用户名: 密码: 验证码:
Gleeble热机械模拟实验焦耳效应的数值模拟和实验验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通常进行Gleeble动态试验的数值模拟时,设定试样内部温度为均一值。但实际上焦耳效应加热时会在试样内部产生温度梯度,而温度会影响材料的力学行为。本课题为了提高模拟的精度,考虑焦耳效应所产生的温度场,利用Abaqus有限元软件建立了帽型试样热电耦合的有限元模拟。
     使用帽型试样建模,分析了电学载荷的模拟、边界条件的设定以及相关参数的影响。使用简化的长方体试样进行焦耳效应Abaqus有限元模拟,同时进行相同参数条件下的Gleeble实验,试样温度结果基本一致,表明该模拟可以相当预测焦耳效应的温度场分布情况。
     模拟帽型试样在Gleeble热机械试验机上的加热过程,最终得到动态试验开始时试样内部的温度分布。模拟结果表明在切断电流进行力学实验时,整个试样中的温度仍是不均匀的,温差达到为200K,而且剪切区中仍存在14K/mm的温度梯度。试样中温度分布的不均一将会导致各部分物理参数不相等,模拟所得结果可导入应力分析阶段作为预定义温度场,以体现在进行力学实验时,试样内部温度不均一对力学行为造成的影响。
     此外,特别扩展分析了Gleeble验证实验中计算电阻曲线时对材料相变温度的测定。电压电流数据经过处理获得材料的电阻值变化曲线,曲线上的歧点为材料的相变温度点,其结果通过径向热膨胀实验进行了验证。这种测量相变温度的方法特别适用于相变时体积变化不明显的材料如钛合金等,测量不同热循环条件下相变温度的变化,也可以用来研究电流对材料相变的影响以及材料的导电机制等。
The numerical simulation of the Gleeble dynamic test is usually carried out with the definition of homogeneous temperature in the specimen. But in fact, joule effect will lead to an internal temperature gradient, which will affect the mechanical behavior of the material. In this research, in order to refine the numerical simulation of dynamic tests on Gleeble through considering the Joule effect, a model of thermal-electric coupling for hat-shaped specimen was constructed with Abaqus.
     The coupled thermal-electrical simulation of hat-shaped specimen was constructed. The definition of the electrical charge and the influence of boundary conditions were discussed.
     Modeling in Abaqus was verified using a simplified rectangular sample by comparison with results from experimental test performed on a Gleeble machine.
     The heating step of a hat-shaped specimen on the thermo-mechanical machine Gleeble was simulated for the temperature distribution. The results showed that the temperature distribution was not uniform when the current was cut off and dynamic test started. The temperature difference reached 200K and a temperature gradient of 14K/mm existed in the shear zone. The simulation results obtained can be imported to the mechanical simulation step as predefined temperature field, which can reflect the impact of the internal temperature distribution on material’s mechanical behavior.
     In addition, an extended analysis was specially focused on the prediction of the phase transition temperature when the resistance curve was calculated during validation tests on the Gleeble. The curve of resistivity was calculated by Gleeble experimental data and the phase transition temperature was obtained by the singular point, which was verified by radial thermal expansion tests. This methode is particularly relevant for the materials that are not subject to important variations in volume such as titanium alloy. It is also interesting for evaluating phase transition temperatures under different thermal cycling conditions. Moreover it can be used to study the effects of current on phase transition and the conducting mechanisms.
引文
[1]董菲,Guenael Germain, Jean Lou Lebrun等.有限元分析法确定Johson-Cook本构方程材料参数.上海交通大学学报,2011年11月,第11卷:1657-1660,1667.
    [2]高立.适于板料激光冲击成形的弹塑性本构模型.农业机械学报,2006年11月,第11期:128-132.
    [3] M.Pietrzyk, J.Jedrzejewski, Identification of Parameters in the History Dependent Constitutive Model for Steels, CIRP Annals - Manufacturing Technology, 2001, Vol. 50(1), pp. 161-164.
    [4] Danuta Szeliga, Jerzy Gawad,Maciej Pietrzyk, Inverse analysis for identification of rheological and friction models in metal forming, Computer methods in applied mechanics and engineering, 2006, Vols. 195(48-49), pp. 6778-6798.
    [5] Changli ZHANG, Michel BELLET,etc, A Coupled Electrical-Thermal-Mechanical Modeling of Gleeble Tensile Tests for Ultra -High-Strength (UHS) Steel at a High Temperature, Metallurgical and Materials Transactions A, Sep 2010, Vol. 41A, pp. 2304-2317.
    [6] Michel RappazBellet etc.Michel, Numerical Modeling in Materials Science and Engineering, New York : Spring-Verlag, 2003.
    [7] E.I.Polik, S.W.Lee,etc, Effect of Electric Current Heating on Hot Deformation Resistance and Microstructure of Steels , Metals and Materials. 1999, Vol. 6, pp. 563-570.
    [8] Xiao S H, Guo J D,Li S X, The effect of electropulsing on dislocation structures in [233] coplanar double-slip-oriented fatigued copper single crystals, Philosophical Magazine Letters, 2002, Vol. 82(11), pp. 617-622.
    [9]王忠金,宋辉.脉冲电流对钛合金板材力学行为影响的研究. 2010力学与工程应用学术研讨会论文集.
    [10] Guoyi Tang, Jin Zhang,etc, Experimental study of electroplastic effect on stainless steel wire 304L, Materials Science and Engineering, 2000, Vol. A281, pp. 263-267.
    [11] http://baike.baidu.com/view/109162.htm.
    [12] http://fr.wikipedia.org/wiki/ABAQUS.
    [13]胡增荣,周建忠,郭华锋等.应用ABAQUS模拟激光焊接温度场.激光技术,2007年6月,第31卷第3期:326-329.
    [14]张晓咏,戴自航.应用ABAQUS程序进行渗流作用下边坡稳定分析.岩石力学与工程学报,2010年5月,第29卷S1期:2927-2934.
    [15]缪旭弘,钱德进,姚熊亮灯.基于ABAQUS声固耦合法的水下结构声辐射研究.船舶力学,2009年4月,第32卷第2期:319-324.
    [16]李志全,杜成斌,艾亿谋.地基辐射阻尼对结构地震相应的影响.河海大学学报,2009年7月,第37卷第4期:400-403.
    [17] Abaqus入门使用手册
    [18]赵友选. SIMULIA/Abaqus在航空工业中的应用.航空制造技术,2008年,第18期:104-105.
    [19]陈毅彬,周建忠,黄舒等.基于Abaqus的激光板料成形的数值模拟研究.应用激光,2007年6月,第27卷第3期:175-180.
    [20]李惠,乔卫国,杜庆学.爆炸冲击下的岩石裂纹数值模拟.公路,2011年,第11期:48-153.
    [21]吴向东,刘志刚,万敏等.基于Python的ABAQUS二次开发及在板料快速冲压成形模拟中的应用.塑性工程学报,2009年8月,第16卷第4期:68-72.
    [22]吕根帅,周玉乾,李雪伟.显示动态分析在液压支架强度分析中的应用.煤矿机械,2011年,第32卷第1期:28-30.
    [23] G.Y.Tang, C.Yang,J.C.Chai,H.Q.Gong, Joule heating effect on electroosmotic flow and mass species transport in a microcapillary , International Journal of Heat and Mass Transfer, 2004, Vol. 47, pp. 215-227.
    [24] Devesh TiwariBasu,Koushik BiswasBikramjit, Simulation of thermal and electric field evolution during spark plasma sintering, Ceramics International, 2009, Vol.35(2), pp. 699-708.
    [25] ABAQUS Analysis User's Manual, Vol. 2.
    [26]胡克迈. Gleeble 3500数控热机模拟试验系统.物理测试,2006年9月,第24卷第5期:34-36.
    [27] K.H. Kim, K.H. Oh,etc., Mechanical behaviour of carbon steels during continuous casting, Scripta Mater, 1996, Vol. 34, pp. 301-307.
    [28] D.J. Seol, Y.M. Won,etc., High temperature deformation behavior of carbon steel in the austenite and -ferrite regions, ISIJ Int. 1999, Vol. 39, pp. 91-98.
    [29] M.Hojny, M.Glowacki, Computer modelling of deformation of steel samples with mushy zone, Steel Research Int. 2008, Vol. 79, pp. 868-874.
    [30] J.Peirs, P.Verleysen,J.Degrieck,etc, The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti–6Al–4V, International Journal of Impact Engineering, 2010, Vol. 37, pp. 703-714.
    [31] http://www.springermaterials.com/navigation/index.html. Springmaterials.
    [32] http://mse.fudan.edu.cn/yxb/apparatus/61.html.
    [33] http://en.wikipedia.org/wiki/Differential_scanning_calorimetry.
    [34] http://fr.wikipedia.org/wiki/Dilatom%C3%A8tre.
    [35] http://www.emse.fr/spip/-Dilatometres-.html.
    [36] LI Yutao, Geng Lin, LI Aibin,etc., Measurement and Analysis of Phase Transformation Temperature of TC11 Titanium Alloy, Chinese Journal of Rare Metals, 2006, Vol. 30(2), pp. 231-235.
    [37] Hongying LI, Xiaofeng WANG,etc., Measurement of continuous cooling transformation curves of 7A04 aluminum alloy, The Chinese Journal of Nonferrous Metals, 2010, Vol. 20.
    [38] D.D.L.Chung, Thermal analysis by electrical resistivity measurement , Journal of Thermal Analysis and Calorimentry, 2001, Vol. 65, pp. 153-165.
    [39] A.A.Al-Aql, Study of the influence of proton irradiation on the transformation temperature of Nitinol by electrical resistivity measurements, Physica B, 1997, Vol. 239, pp. 345-349.
    [40] Xianfen LI, Fangqiu ZU, etc., High temperature liquid-liquid structure transition in liquid Sn-Bi alloys: Experimental evidence by electrical resistivity method, Physic Letters A, 2006, Vol. 354, pp. 325-329.
    [41] Conrad, Hans, Effects of electric current on solid state phase transformations in metals. Materials Science and Engineering A, 2000, Vol. 287, pp. 227-237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700