用户名: 密码: 验证码:
高增面性大弧厚硝基胍发射药工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究并控制发射药能量释放的最佳规律,使发射药的高能量得以高效利用,充分利用火炮身管的承载能力,从而有效提高火炮初速增加射程,是发射装药研究的最本质要求。选用高渐增性燃烧的发射药并采用低温感装药技术,可以大幅度提高发射药的能量利用率,有效提高火炮的炮口动能,使火炮威力在原设计不变的情况下提高到更长身管火炮的内弹道指标。为达到上述目的,制造出符合某新型装药用高增面性大弧厚硝基胍发射药,并形成较为成熟的生产工艺技术,是本文理论和实验研究的重点。
     通过对几种炮用发射药配方研究、高增面性37孔火药和19孔火药定容燃烧特性分析和内弹道验证试验,火药力大而爆热适中的三胍-15配方的高增面性大弧厚25/37硝基胍发射药和不均等大弧厚24/19包覆药能够满足高初速、高膛压某新型装药用发射药要求。
     设计了高增面性37孔硝基胍发射药模具,通过合理增加模具成型段高度,根据内聚系数进行模针排布、选用进料均匀的圆盘式针架等方法,解决了高增面性37孔硝基胍发射药易出现的“松质”、“内聚”等质量问题。用可视化程序设计方法编制了花边形37孔硝基胍发射药模具特征参量计算应用程序。
     研究了原材料的质量对高增面性37孔硝基胍发射药的影响及解决措施。发现硝基胍发射药主要原材料之一硝化纤维素,其内在质量对高性能发射药的燃烧规律有很大的影响。
     进行了高增面性37孔硝基胍发射药制造工艺技术研究。通过对发射药制造过程中胶化加料顺序、胶化时间、胶化温度、溶剂比、醇酮比、胶化药出料时间、压伸压力、压伸时间、切药、晾药、烘干等工艺技术条件的试验、优化选择,制定出适用于高增面性37孔硝基胍发射药生产的工艺技术条件和控制要求。结果表明:各批发射药理化测试结果合格,批与批之间波动范围小;与标准样品的扫描电镜照片对比,其内部致密性好、各组分排列有序,微观质量达到了标准样品的水平。
     对不均等大弧厚发射药的包覆工艺技术进行了研究。包覆药的生产设备、基体药药型、包覆外层阻燃剂的含量、包覆液的配制、包覆液的计量与标定、包覆液的加料速度、风温、风量、破孔率、包覆起始段堵孔率等,是影响包覆药质量的主要因素。研究发现包覆起始段堵孔率与中止试验破孔率具有对应关系。通过包覆液的标定与计量,可控制起始段药料的堵孔率,从而有效地控制发射药的破孔率。研究表明,经优化的包覆工艺技术制得的各批包覆药,其理化测试结果符合要求,低温感效果显著,高温膛压增长量基本呈现负增长,弹道重现性好。
     高增面性大弧厚37孔硝基胍发射药和大弧厚包覆药应用于某新型装药,可以有效地提高火炮初速、降低最大膛压。高增面性37孔硝基胍发射药的研制成功,填补了国内19孔以上硝基胍发射药的生产工艺技术空白。研究结果对远射程模块装药技术和全等模块装药技术,提供了有力的技术支撑。
For the study of gun propellant charge, there were two fundamental requirements, one is utilizing high energy gun propellant efficiently through studying the most appropriate principle of energy release, the other is making full use of gun barrel's bearing ability to increase muzzle velocity and firing range of gun. High progressive combustion propellant and low temperature sensitivity charge technology are used to enhance energy utilization of gun propellant and muzzle kinetic energy, meanwhile increasing gun power to interior ballistic guideline of longer barrel gun without any change in original design. For above purpose, this thesis focused on developing high progressive and large web nitroguanidine-based propellant which was appropriate to the new type charge system, and forming mature process technology.
     Several gun propellant formulations and the combustion property at constant volume and interior ballistic property evaluation tests of high progressive 37-hole and 19-hole propellant were studied. The results showed that Propellant SG-15 possessed such characteristics as high powder force and moderate heat, so both of high progressive large web 25/37 nitroguanidine-based propellant and unequal large web 24/19 coated propellant made from this formulation could meet the requirements of propellant applied to the new type charge system with high muzzle velocity and chamber pressure.
     A new mould for high progressive 37-hole nitroguanidine-based propellant was designed. Through increasing the height of mould forming section reasonably, arranging mould needle according to cohensive coefficient and selecting easy-to-fix disc type needle holder, progressive 37-hole nitroguanidine-based propellant's shortcomings in quality were solved, such as loose, cohensive etc. Furthermore, characteristic parameter computing program for lace 37-hole nitroguanidine-based propellant was developed using visible programming method.
     The influence of quality of material on progressive 37-hole nitroguanidine-based propellant and related countermeasures were studied. The obtained results revealed that the internal quality of nitrocellulose, one of the main materials for nitroguanidine-based propellant, would extensively influence the combustion behavior of finished propellant.
     Additionally, process technology for high progressive 37-hole nitroguanidine-based propellant was discussed. Processing conditions, such as charging sequence, gelling time and temperature, solvent ratio, alcohol/ketone ratio, output time and storage time of gelled propellant, compression pressure and time, the cutting, airing and drying of grain, were tested and then optimized. Finally, processing conditions and control requirements which were suitable to progressive 37-hole nitroguanidine-based propellant were confirmed. The results showed that physical and chemical properties of batches of propellant were eligible and showed little batch difference. Compared with SEM (scanning electron microscope) photograph of standard propellant sample, nitroguanidine-based propellant had excellent compactibility and microscope quality, and each ingredient was arranged orderly.
     Coating technology of unequal large web propellant was analyzed. The main factors influencing the quality of coating propellant included manufacturing equipment, shapes of base propellant, flame retardants content in outer coating-layer, wind temperature, wind rate, exposed-perforation ratio, percentage of plugged hole at coating initial segment, and the preparation, measurement and proving and charging speed of coating solution. The research results indicated that there was corresponding relationship between percentage of plugged hole at coating initial segment and exposed-perforation ratio at interruption tests. By proving and measuring coating solution, percentage of plugged hole at coating initial segment could be controlled, and then exposed-perforation ratio of propellant could be controlled effectively. Batches of coating propellant fabricated through optimized coating technology showed eligible physical and chemical properties, excellent low-temperature sensitivity, negative growth of chamber pressure increment at high temperature and outstanding ballistic repeatability.
     Generally speaking, once high progressive, large web 37-hole nitroguanidine-based propellant and large web coating propellant were used in the new type charge system, the muzzle velocity of gun could be efficiently increased and the maximum chamber pressure decreased. The studying and development of high progressive 37-hole nitroguanidine-based propellant made a primary breakthrough in the field of process technology of nitroguanidine-based propellant with more than 19 holes in our country. And the research results provided definite technological support for extended range modular charge technology and unimodular charge technology.
引文
[1]王泽山.论现代发射药装药技术的研究方向.南京理工大学学报,1994(4):93-96
    [2]王泽山.有关发射药发展问题的一些观点.
    [3]Morrison W, et al Trends in Gun Propulsion for Tactical Army Application Proceedings of the Ballistic 13th International Symposium, Sweden,1992-03
    [4]王泽山,徐复铭,张豪侠著.火药装药设计原理.兵器工业出版社.1995.6
    [5]王泽山.远射程发射装药与模块装药.南京理工大学学报.Vol.27,No.3 Oct.2003:466-472
    [6]A.Horst et al. Insensitive High Energy Propellants for Advanced Gun Concepts.19th International Symposium of Ballistics, May 2001
    [7]吕振义等.棒状发射药.火炸药,1993.6
    [8]Robbins W. et al. High-Progressive/Density(HPD) Propelling Charge Concepts: Progress of Programmed-Splitting Stick Propellant. AD-A 178504
    [9]Robbins W. et al. Continued Studies of Programmed-Splitting Stick Propellant. AD-A 188987
    [10]Rivera J. et al.Combustion Behavior of Programmed-Splitting Stick Propellants. AD-A 242661
    [11]RiveraJ.et al.Theoretical Modelling of the Combustion Progress of Programmed-Splitting Stick Propellants. Propellants, Explosives, Pyrotechnics, No.1, 1995
    [12]范文洲.新颖高密度高渐增性发射药的研究.火炸药论文集,中国兵工学会火炸药专业委员会第四届第二次学术年会,1997.5
    [13]Horst, Jr. et al. Programmed-splitting solid propellant grain for improved ballistic performance of guns. USP4581998,1986
    [14]Thierry Bonnabaud et al.French Modular Artillery BCM and TCM Charge System for 155mm.36th Annual Gun and Ammunition Symposium,April 9-12,2001
    [15]E.Gathmann. Perforated powder rod for ordnance[P]. USP660568
    [16]Strauss et al. Multi-layer high energy propellants. USP5690868,1997
    [17]Oberle, William. Methodology for Determining Propelling Charge Dimensions for Layered propellant charges. ADA391441,2001
    [18]Rockwell int corp.Gun propellant grains with inhibitor coating.US 3948697
    [19]J.H.Holstein. Feeding mechanism for shaker conveyers[P]. USP244977
    [20]North american rockwell.projectile propellant-contg cellulosic binder and coated with polyisocyanated/polyol reaction product. P2250 311.3
    [21]LAB HERMES SA,CHIMEND JAC.Z-Hydroxy nicotonic acid 2'.6'-dimethylanilide. Fr2278685
    [22]HERCULES INC.Nitrocellulose propellant.US 3798085
    [23]Temperature-compensating propellant charge. US 4106960,1978
    [24]Ernst Bronnimann, et al. Improvement of ballistic performance with surface-coated double base propellants.8th International Symposium on Ballistics.1985
    [25]Bolinder. Method of producing progressively buring artillery propellant powder and agent adapted thereto[P]. USP 4654093,1987
    [26]H.Bolthoff. Steam actuated out-off valve gear[P]. USP451719
    [27]I.C.Welter. Hoisting device[P]. USP451716
    [28]Franels Gurney Okle. Composite sheet material[P]. USP2169277
    [29]BOLINDER B.SCHIMID H.Surface inhibitor for granular explosive.BE 901475,1986
    [30]韩博,张晓志等.大口径火炮发射装药点传火模拟试验装置的研究.兵工学报.2008,29(3):262-265
    [31]韩博,张晓志等.一种新型发射装药低易损性能的测试研究.火炸药学报,2008,31(1):53-55
    [32]韩博,张晓志等.新型大口径火炮全装药膛内压力波问题研究.火炸药学报.2007,30(6):54-57
    [33]金志明,袁亚雄,宋明.现代内弹道学.北京理工大学出版社.1992.12
    [34]王泽山,欧育湘等.火炸药科学技术.北京理工大学出版社.2002
    [35]王泽山,徐复铭等.火药装药设计原理.兵器工业出版社.1994.11
    [36]Stiefel L.火炮发射技术.兵器工业出版社.1993
    [37]罗运军,李峰.发射药燃烧控制技术的研究.燃烧科学与技术.Vol.4(1998),No.1:24-30
    [38]刘庆荣,王泽山等.火药装药设计.国防工业出版社.1998
    [39]任务正,王泽山等.火炸药理论与实践(内部发行).中国北方化学工业总公司.2001.4
    [40]罗运军,王泽山等.包覆火药装药技术的理论分析.兵工学报火化工分册.1995.1:23-26
    [41]王泽山,史先杨著.低温度感度装药技术.国防工业出版社.2006.1
    [42]王泽山.一种低温感发射药装药的内弹道特征.一二三工程总结,2001.10:616-627
    [43]王泽山等.低温度系数装药技术在105mm坦克炮穿甲弹上的应用研究.南京理工大学(内部资料).1993
    [44]Wang Zeshan, et al. The principle and the ballistic performance of a gun propellant charge with low temperature sensitivity. The 13th International Symposium on Ballistics. Sweden.1991.8
    [45]罗运军,王泽山.降低发射药装药温度系数的方法.华北工学院学报.1994.4:12-15
    [46]王泽山等.发射药装药设计理论与应用.华东工学院(内部资料).1990
    [47]王泽山等.装药新技术.华东工学院(内部资料).1990
    [48]低温度系数装药技术研究技术总结报告.第五部分,低温度系数装药(LTSC)试验(30mm海航炮、37mm、57mm高射炮、100mm线膛炮、100mm高压滑膛炮、155mm榴弹炮).1995.7
    [49]宋时育.低温感发射装药装填参量与弹道诸元的关系的研究.博士学位论文.2000.9
    [50]史先扬.低温感硝胺发射药的研究及弹道模拟.博士学位论文.南京理工大学.2002.2
    [51]低温度系数装药技术研究技术总结报告.第一部分技术基础研究.南京理工大学火药装药技术研究所.1995.7
    [52]罗运军.低温感包覆火药装药技术的理论与实验研究.博士学位论文.南京理工大学.1994.8
    [53]堵平.低温感发射药包覆层、包覆界面特性研究.博士学位论文.南京理工大学.2005.11
    [54]Rupert Pengelley. Modular charge systems mature for global artillery operation.Jane's International Defense Review,February 2004
    [55]Modular propellant chargesystems.Jane,s Ammunition Hangbook,2001-2002
    [56]Modular propellant chargesystems.Jane,s Ammunition Hangbook,1997-1998
    [57]Helmoed-R Mer Heitman.Denel to unveil 105mm gun with long range. www. defence-data.com.2000.8
    [58]赵毅.模块装药点传火过程的数据模拟.火炸药学报,2003,26(2)
    [59]United Defense First 105mm Cannon Using 155mm Modular Artillery Charge System. www. defence-data. com,2004.2.26
    [60]萧忠良,王泽山.发射药科学技术总体认识与理解[J].火炸药学报,2004,27(3):1-6
    [61]王渊.提高火炮初速的装药研究.博士学位论文.华东工学院.1989
    [62]K. Ryf, "A new concept for high performance ammunition propellants",9th International Symposium on ballistics,1986.5
    [63]赵宝昌,邢浴仁等.硝基胍发射药.兵器工业出版社.1989.12
    [64]张柏生,李云娥著.火炮与火箭内弹道原理.北京理工大学出版社.1996.8
    [65]金志明.枪炮内弹道学.北京理工大学出版社.2004.10
    [66]胡国胜等.单基与多基火药.兵器工业出版社.1996.9
    [67]聚合物材料加工流变学.梁基照.国防工业出版社.2008.1
    [68]黄人俊,宋洪昌等.火药设计基础.北京理工大学出版社.1997.4
    [69]黄虹.塑料成型加工与模具.化学工业出版社.2009.1
    [70]仲维俊.Visual Basic 6.0完全自学手册.机械工业出版社.2007.1
    [71]杨石海,盛京.高分子共混物的相结构对力学性能的影响.化学工业与工程.2003,20(6):409-411,443
    [72]金日光,华幼卿编.高分子物理.化学工业出版社.1996.5
    [73]伍惠泸.硝化棉.火炸药丛书.1974
    [74]邵自强.硝化纤维素生产工艺及设备.北京理工大学出版社.2000.12
    [75]中国科学院数学研究所统计组.常用数理统计方法.科学出版社.1979
    [76]韩之俊等.质量工程学.华东工学院管理工程系.1988
    [77]E. H. Andrews, Ed. Developmeent in Polymer Fracture-1. London:Applied Science Publishers,1979
    [78]A. V. Tobolsky. Properties and Structure of Polymers. New York:John Wiley & Son, 1960
    [79]T. Alfrey. Jr. Mechanical Behavior of High Polymers. New York:Interscience,1948
    [80]R. G. C. Arridge. An Introduction to Polymer Mechanics. London:Taylor & Francis, 1985
    [81]何平笙,高聚物的力学性能.中国科学技术大学出版社.1997.2.
    [82]M.D.Pocock and C.C. Guyott. An alternative method for the derivation of propellant burn rate data from closed vessel tests.18th international symposium on ballistics. San Antonio,TX.15-19 Novermber,1999
    [83]段俊.三基发射药半溶剂法间断捏合加料方式对工艺及成品性能的影响.火炸药学报.2003.11 11-15
    [84]杨均匀,袁亚雄等.发射药破碎对火炮射击安全性影响的研究综述.弹道学报Vol 11 No.4 Dec:92-96
    [85]袁亚雄.火炮膛内压力波研究综述.兵工学报(武器分册),1990(2)
    [86]张晋盛.提高ZT-2发射药低温抗冲击性能研究.一二三工程总结.2001.10:
    455-458
    [87]张丽华等.一种测定发射药断裂韧度的实验方法.兵工学报火化工分册.1991.11:20-23
    [88]三O一教研室编.单基火药工艺学
    [89]张瑞庆著.火药用原材料性能与制备.北京理工大学出版社.1995
    [90]黄洪勇,王泽山.制造低温感火药的一种工艺方法.火炸药学报.1998.1:16-18
    [91]武海顺,王泽山.三基包覆药中二氧化钛迁移行为的研究.兵工学报火化工分册.1994.5:1-5
    [92]史先扬,王泽山,何卫东.控制燃气生成规律的装药技术及应用.BKA001442M.
    [93]贺晓军.低温感装药的燃烧、弹道特征及数值模拟.博士学位论文.南京理工大学.1997.7
    [94]赵其林.低温感装药技术在混合酯发射药的应用及高分子涂覆技术研究.博士学位论文.南京理工大学.2003.11
    [95]王琼林等.钝感包覆发射药燃烧性能研究.兵工学报火化工分册.1996.1:43-45
    [96]翁春生等.包覆火药形状函数的研究.南京理工大学学报.1993.6:13-16
    [97]宋时玉,王泽山.低温感发射药装药发射的或然误差.火炸药学报.2000.1:17-19
    [98]罗运军等.低温感包覆火药装药的经典内弹道模型及其解法.兵工学报火化工分册.1996.1:7-11
    [99]黄洪勇,王泽山.低温感包覆药已燃质量分数的一种计算方法.南京理工大学学报.1997.5:411-414
    [100]罗运军等.包覆层性质对包覆火药破孔率影响的研究.兵工学报火化工分册.1995.2:1-4
    [101]史先扬,何卫东,王泽山.低温感包覆火药的破孔率检验方法及弹道性能.BKA001409M.2001.2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700