mechanism based on the integrated online sequential ELM is proposed. Finally, the adaptability of the proposed TSA method to the network topology changes and extraction of assessment rules from the ELM-based classifier are studied.
     The main work of this thesis is summarized as follows:
     1. A new feature selection method based on an improved maximal relevance and minimal redundancy (mRMR) criterion is proposed for TSA. First, based on the post-fault system information provided possibly by WAMS, an original feature set for stability classification is extracted. Then, the standard mRMR is improved and applied to feature selection for compressing the feature set. A group of nested candidate feature subsets are obtained by using the incremental search technique, and each candidate feature subset is evaluated by a support vector machine classifier to find the optimal feature subset with the highest classification accuracy.
     2. A novel TSA model based on an optimized ELM is proposed. Based on the selected optimal feature subset, ELM is used to build a TSA classifier. The parameters of the ELM model are optimized by the improved bacterial colony chemotaxis algorithm, and the classification ability of the ELM model is improved.
     3. A TSA online learning mechanism based on an ensemble of online sequential ELM (OS-ELM) model is proposed. In order to overcome the difficulty of on-line model updating, the OS-ELM and online boosting algorithm are employed as a weak classifier and an ensemble learning algorithm for online learning of the integrated ELM models respectively. The stability and generalization ability of the OS-ELM model is greatly improved.
     4. The adaptability of the proposed TSA method to the network topology changes is investigated. Based on the original feature set established, a sample set is constructed with the network topology changes in consideration, and the optimal feature subset is found by using the proposed feature selection method. The optimized ELM is then employed as a TSA classifier to evaluate the network topology adaptability of the proposed TSA method. The results show that, compared to the previous TSA methods, the topology adaptability of the proposed method is much higher.
     5. A novel rule extraction method for TSA is proposed by using ELM and an improved Ant-miner algorithm. In order to overcome the shortcomings of low understandability and interpretability of a'black-box'learning machine, first the basic principle of Ant-miner algorithm is studied; then based on the selected optimal feature subset, an example sample set is generated by the trained ELM-based TSA model; and finally, a set of classification rules are obtained by the improved Ant-miner algorithm to replace the original ELM network for TSA.
引文
[1]Kundur P, Balu N J, Lauby M G. Power system stability and control[M]. New York:McGraw-hill New York,1994
    [2]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002
    [3]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003
    [4]周孝信,郑健超,沈国荣,等.从美加东北部电网大面积停电事故中吸取教训[J].电网技术,2003,27(9):1-1
    [5]韩水,苑舜,张近珠.国外典型电网事故分析[M].北京:中国电力出版社,2005
    [6]王梅义.大电网事故分析与技术应用[M].北京:中国电力出版社,2008
    [7]陈向宜,陈允平,李春艳,等.构建大电网安全防御体系——欧洲大停电事故的分析及思考[J].电力系统自动化,2007,31(1):4-8
    [8]汤涌,卜广全,易俊.印度“7.30”,“7.31”大停电事故分析及启示[J].中国电机工程学报,2012,32(25):167-174
    [9]Andersson G, Donalek P, Farmer R, et al. Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance[J]. IEEE Transactions on Power Systems,2005,20(4): 1922-1928
    [10]曾鸣,李红林,薛松,等.系统安全背景下未来智能电网建设关键技术发展方向——印度大停电事故深层次原因分析及对中国电力工业的启示[J].中国电机工程学报,2012,32(25):175-181
    [11]陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7
    [12]余贻鑫,栾文鹏.智能电网述评[J].中国电机工程学报,2009,29(34):1-8
    [13]中国南方电网广东省广电集团公司生产技术部,广东省电力试验研究所.跨区域互联电网运行与建设规划研究[M].北京:中国电力出版社,2004
    [14]Phadke A. Synchronized phasor measurements in power systems[J]. IEEE Computer Applications in Power,1993,6(2):10-15
    [15]Phadke A G, Thorp J S. Synchronized phasor measurements and their applications[M]. New York:Springer,2008
    [16]常乃超,兰洲,甘德强,等.广域测量系统在电力系统分析及控制中的应用综述[J].电网技术,2005,29(10):46-52
    [17]Taylor C W, Erickson D C, Martin K E, et al. WACS-wide-area stability and voltage control system:R&D and online demonstration[J]. Proceedings of the IEEE,2005,93(5):892-906
    [18]褚晓东.基于广域测量信息的电力系统暂态稳定预测与控制决策[D].济南:山东大学,2006
    [19]李大虎.基于广域测量的电力系统在线安全分析若干关键问题的研究[D].武汉:华中科技大学,2006
    [20]薛禹胜,徐伟,万秋兰.关于广域测量系统及广域控制保护系统的评述[J].电力系统自动化,2007,31(15):1-5
    [21]Terzija V, Valverde G, Cai D, et al. Wide-area monitoring, protection, and control of future electric power networks[J]. Proceedings of the IEEE,2011,99(1):80-93
    [22]吴为,汤涌,孙华东,等.基于广域量测信息的电力系统暂态稳定研究综述[J].电网技术,2012,36(9):81-87
    [23]韩英铎,林孔兴.电力系统中的三项前沿课题:柔性输电技术,智能控制,基于GPS的动态安全分析与监测系统[J].清华大学学报,1997,37(7):1-6
    [24]DL 755-2001.电力系统安全稳定导则。北京:中国电力出版社,2001
    [25]Kundur P, Paserba J, Ajjarapu V, et al. Definition and classification of power system stability[J]. IEEE Transactions on Power Systems,2004,19(3):1387-1401
    [26]Chiang H-D, Wu F F, Varaiya P P. Foundations of direct methods for power system transient stability analysis[J]. IEEE Transactions on Circuits and Systems,1987, 34(2):160-173
    [27]崔凯.电力系统概率暂态稳定性分析与控制方法研究[D].天津:天津大学,2006
    [28]Pavella M, Ernst D, Ruiz-Vega D. Transient stability of power systems:a unified approach to assessment and control[M]. Boston:Kluwer Academic Publisher,2000
    [29]王守相,郑志杰,王成山.计及不确定性的电力系统时域仿真的区间算法[J].中国电机工程学报,2007,27(7):40-44
    [30]刘新东,江全元,黄志光,等.计及不确定性的暂态稳定在线预测[J].中国电机工程学报,2009,29(28):75-81
    [31]汪隆君,王钢.基于动态安全域与埃奇沃斯级数的电力系统暂态稳定概率评估[J].中国电机工程学报,2011,31(1):52-58
    [32]叶圣永,王晓茹,周曙,等.基于马尔可夫链蒙特卡罗方法的电力系统暂态稳定概率评估[J].电工技术学报,2012,27(6):168-174
    [33]郭志忠,柳焯.快速高阶Taylor级数法暂态稳定计算[J].中国电机工程学报, 1991,11(3):8-16
    [34]汪芳宗,陈德树,何仰赞.大规模电力系统暂态稳定性实时仿真及快速判断[J].中国电机工程学报,1993,13(6):13-19
    [35]郭志忠,朱文东,柳悼,等.电力系统暂态稳定的快速时域仿真判定法[J].电工技术学报,1994,9(3):47-49
    [36]汪芳宗,陈德树.一种新的电力系统暂态稳定性在线计算方法[J].电力系统自动化,1994,18(5):31-35
    [37]郑焕坤,常鲜戎,王正辉.高精度A稳定隐式调谐Taylor级数法在电力系统中的应用[J].电工技术学报,2012,27(1):217-223
    [38]Decker I, Falcao D, Kaszkurewicz E. Parallel implementation of a power system dynamic simulation methodology using the conjugate gradient method[J]. IEEE Transactions on Power Systems,1992,7(1):458-465
    [39]Crow M, Ilic M. The parallel implementation of the waveform relaxation method for transient stability simulations[J]. IEEE Transactions on Power Systems,1990, 5(3):922-932
    [40]Hou L, Bose A. Implementation of the waveform relaxation algorithm on a shared memory computer for the transient stability problem[J]. IEEE Transactions on Power Systems,1997,12(3):1053-1060
    [41]Chai J S, Bose A. Bottlenecks in parallel algorithms for power system stability analysis[J]. IEEE Transactions on Power Systems,1993,8(1):9-15
    [42]薛巍,舒继武.电力系统暂态稳定仿真并行算法的研究进展[J].系统仿真学报,2002,14(2):177-182
    [43]戴仁昶,戚其荟.暂态稳定仿真的综合人工智能方法[J].中国电机工程学报,2002,22(12):1-5
    [44]宋新立,汤涌,刘文焯,等.电力系统全过程动态仿真的组合数值积分算法研究[J].中国电机工程学报,2009,29(28):23-29
    [45]吴红斌,丁明.用于电力系统暂态稳定仿真的可变步长牛顿法[J].中国电机工程学报,2010,30(7):36-41
    [46]Chang H-D, Chu C-C, Cauley G. Direct stability analysis of electric power systems using energy functions:theory, applications, and perspective[J]. Proceedings of the IEEE,1995,83(11):1497-1529
    [47]Gless G. Direct method of Liapunov applied to transient power system stability[J]. IEEE Transactions on Power Apparatus and Systems,1966,85(2): 159-168
    [48]El-Abiad A H, Nagappan K. Transient stability regions of multimachine power systems[J]. IEEE Transactions on Power Apparatus and Systems.1966,85(2): 169-179
    [49]Sauer P W, Pai M. Power system dynamics and stability[M]. New Jersey:Prentice Hall,1998
    [50]Athay T, Podmore R, Virmani S. A practical method for the direct analysis of transient stability[J]. IEEE Transactions on Power Apparatus and Systems,1979, 98(2):573-584
    [51]Kakimoto N, Ohsawa Y, Hayashi M. Transient stability analysis of electric power system via Lure-Type Lyapunov function, Parts I and II[J]. Transactions IEE of Japan,1978,98(5-6):566-604
    [52]Chiang H-D, WuFF, Varaiya P P. Foundations of the potential energy boundary surface method for power system transient stability analysis[J]. IEEE Transactions on Circuits and Systems,1988,35(6):712-728
    [53]Chiang H-D, WuFF, Varaiya P P. A BCU method for direct analysis of power system transient stability[J]. IEEE Transactions on Power Systems,1994,9(3): 1194-1208
    [54]Xue Y, Van Cutsem T, Ribbens-Pavella M. A simple direct method for fast transient stability assessment of large power systems[J]. IEEE Transactions on Power Systems,1988,3(2):400-412
    [55]Xue Y, Van Custem T, Ribbens-Pavella M. Extended equal area criterion justifications, generalizations, applications[J]. IEEE Transactions on Power Systems,1989,4(1):44-52
    [56]Xue Y, Wehenkel L, Belhomme R, et al. Extended equal area criterion revisited [EHV power systems][J]. IEEE Transactions on Power Systems,1992,7(3): 1012-1022
    [57]倪以信,姚良忠,蔡泽祥.直接暂态稳定分析综合法[J].中国电机工程学报,1992,12(6):63-68
    [58]Michel A N, Fouad A, Vittal V. Power system transient stability using individual machine energy functions[J]. IEEE Transactions on Circuits and Systems,1983, 30(5):266-276
    [59]刘笙,汪静.电力系统暂态稳定的能量函数分析[M].上海:上海交通大学出版社,1996
    [60]宋方方,毕天姝,杨奇逊.基于暂态能量变化率的电力系统多摆稳定性判别新方法[J].中国电机工程学报,2007,27(16):13-18
    [61]Sobajic D J, PaoYH. Artificial neural-net based dynamic security assessment for electric power systems[J]. IEEE Transactions on Power Systems,1989,4(1): 220-228
    [62]管霖,曹绍杰.基于人工智能的大系统分层在线暂态稳定评估[J].电力系统自动化,2000,24(2):22-26
    [63]Mjolsness E, DeCoste D. Machine learning for science:state of the art and future prospects[J]. Science,2001,293(5537):2051-2055
    [64]张学工.模式识别(第三版)[M].北京:清华大学出版社,2010
    [65]于继来.电力系统暂态稳定性模式分析[D].保定:华北电力大学,1992
    [66]顾雪平,曹绍杰.基于神经网络暂态稳定评估方法的一种新思路[J].中国电机工程学报,2000,20(4):77-82
    [67]Wehenkel L, Van Cutsem T, Ribbens-Pavella M. Artificial intelligence applied to on-line transient stability assessment of electric power systems[A]. Proceedings of the 25th IEEE Conference on Decision and Control[C]. USA, IEEE Press,1986: 649-650
    [68]王同文,管霖,张尧.人工智能技术在电网稳定评估中的应用综述[J].电网技术,2009,33(12):70-76
    [69]顾雪平,曹绍杰.神经网络在暂态稳定评估中应用的研究述评[J].华北电力大学学报,2003,30(4):11-16
    [70]于继来,郭志忠,柳焯.采用神经暂态元网络技术的电力系统暂态安全分析[J].电力系统自动化,1991,15(3):44-50
    [71]Zhou Q, Davidson J, Fouad A. Application of artificial neural networks in power system security and vulnerability assessment J]. IEEE Transactions on Power Systems,1994,9(1):525-532
    [72]唐巍,陈学允.应用人工神经网络进行电力系统暂态稳定性分析的新方法[J].电力系统自动化,1996,20(11):23-26
    [73]Liu C W, Su M C, Tsay S S, et al. Application of a novel fuzzy neural network to real-time transient stability swings prediction based on synchronized phasor measurements[J]. IEEE Transactions on Power Systems,1999,14(2):685-692
    [74]刘玉田,林飞.基于相量测量技术和模糊径向基网络的暂态稳定性预测[J].中国电机工程学报,2000,20(2):19-23
    [75]Rajapakse A D, Gomez F, Nanayakkara K, et al. Rotor angle instability prediction using post-disturbance voltage trajectories[J]. IEEE Transactions on Power Systems,2010,25(2):947-956
    [76]Gomez F R, Rajapakse A D, Annakkage U D, et al. Support vector machine-based algorithm for post-fault transient stability status prediction using synchronized measurements[J]. IEEE Transactions on Power Systems,2011,26(3):1474-1483
    [77]顾雪平,张文朝.基于Tabu搜索技术的暂态稳定分类神经网络的输入特征选择[J].中国电机工程学报,2002,22(7):66-70
    [78]Jain A K, Duin R P W, Mao J. Statistical pattern recognition:A review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(1):4-37
    [79]王皓,孙宏斌,张伯明,等.基于混合互信息的特征选择方法及其在静态电压稳定评估中的应用[J].中国电机工程学报,2006,26(7):77-81
    [80]管霖,王同文,唐宗顺.电网安全监测的智能化关键特征识别及稳定分区算法[J].电力系统自动化,2006,30(21):22-27
    [81]Muknahallipatna S, Chowdhury B H. Input dimension reduction in neural network training-case study in transient stability assessment of large systems [A]. Proceedings of the International Conference on Intelligent Systems Applications to Power Systems[C]. USA, IEEE Press,1996:50-54
    [82]Lo K, Peng L, Macqueen J, et al. Fast real power contingency ranking using a counterpropagation network[J]. IEEE Transactions on Power Systems,1998,13(4): 1259-1264
    [83]Jensen C A, El-Sharkawi M, Marks R J. Power system security assessment using neural networks:feature selection using Fisher discrimination[J]. IEEE Transactions on Power Systems,2001,16(4):757-763
    [84]Tso S K, GuXP. Feature selection by separability assessment of input spaces for transient stability classification based on neural networks[J]. International journal of electrical power & energy systems,2004,26(3):153-162
    [85]章小强,管霖,王同文.针对特征选择问题的改进蚁群算法及其在电力系统安全评估中的应用[J].电工技术学报,2010,25(12):154-160+166
    [86]叶圣永,王晓茹,刘志刚,等.基于支持向量机的暂态稳定评估双阶段特征选择[J].中国电机工程学报,2011,30(31):28-34
    [87]唐巍,陈学允.BP算法应用于电力系统暂态稳定分析的新策略[J].电力系统自动化,1997,21(3):47-50
    [88]Sawhney H, Jeyasurya B. A feed-forward artificial neural network with enhanced feature selection for power system transient stability assessment[J]. Electric power systems research,2006,76(12):1047-1054
    [89]Pao Y-H, Sobajic D J. Combined use of unsupervised and supervised learning for dynamic security assessment J]. IEEE Transactions on Power Systems,1992,7(2): 878-884
    [90]Tso S K, Gu X P, Zeng Q Y, et al. An ANN-based multilevel classification approach using decomposed input space for transient stability assessment[J]. Electric power systems research,1998,46(3):259-266
    [91]汤必强,邓长虹,刘丽芳.复合神经网络在电力系统暂态稳定评估中的应用[J].电网技术,2004,28(15):62-66
    [92]李军,刘艳,顾雪平.基于信息熵的属性离散化算法在暂态稳定评估中的应用[J].电力系统自动化,2005,29(8):26-31
    [93]刘艳,顾雪平,李军.用于暂态稳定评估的人工神经网络输入特征离散化方法[J].中国电机工程学报,2005,25(15):56-61
    [94]Ferreira W P, Silveira M d C G, Lotufo A P, et al. Transient stability analysis of electric energy systems via a fuzzy ART-ARTMAP neural network[J]. Electric power systems research,2006,76(6):466-475
    [95]Amjady N, Majedi S F. Transient stability prediction by a hybrid intelligent system[J]. IEEE Transactions on Power Systems,2007,22(3):1275-1283
    [96]Amjady N, Banihashemi S. Transient stability prediction of power systems by a new synchronism status index and hybrid classifier[J]. IET generation, transmission & distribution,2010,4(4):509-518
    [97]姚德全,贾宏杰,赵帅.基于复合神经网络的电力系统暂态稳定评估和裕度预测[J].电力系统自动化,2013,20):41-46
    [98]张琦,韩祯祥,曹绍杰,等.用于暂态稳定评估的人工神经网络输入空间压缩方法[J].电力系统自动化,2001,25(2):32-35
    [99]许涛,贺仁睦,王鹏,等.基于统计学习理论的电力系统暂态稳定评估[J].中国电机工程学报,2004,23(11):51-55
    [100]Wehenkel L, Pavella M, Euxibie E, et al. Decision tree based transient stability method a case study[J]. IEEE Transactions on Power Systems,1994,9(1):459-469
    [101]Wehenkel L. Machine-learning approaches to power-system security assessment[J]. IEEE Expert,1997,12(5):60-72
    [102]Pavella M. Power system transient stability assessment-traditional vs modern methods[J]. Control Engineering Practice,1998,6(10):1233-1246
    [103]Rovnyak S, Kretsinger S, Thorp J, et al. Decision trees for real-time transient stability prediction[J]. IEEE Transactions on Power Systems,1994,9(3): 1417-1426
    [104]Karapidakis E, Hatziargyriou N. Online preventive dynamic security of isolated power systems using decision trees[J]. IEEE Transactions on Power Systems, 2002,17(2):297-304
    [105]Sun K, Likhate S, Vittal V, et al. An online dynamic security assessment scheme using phasor measurements and decision trees[J]. IEEE Transactions on Power Systems,2007,22(4):1935-1943
    [106]王同文,管霖.基于模式发现的电力系统稳定评估和规则提取[J].中国电机工程学报,2007,27(19):25-31
    [107]王康,孙宏斌,张伯明,等.基于二维组合属性决策树的暂态稳定评估[J].中国电机工程学报,2009,29(1):17-24
    [108]Burges C J. A tutorial on support vector machines for pattern recognition[J]. Data mining and knowledge discovery,1998,2(2):121-167
    [109]Vapnik V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks,1999,10(5):988-999
    [110]Vapnik V. The nature of statistical learning theory[M]. New York:Springer-Verlag, 2000
    [111]Moulin L, Alves da Silva A, El-Sharkawi M, et al. Support vector machines for transient stability analysis of large-scale power systems[J]. IEEE Transactions on Power Systems,2004,19(2):818-825
    [112]Alves da Silva A. Overcoming limitations of NNs for on-line DSA [A]. Proceedings of the Power Engineering Society General Meeting [C]. USA, IEEE Press,2005:2653-2660
    [113]马骞,杨以涵,刘文颖,等.多输入特征融合的组合支持向量机电力系统暂态稳定评估[J].中国电机工程学报,2005,25(6):17-23
    [114]吴琼,杨以涵,刘文颖.基于最小二乘支持向量机的电力系统暂态稳定在线预测[J].中国电机工程学报,2007,27(25):38-43
    [115]李大虎,曹一家.基于PMU和混合支持向量机网络的电力系统暂态稳定性分析[J].电网技术,2006,30(9):46-52
    [116]叶圣永,王晓茹,刘志刚,等.基于受扰严重机组特征及机器学习方法的电力系统暂态稳定评估[J].中国电机工程学报,2011,31(1):46-51
    [117]Jayasekara B, Annakkage U D. Derivation of an accurate polynomial representation of the transient stability boundary[J]. IEEE Transactions on Power Systems,2006,21(4):1856-1863
    [118]王同文,管霖,章小强,等.基于扩展k阶近邻法的电力系统稳定评估新算法[J].2008,32(3):18-21+75
    [119]叶圣永,王晓茹,刘志刚,等.基于随机森林算法的电力系统暂态稳定性评估 [J].西南交通大学学报,2008,43(5):573-577
    [120]卢锦玲,朱永利,赵洪山,等.提升型贝叶斯分类器在电力系统暂态稳定评估中的应用[J].电工技术学报,2009,24(5):177-182
    [121]Mohammadi M, Gharehpetian G. On-line transient stability assessment of large-scale power systems by using ball vector machines [J]. Energy Conversion and Management,2010,51(4):640-647
    [122]唐飞,王波,查晓明,等.基于双阶段并行隐马尔科夫模型的电力系统暂态稳定评估[J].中国电机工程学报,2013,33(10):90-97
    [123]Huang G B, Zhu Q Y, Siew C K. Extreme learning machine:theory and applications[J]. Neurocomputing,2006,70(1):489-501
    [124]Huang G B, Wang D H, Lan Y. Extreme learning machines:a survey[J]. International Journal of Machine Learning and Cybernetics,2011,2(2): 107-122
    [125]Huang G B, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2012,42(2):513-529
    [126]Zhang R, Huang G B, Sundararajan N, et al. Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics,2007,4(3):485-495
    [127]孔祥新,程明,花为,等.利用极端学习机的新型定子双馈电双凸极电机效率优化[J].中国电机工程学报,2009,29(6):80-85
    [128]Nizar A, Dong Z, Wang Y. Power utility nontechnical loss analysis with extreme learning machine method[J]. IEEE Transactions on Power Systems,2008,23(3): 946-955
    [129]Chen X, Dong Z Y, Meng K, et al. Electricity price forecasting with extreme learning machine and bootstrapping[J]. IEEE Transactions on Power Systems, 2012,27(4):2055-2062
    [130]Xu Y, Dong Z, Meng K, et al. Real-time transient stability assessment model using extreme learning machine[J]. IET generation, transmission & distribution,2011, 5(3):314-322
    [131]Chang C S, Srinivasan D, Liew A C. A hybrid model for transient stability evaluation of interconnected longitudinal power systems using neural network/pattern recognition approach[J]. IEEE Transactions on Power Systems, 1994,9(1):85-92
    [132]Tso S K, Guan L, Zeng Q Y, et al. Fuzzy assessment of power system transient stability level based on steady-state data[J]. IEE Proceedings Generation, Transmission and Distribution,1997,144(6):525-531
    [133]Su M C, Liu C W, Tsay S S. Neural-network-based fuzzy model and its application to transient stability prediction in power systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,1999,29(1):149-157
    [134]黄辉,舒乃秋,李自品,等.基于信息融合技术的电力系统暂态稳定评估[J].中国电机工程学报,2007,27(16):19-23
    [135]Mansour Y, Chang A, Tamby J, et al. Large scale dynamic security screening and ranking using neural networks[J]. IEEE Transactions on Power Systems,1997, 12(2):954-960
    [136]薛禹胜.暂态稳定预防控制和紧急控制的协调[J].电力系统自动化,2002,26(4):1-4
    [137]薛禹胜,李威.关于暂态稳定控制决策优化方法的思考[J].电力系统自动化,2003,27(10):15-21
    [138]陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138
    [139]Guyon I, Elisseeff A. An introduction to variable and feature selection[J]. The Journal of Machine Learning Research,2003,3:1157-1182
    [140]Cover T M. The best two independent measurements are not the two best[J]. IEEE Transactions on Systems, Man and Cybernetics,1974,4(1):116-117
    [141]Cover T M, Thomas J A. Elements of information theory[M]. New York:John Wiley & Sons,1991
    [142]Kohavi R, John G H. Wrappers for feature subset selection[J]. Artificial intelligence,1997,97(1):273-324
    [143]Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1226-1238
    [144]汪马翔.基于PMU测量数据的暂态稳定预测分类特征选择[D]:华北电力大学(保定),2006
    [145]张文朝.基于人工神经网络的暂态稳定评估技术的研究[D]:华北电力大学(保定),2002
    [146]吕志来,张保会.模糊子集和Taylor级数相结合的快速事故筛选方法[J].电力系统自动化,2000,24(22):16-20
    [147]Chauhan S, Dave M P. Input-features based comparative study of intelligent transient stability assessment[J]. Electric machines and power systems,1997,25(6): 593-605
    [148]Pai M A. Energy function analysis for power system stability[M]. Boston, MA: Kluwer Academic Publisher,1989
    [149]Reunanen J. Overfitting in making comparisons between variable selection methods[J]. The Journal of Machine Learning Research,2003,3:1371-1382
    [150]Vittal V, Martin D, Chu R, et al. Transient stability test systems for direct stability methods[J]. IEEE Transactions on Power Systems,1992,7(1):37-43
    [151]Sun Y, Todorovic S, Goodison S. Local-learning-based feature selection for high-dimensional data analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1610-1626
    [152]Muller S D, Marchetto J, Airaghi S, et al. Optimization based on bacterial chemotaxis[J]. IEEE Transactions on Evolutionary Computation,2002,6(1):16-29
    [153]李威武,王慧,邹志君,等.基于细菌群体趋药性的函数优化方法[J].电路与系统学报,2005,10(1):58-63
    [154]黄伟,张建华,张聪,等.基于细菌群体趋药性算法的电力系统无功优化[J].电力系统自动化,2007,31(7):29-33
    [155]张晓辉,卢志刚,秦四娟.基于改进细菌群体趋药性算法的电力系统无功优化[J].电网技术,2012,36(2):109-114
    [156]寇蔚,孙丰瑞,杨立.细菌群趋药性算法在电气设备缺陷参数红外识别中的应用[J].中国电机工程学报,2008,28(30):113-118
    [157]Shi Z b, Li Y, Yu T. Short-term load forecasting based on LS-SVM optimized by bacterial colony chemotaxis algorithm[A]. Proceedings of the 2009 International Conference on Information and Multimedia Technology[C]. USA, IEEE Press, 2009:306-309
    [158]曾鸣,吕春泉,田廓,等.基于细菌群落趋药性优化的最小二乘支持向量机短期负荷预测方法[J].中国电机工程学报,2012,31(34):93-99
    [159]Wolpert D H, Macready W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation,1997,1(1):67-82
    [160]刘自发,张建华.一种求解电力经济负荷分配问题的改进微分进化算法[J].中国电机工程学报,2008,28(10):100-105
    [161]姚静,方彦军,陈广.遗传和禁忌搜索混合算法在机组负荷分配中的应用[J].中国电机工程学报,2010,26):95-100
    [162]Honerkamp J, Weese J. Tikhonov's regularization method for ill-posed problems[J]. Continuum Mechanics and Thermodynamics,1990,2(1):17-30
    [163]Haupt R L. Antenna design with a mixed integer genetic algorithm[J]. IEEE Transactions on Antennas and Propagation,2007,55(3):577-582
    [164]Matias T, Souza F, Araujo R, et al. Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine[J]. Neurocomputing, 2013,129(10):428-436
    [165]Bartlett P L. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network[J]. IEEE Transactions on Information Theory,1998,44(2):525-536
    [166]Li Y, Gu X P. Application of Online SVR in Very Short-Term Load Forecasting[J]. International Review of Electrical Engineering,2013,8(1):277-282
    [167]Liang N-Y, Huang G-B, Saratchandran P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks,2006,17(6):1411-1423
    [168]Ditterrich T G. Machine learning research:four current direction[J]. Artificial Intelligence Magzine,1997,18(4):97-136
    [169]Bishop C M. Pattern recognition and machine learning[M]. New York:Springer, 2006
    [170]Schapire R E. The strength of weak learnability[J]. Machine learning,1990,5(2): 197-227
    [171]Kearns M, Valiant L. Cryptographic limitations on learning Boolean formulae and finite automata[J]. Journal of the ACM (J ACM),1994,41(1):67-95
    [172]Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of computer and system sciences,1997,55(1): 119-139
    [173]Grabner H, Bischof H. On-line boosting and vision [A]. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. USA, IEEE Press,2006:260-267.
    [174]Lan Y, Soh Y C, Huang G-B. Ensemble of online sequential extreme learning machine[J]. Neurocomputing,2009,72(13):3391-3395
    [175]张春霞,张讲社.选择性集成学习算法综述[J].计算机学报,2011,34(8):1399-1410
    [176]Yu X H, Chen G A. Efficient backpropagation learning using optimal learning rate and momentum[J]. Neural Networks,1997,10(3):517-527
    [177]Huang G-B, Saratchandran P, Sundararajan N. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2004,34(6): 2284-2292
    [178]Yingwei L, Sundararajan N, Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks[J]. Neural computation,1997,9(2):461-478
    [179]Yingwei L, Sundararajan N, Saratchandran P. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm[J]. IEEE Transactions on Neural Networks,1998,9(2):308-318
    [180]卢芳,于继来.基于广域相量测量的暂态稳定快速评估方法[J].电力系统自动化,2010,34(8):24-28
    [181]刘友波,刘俊勇,刘利民,等.面向同步相量轨迹簇规则的电力系统暂态稳定实时评估[J].中国电机工程学报,2011,31(16):32-39
    [182]刘道伟,马世英,李柏青,等.基于响应的电网暂态稳定态势在线量化评估方法[J].中国电机工程学报,2013,33(4):85-95
    [183]Miche Y, Sorjamaa A, Bas P, et al. OP-ELM:optimally pruned extreme learning machine[J]. IEEE Transactions on Neural Networks,2010,21(1):158-162
    [184]孙宏斌,王康,张伯明,等.采用线性决策树的暂态稳定规则提取[J].中国电机工程学报,2012,31(34):61-67
    [185]Parpinelli R S, Lopes H S, Freitas A A. Data mining with an ant colony optimization algorithm[J]. IEEE Transactions on Evolutionary Computation,2002, 6(4):321-332
    [186]孟宪明,凌培亮.基于自适应蚁群优化算法的数据挖掘模型研究[J].中国工程机械学报,2009,7(3):275-279
    [187]Omkar S, Karanth U R. Rule extraction for classification of acoustic emission signals using ant colony optimisation[J]. Engineering Applications of Artificial Intelligence,2008,21(8):1381-1388
    [188]刘小平,黎夏,何晋强,等.基于蚁群智能的遥感影像分类新方法[J].遥感学报,2008,12(2):253-262
    [189]吴孔江,曾永年,靳文凭,等.改进利用蚁群规则挖掘算法进行遥感影像分类[J].测绘学报,2013,42(1):59-66
    [190]周志华,何佳洲.一种基于统计的神经网络规则抽取方法[J].软件学报,2001,12(2):263-269
    [191]陈果,李成刚,王德友.利用神经网络规则提取方法获取转静碰摩故障诊断知 识[J].航空学报,2008,29(05):1319-1325
    [192]刘波,潘久辉.基于蚁群优化的分类算法的研究[J].计算机应用与软件,2007,24(4):50-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700