用户名: 密码: 验证码:
中厚板复杂轨迹焊缝跟踪的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中厚板焊接结构广泛应用于造船、大型桥梁、石油化工、锅炉容器、重型机械等工业部门,亦是未来钢结构焊接的主流趋势。中厚板结构焊接一般采用多层多道焊,焊接过程中会产生焊接线能量无法控制、后层焊道对前层焊道的再熔化热处理而改变焊道走向、以及多层焊的热影响致使母材变形等诸多问题,导致中厚板结构焊接的自动化程度低下。因此,实现中厚板焊接的自动跟踪显得尤为迫切。
     1、首先设计出一款适用于中厚板焊接的旋转电弧传感器。
     针对多层多道焊对传感器智能化焊接的需求,结合目前旋转电弧传感器的各种旋转方案,设计出无级偏心调节的旋转电弧传感器,实现焊接过程中旋转半径的智能化控制。同时,通过ADAMS仿真分析,确定了设计参数和电机型号,机构设计的合理性得以验证;再根据中厚板焊接发热量大等问题,设计了一种水冷结构,并通过ANSYS热分析以及实验,优化了冷却装置,为该机构在中厚板焊接中的连续作业提供了保证。
     2、建立了多层多道焊的弧长模型,实现不同焊道下的焊缝偏差及旋转半径的求解。
     基于多层多道焊的坡口模型,建立了旋转电弧传感器的焊接电弧信号模型,实现了不同焊道的电流模拟输出,并与实际电流信号进行了对比分析。考虑实际焊接电流信号的干扰严重性,采用硬件滤波对信号进行预处理。随后对预处理的数据进行主成分分析,建立回归方程求解出焊缝偏差,根据获得的偏差采用拟合与积分相结合的方法优化旋转半径的数值。
     3、提出摆动旋转电弧传感器方案,建立焊枪的空间姿态弧长模型,实现了焊枪的姿态识别。
     根据目前应用的电弧传感器信号单一等特点,提出摆动旋转电弧传感器方案,并根据摆动旋转电弧传感器的运动模型建立不同焊枪姿态的弧长模型。由于姿态识别算法信号的特征值要求较高,因此对采样数据采用了Gabor滤波后处理方案,并应用主元法对信号数据进行特征提取与降维,并利用分类器与最速下降法获得当前焊枪的姿态,最终达到识别焊枪姿态的目的。
     4、开发出多自由度焊接小车为硬件平台的多层多道焊焊缝跟踪系统。
     根据焊枪姿态的特点,提出六自由度焊接小车方案,建立其运动学模型,通过所获得的最优旋转半径以及焊缝姿态等信息,开发出以工控机为控制核心,多自由度焊接小车为硬件执行平台的多层多道焊焊缝跟踪系统,并实现了对多种焊道、多种轨迹焊缝的自动跟踪。
     5、为提高系统的跟踪精度,针对不同控制方案提出不同跟踪精度模型的计算方法。
     通过简化多自由度焊接小车的模型,实现对不同控制方案下的焊缝跟踪精度建立数学模型,仿真和试验验证了这种跟踪精度模型的正确与有效性,为日后采用优秀的控制算法提供了理论指导作用。
Plate welding structure is widely used in industrial sectors, such as ship-building, largebridges, petrochemical, boiler containers, heavy machinery and so on. It is also themainstream trend for steel welding. Nowadays, the multi-pass welding is commonly used inwelding plate structure. But some problems leading to the low degree of automation appearedduring plate structure welding, for example: the welding energy can not be controlled duringwelding process, the direction of welding bead may be changed by the re-melting heattreatment effected from the posterior to the anterior layer, as well as the deformation of theparent material occurred by the heat-affection of multi-pass welding etc. Therefore, thetechnology to realize the automatic of seam tracking in plate welding is particularly urgentneeded.
     1. A rotating arc sensor that is suitable for the plate welding is first designed.
     Considering the requirements, the multi-pass welding for the sensor intelligent welding,and a rotating arc sensor with stepless eccentric adjustment is designed based on the usingrotating methods of rotating arc sensor. During the welding process, the intelligent control ofrotating radius can be realized as well. After the simulation of ADAMS, the optimal designparameters and motor sizes are determined, as well as the institutional rationality of designverified. Then, for the problems such as large quantity of heat in the plate welding, awater-cooled structure is designed. By the thermal analysis of ANSYS and experimental, thewater-cooled structure is further optimized. This mechanism has provided a guarantee forlong-time welding in the factory.
     2. The arc length model of multi-pass welding is established, as the seam deviation androtating radius under different welding pass have been solved out.
     Based on the groove model of multi-pass welding, welding arc signal model of rotatingarc sensor is built. It can achieve current analog output of different welding. And thecomparative analysis between this output and practical current signal is taken in this paper. Inorder to eliminate the serious signal interference of practical welding current, the hardwarefilter is used to preprocess that signal. In the following, the principal component method istaken to analysis the preprocessed data, and the regression equation is built to solve out theseam deviation values. As using the combination method of fitting and integral, the value ofrotating radius is optimized by the obtained deviation.
     3. With the program of oscillating rotating arc sensor first put forward, and the spaceposture arc length model of welding torch built, the torch gesture recognition has been realized.
     According to the single feature of arc sensor signal used at present, the program ofoscillating rotating arc sensor is put forward. And the arc length model of different posture inspace is also built based on the motion model of oscillating rotating arc sensor. Because thatthe eigenvalue of signal in gesture recognition algorithm requires higher, the processingprogram of Gabor filter is used for the sampled data. Meanwhile, the principal componentmethod is taken to extract the feature and to reduce dimension of signal data. Finally, the aimof welding torch gesture recognition is reached, after the current torch gesture obtained by theclassifier and the steepest descent method.
     4. The seam tracking system of multi-pass welding, based on the hardware platform ofmultiple freedom welding car is developed.
     On the basis of torch posture characteristics, the program of welding car with6-DOF isproposed, and the motion model is built then. Through the obtained information such as theoptimal rotating radius and the welding posture, the multi-pass welding seam tracking systemis developed. For this system, the control core is the industrial control computer, the hardwareexecution platform is the6-DOF welding car. And the automatic seam tracking for severalwelding beads or trajectory welding seams can be realized by this system.
     5. In order to improve the tracking accuracy of system, the different calculation methodsof tracking accuracy models based on different control schemes are finally put forward.
     By simplifying the model of multiple freedom welding car, the mathematical models ofseam tracking accuracy under different control options are established. Also, the correctionand efficiency of this tracking accuracy model are verified by the simulations and tests.Doubtlessly, these models can give theoretical guidance to the use of excellent controls in thefuture.
引文
[1]许燕玲,林涛,陈善本.焊接机器人应用现状与研究发展趋势[J].金属加工(热加工),2010,(08):32-6.
    [2]王克鸿,高飞,高俊平.基于视觉的机器人智能化焊接技术现状与发展[J].机械制造与自动化,2010,(05):1-6.
    [3]王建国,陈坚兴.新中国重型机械装备业发展与中国重型院的科技进步[J].重型机械,2009,(05):1-4.
    [4]汪建业,邓丽,刘福兰.重型机械制造业现状与发展趋势的分析和思考[J].重型机械,2008,(05):1-5.
    [5]焦向东,周灿丰.石油石化装备焊接自动化应用现状与发展趋势[J].金属加工(热加工),2012,(04):8-12.
    [6]王彩凤,吴月,孟国强等.自动化设备在结构件备料与焊接领域的应用[J].金属加工(热加工),2012,(04):40-1.
    [7]王刚. bauma China2010综合报道之混凝土机械格局演变技术创新概念主导[J].建设机械技术与管理,2010,(12):32-4.
    [8]混凝土机械中长期市场简析[J].商品混凝土,2009,(09):2.
    [9]李宪政,于中涛.焊接机器人在工程机械行业的应用[J].金属加工(热加工),2008,(18):43-5.
    [10]肖增文,杨小兰,邹景超等.城轨门弧焊视觉跟踪图像采集处理方法与试验[J].制造业自动化,2008,(05):85-8.
    [11]刘极峰,陈旋,李超.城轨门弧焊机器人工作站技术经济分析[J].焊接技术,2006,(04):57-60.
    [12]李克.城市轨道交通建设成本的控制研究[D];北京交通大学,2008.
    [13]合肥工大开展汽车工业机器人研发项目[J].重型汽车,2007,(02):35.
    [14]于永初.汽车工业机器人[J].现代零部件,2010,(02):18-9.
    [15]赵宇龙.汽车工业机器人[J].现代零部件,2009,(02):34-5.
    [16]郭其朝,郑宗明.海上风能资源开发潜力、投资效益及建议[J].能源与环境,2011,(04):2-4.
    [17]冯放,李岩,李元强.寒冷地区风能资源测量与风力发电可行性分析[J].东北农业大学学报,2011,(08):62-6.
    [18]张杰,记郭通.我省发现新的风能资源丰富区域[N].2011-12-14.
    [19]张保民.针对我国应用风电设备安装技术开发风能资源的发展现状[J].科技与企业,2012,(02):82.
    [20]幸权,柴宗明.智能制造关系中国制造业发展[J].企业技术开发,2011,(14):116.
    [21]徐绍华.空间相贯曲线自动焊接中的轨迹控制[D];山东大学,2008.
    [22]刘春,文晓江,赵琳等. Laser-PSD视觉焊缝自动跟踪系统的研究[J].中国机械工程,2002,(20):79-81+6.
    [23]董佳春,张文明,任传富等.一种用于埋弧自动焊的微机控制系统[J].焊接,2000,(05):21-3.
    [24]周灿丰,焦向东,陈家庆等.深水海底管线铺设自动焊接技术研究[J].船海工程,2012,(01):96-8.
    [25]薛龙,邹勇,曹莹瑜等.基于轨道焊接机器人的马鞍形焊缝焊接技术研究[J].电焊机,2010,(01):19-23.
    [26]姜锡肇,曹军,周灿丰等.海底管线铺设焊接工艺与设备研究[J].船海工程,2010,(03):128-32.
    [27]黄继强,李明哲,邹勇等.工程建设中的管道焊接自动化[J].电焊机,2010,(10):73-5+92.
    [28]蒋力培,焦向东,薛龙等.柔性磁轮式球罐智能焊接机器人; proceedings of the第一届国际机械工程学术会议,中国上海, F,2000[C].
    [29]黄操,孙振国,陈强等.基于嵌入式DSP视觉伺服平台的管道MIG打底焊焊缝成形控制[J].焊接学报,2009,(04):41-4+115.
    [30]管道MAG自动打底焊接方法, CN101890558A [P/OL].2010-11-24.http://epub.cnki.net/grid2008/brief/detailj.aspx?filename=CN101890558A&dbname=SCPD2010.
    [31]王天琪,李亮玉,岳建锋等.石油平台T型导管架焊接机器人多层多道焊路径规划[J].上海交通大学学报,2010,(S1):155-9.
    [32]黎咸西,熊震宇.基于视觉传感的多层多道焊缝图像特征的识别[J].南昌航空大学学报(自然科学版),2011,(01):53-7.
    [33]郭亮,张华,蔡志勇.螺旋管内外焊智能控制系统的设计与改进[J].焊管,2005,(05):39-42+90.
    [34]郭亮.焊缝轨迹跟踪激光视觉伺服控制系统[D];南昌大学,2005.
    [35]郭亮,丁雪蕾,张华.螺旋焊管外焊缝自动跟踪智能控制系统[J].焊管,2004,(05):19-21+74-5.
    [36]张华军,张广军,蔡春波等.厚板弧焊机器人自定义型焊道编排策略[J].焊接学报,2009,(03):61-4+116.
    [37]张华军,张广军,蔡春波等.双面双弧焊机器人主从协调运动控制[J].焊接学报,2011,(01):25-8+114.
    [38]张华军,张广军,蔡春波等.机器人多层多道焊缝激光视觉焊道的识别[J].焊接学报,2009,(04):105-8+18.
    [39]张华军.大厚板高强钢双面双弧焊新工艺及机器人自动化焊接技术[D];哈尔滨工业大学,2009.
    [40]张华军,张广军,高洪明等.厚板双面双弧焊机器人任务规划及仿真[J].上海交通大学学报,2008,S1):13-6.
    [41]张华军,蔡春波,张广军等.背面CCD视觉传感焊缝成形参数的自动提取[J].焊接学报,2008,(09):101-4+18.
    [42]张华军,张广军,张秀兰等. Three dimension simulation analysis of the interpass stress and deformationduring multipass welding [J]. China Welding,2008,(02):72-8.
    [43] HUAJUNA Z, GUANGJUNB Z, GAOC H, et al. Numerical simulation of three dimension stress field indouble-sided double arc multipass welding process; proceedings of the第五届国际材料与热加工物理模拟及数值模拟学术会议,中国河南郑州, F,2007[C].
    [44]黄军芬,殷树言,邹勇等.多层焊填充层焊道图像处理及边缘提取[J].机械工程学报,2005,(06):133-6.
    [45]黄军芬,殷树言,蒋力培.管道多层自动焊焊缝记忆跟踪系统研究[J].电焊机,2005,(01):45-7.
    [46]黄军芬,蒋力培,邹勇等.多层焊焊缝识别算法研究; proceedings of the第十一次全国焊接会议,中国上海, F,2005[C].
    [47]苗新刚,汪苏,李晓辉等.大构件相贯线焊接机器人多层多道焊轨迹规划[J].材料科学与工艺,2010,(05):629-34.
    [48]董春,樊滨温,富历新.机器人多层多道焊圆弧轨迹的一种算法[J].哈尔滨工业大学学报,2000,(03):111-4.
    [49]富历新,樊滨温,董春.锅炉集箱管座焊接机器人控制系统设计[J].哈尔滨工业大学学报,1999,(01):94-7.
    [50]李云峰,郭建胜,郭向阳等.埋弧焊多道焊自动跟踪系统的研究[J].焊管,2007,(01):35-7+82.
    [51]胡玲玲.中联重科首套臂架焊接机器人工作站成功应用[J].工程机械,2012,(02):98.
    [52]孟国强,杜望.机器人焊接工作站在推土机后桥箱焊接中的应用[J].电焊机,2009,(05):186-8.
    [53]杜望,张晓旭.机器人焊接工作站在汽车起重机卷扬箱焊接中的应用[J].电焊机,2009,(05):183-5.
    [54]饶敦胜.灵活高效的机器人焊接系统——多达24种不同规格的拖车升降支撑架焊接[J].航空制造技术,2004,(03):100-1.
    [55]李锡琛.唐山开元与神户制钢技术合作签约中厚板焊接机器人系统延伸唐山焊接产业产品链条[J].工程机械,2007,(03):80.
    [56]唐山开元与神户制钢技术合作签约中厚板焊接机器人系统延伸唐山焊接产业产品链条[J].机器人技术与应用,2007,(02):23.
    [57]高飞,严铿,邹家生.焊接机器人在船舶工业中的应用[J].江苏船舶,2009,(03):41-4.
    [58] LINDGREN L-E, RUNNEMALM H, N SSTR M M O. Simulation of multipass welding of a thick plate[J]. International Journal for Numerical Methods in Engineering,1999,44(9):1301-16.
    [59] LINDGREN L-E, HEDBLOM E. Modelling of addition of filler material in large deformation analysis ofmultipass welding [J]. Communications in Numerical Methods in Engineering,2001,17(9):647-57.
    [60] HEINZE C, SCHWENK C, RETHMEIER M. Numerical calculation of residual stress development ofmulti-pass gas metal arc welding [J]. Journal of Constructional Steel Research,2012,72(0):12-9.
    [61] AKBARZADEH I, SATTARI-FAR I, SALEHI M. Numerical and experimental study of the effect ofshort-term and long-term creep modeling in stress relaxation of a multi-pass welded austenitic stainlesssteel pipe [J]. Materials Science and Engineering: A,2011,528(4–5):2118-27.
    [62]王冰,李勇.国外船舶焊接技术发展近况[J].舰船科学技术,2009,(05):156-9.
    [63] EVERETT C H R, JENKINS R L. Robotics in the factory of the future: Robotic technology inshipbuilding applications [J]. Robotics and Autonomous Systems,1989,4(4):281-308.
    [64] MASAHARU M, SEIGO H, MEGUMI O. Development of a Multi-pass Welding Program for ArcWelding Robots and Its Application to Heavy Electrical Section Pieces [J]. Transactions of the JapanWelding Society,1993,24(1):24-9.
    [65] HAUG K, PRITSCHOW G. Robust laser-stripe sensor for automated weld-seam-tracking in theshipbuilding industry; proceedings of the Proceedings of the199824th Annual Conference of the IEEEIndustrial Electronics Society, IECON Part4(of4), August31,1998-September4,1998, Aachen, Ger, F,1998[C]. IEEE Comp Soc.
    [66] HAUG K, PRITSCHOW G. Reducing distortions caused by the welding arc in a laser stripe sensor systemfor automated seam tracking; proceedings of the Proceedings of the1999IEEE International Symposiumon Industrial Electronics (ISIE'99), July12,1999-July16,1999, Bled, Slovenia, F,1999[C]. IEEE.
    [67] CHANG D, SON D, LEE J, et al. A new seam-tracking algorithm through characteristic-point detectionfor a portable welding robot [J]. Robotics and Computer-Integrated Manufacturing,2012,28(1):1-13.
    [68] LEE D, KU N, KIM T-W, et al. Development and application of an intelligent welding robot system forshipbuilding [J]. Robotics and Computer-Integrated Manufacturing,2011,27(2):377-88.
    [69] DUFFIE N, BOLLINGER J, VAN AKEN L, et al. A sensor based technique for automated robotprogramming [J]. Journal of Manufacturing Systems,1984,3(1):13-26.
    [70] BAHR B, HUANG J T. Microcomputer-based optical sensor for seam tracking robot [J]. Computers& Industrial Engineering,1993,24(3):413-20.
    [71] BAHR B, TSAI H J. Microcomputer-based optical sensor for seam tracking robot [J]. Computers&Industrial Engineering,1991,21(1–4):535-9.
    [72] MOON H S, BEATTIE R J. Development of Adaptive Fill Control for Multitorch Multipass SubmergedArc Welding [J]. The International Journal of Advanced Manufacturing Technology,2002,19(12):867-72.
    [73] GAO X, YOU D, KATAYAMA S. Infrared image recognition for seam tracking monitoring during fiberlaser welding [J]. Mechatronics,0):
    [74] BAE K Y, LEE T H, AHN K C. An optical sensing system for seam tracking and weld pool control in gasmetal arc welding of steel pipe [J]. Journal of Materials Processing Technology,2002,120(1–3):458-65.
    [75] KIM J-W, BAE H-S. A study on a vision sensor system for tracking the I-Butt weld joints [J]. Journal ofMechanical Science and Technology,2005,19(10):1856-63.
    [76] QIN T, ZHANG K, DENG J, et al. Image Processing Methods for V-Shape Weld Seam Based on LaserStructured Light Foundations of Intelligent Systems [M]//WANG Y, LI T. Springer Berlin/Heidelberg.2012:527-36.
    [77] USAMENTIAGA R, MOLLEDA J, GARC A D. Fast and robust laser stripe extraction for3Dreconstruction in industrial environments [J]. Machine Vision and Applications,2012,23(1):179-96.
    [78]王彬.我国焊接自动化技术的现状与发展趋势[J].电焊机,2001,(06):3-7.
    [79]陈树君,张军.焊接自动化和智能化——2011年中国焊接产业论坛总结报告[J].机械制造文摘(焊接分册),2011,(05):1-17.
    [80]张兰.工程机械焊接自动化[J].金属加工(热加工),2011,(22):12-7.
    [81]焊接自动化专机在工程建设中的应用与发展; proceedings of the全国焊接工程创优活动经验交流会,中国陕西西安, F,2011[C].
    [82]李滨.浅析水电设备焊接自动化的研究与应用[J].金属加工(热加工),2011,(18):20-1.
    [83] EICHHORN·F., PLATZ·J.,潘际銮.新型自动跟踪系统[J].电焊机,1979,(01):6-18.
    [84]赵曾德,张信福,宋福兴.焊炬的单头双向光电跟踪[J].电焊机,1979,(02):23-5.
    [85]赵曾德,张信富,宋福兴.外环缝光电跟踪焊接装置[J].上海机械,1980,(02):30-2.
    [86]李树槐,耿正,丛桂英.焊缝跟踪用电磁传感器的理论分析[J].焊接学报,1985,(03):15-23.
    [87]李树槐,耿正,丛桂英等.抑制点固焊道干扰的弧焊跟踪控制系统的研究[J].焊接学报,1984,(03):43-50.
    [88]李桂中,吴执中,李树槐,邸振国.微机控制焊缝自动跟踪技术[J].吉林工业大学学报,1995,(04):99-103.
    [89]吴执中,李桂中,李树槐.弧焊自动跟踪系统的研究及应用[J].吉林工业大学学报,1995,(01):78-82.
    [90]艾雍宣,欧阳光华,王笑川.单片机控制焊缝跟踪系统的研制[J].电焊机,1989,(01):10-4.
    [91]艾雍宜,王加友,孙孝纯.双向接触式焊缝跟踪传感器的研制及应用[J].电焊机,1988,(05):15-8.
    [92]孙孝纯,艾雍宜. MZ-1000埋弧焊机自动跟踪系统性能的研究[J].电焊机,1993,(05):12-5.
    [93]王笑川,艾雍宜,孙孝纯.数字化焊缝跟踪系统[J].焊接,1994,(09):15-7.
    [94]蒋鹏飞.用声发射传感器的焊缝跟踪控制研究[J].电焊机,1994,(02):4-8.
    [95]张华,贾剑平,潘际銮等.旋转电弧传感式弧焊机器人典型坡口焊缝偏差仿真分析; proceedings ofthe第九次全国焊接会议,中国黑龙江, F,1999[C].
    [96]张华,余锋,贾剑平等.旋转电弧传感弧焊机器人焊缝实时纠偏系统研究[J].机器人,2001,(S1):705-8.
    [97]熊震宇,张华,贾剑平等.基于旋转电弧传感的弧焊机器人焊缝跟踪系统[J].中国机械工程,2003,(12):56-9+6.
    [98]熊震宇,张华,贾剑平等.旋转电弧传感器的研制[J].仪表技术与传感器,2003,07):1-3.
    [99]贾剑平,张华,叶建雄.高速旋转电弧传感焊缝偏差信息识别的研究[J].传感器与微系统,2007,(08):48-50+4.
    [100]彭俊斐.新型移动焊接机器人弯曲角焊缝跟踪控制系统研究[D];南昌大学,2007.
    [101]彭俊斐,张华,毛志伟等.新型旋转电弧传感系统的研究[J].传感器与微系统,2007,(12):12-4+8.
    [102]毛志伟,葛文韬,张伯奇等.水下焊接机器人磁块单元的优化设计[J].电焊机,2012,(01):1-5.
    [103]陈海军,张华,毛志伟等.局部干法焊旋转电弧传感设计及数值模拟[J].热加工工艺,2011,(11):129-31+35.
    [104]陈海军,张华.气幕式旋转电弧传感器结构设计[J].机电技术,2011,(03):54-6.
    [105]李志刚,张华,贾剑平.基于旋转电弧传感器的水下焊接高压电弧仿真计算[J].焊接学报,2010,(07):17-21+113-4.
    [106]叶建雄,尹懿,张晨曙.湿法水下焊接及水下焊接机器人技术进展[J].焊接技术,2009,(06):1-5.
    [107]徐坤刚.旋转电弧水下焊接工艺的研究[D];南昌大学,2009.
    [108]李志刚.高压水环境旋转电弧焊接特性及其焊缝传感跟踪研究[D];南昌大学,2009.
    [109]何银水,周国发,张华等.基于路径跟踪的水下焊接V形焊缝识别中强干扰的去除[J].应用光学,2009,(05):747-50.
    [110]鲍加铭,胡绳荪,王玉龙.超声传感焊缝自动跟踪的研究[J].焊接技术,2000,(S1):18-9.
    [111]胡绳荪,侯文考,孙栋等. Fuzzy-P控制超声传感埋弧焊焊缝的跟踪系统[J].焊接学报,1998,(02):40-5.
    [112]胡绳荪,李顺华,孙栋.焊缝跟踪模糊控制器的研究[J].电焊机,2000,(09):32-4.
    [113]胡绳荪,李顺华,孙栋等. CO_2焊接超声传感焊缝跟踪控制规则与参数[J].焊接学报,2003,(02):22-6+3.
    [114]胡绳荪,刘勇,孙栋等.超声传感埋弧焊焊缝跟踪的研究[J].压力容器,2001,(01):13-5+50-0.
    [115]胡绳荪,孟英谦,单平.焊缝跟踪FUZZY—P控制规则的研究[J].机械工程学报,2000,(12):50-3.
    [116]胡绳荪,涂万红,孙栋等. CO_2焊接超声传感焊缝自动跟踪技术[J].焊接学报,2002,(05):19-22+3.
    [117]胡绳荪,张绍彬,侯文考.焊缝跟踪中的非接触式超声波传感器的研究[J].仪表技术与传感器,1999,(04):11-2+28.
    [118]李顺华,胡绳荪.超声波传感器在焊缝跟踪的应用[J].焊接技术,2000,(05):33-4.
    [119]张绍彬,候文考,胡绳荪,赵家瑞.非接触式超声传感焊缝跟踪研究[J].机械工程学报,1996,(01):45-9.
    [120]姚河清,祁涛,姚诗涛等.摆动式焊缝自动跟踪电弧传感器的研制[J].机电工程技术,2009,(03):21-3+55+117.
    [121]蒋爽,姚河清,钱丽娜等.基于DSP的焊接摆动器研制[J].电焊机,2009,(10):78-80.
    [122]姚河清,刘波,李春燕等.一种短路过渡电弧传感器的研制[J].焊接学报,2006,(07):85-8+117.
    [123]周洪,孟正大.电弧传感焊缝跟踪的信号处理[J].华中科技大学学报(自然科学版),2008,(S1):122-5.
    [124]甘亚辉,戴先中.正弦摆动电弧传感偏差信息提取[J].焊接学报,2009,(09):89-92+117.
    [125]李国辉.电孤传感自动跟踪系统信息处理及控制的研究[D];吉林大学,2005.
    [126]黎文航,孙丹丹,杨峰等.新型窄间隙MAG旋转电弧传感焊缝偏差提取算法[J].材料科学与工艺,2011,(06):48-52.
    [127]黎文航,王加友,杨峰等.窄间隙焊缝跟踪旋转电弧电流平均值传感法比较研究[J].江苏科技大学学报(自然科学版),2009,(03):209-12.
    [128]王加友,朱征宇,任彦胜等.窄间隙焊缝跟踪电弧传感方法及特性研究[J].江苏科技大学学报(自然科学版),2007,(06):17-20.
    [129] NOMURA H, SUGITANI Y, SUZUKI Y. AUTOMATIC CONTROL OF ARC WELDING BY ARCSENSOR SYSTEM [J]. Nippon Kokan Technical Report Overseas (Japan),1986,(No.47):10p.
    [130] NOMURA H, SUGITANI Y, KOBAYASHI Y. DEVELOPMENT OF AUTOMATIC FILLET WELDINGPROCESS WITH HIGH SPEED ROTATING ARC [J]. Nippon Kokan Technical Report Overseas (Japan),1986,(No.47):7p.
    [131] SUGITANI,#160, Y., et al. Development of articulated arc welding robot with high speed rotating arcprocess [M]. Tokyo, JAPON: Nippon Kokan K.K.,1989.
    [132] KIM,#160, J.-W., et al. A self-organizing fuzzy control approach to arc sensor for weld joint tracking ingas metal arc welding of butt joints [M]. Miami, FL, ETATS-UNIS: American Welding Society,1993.
    [133] HALM Y E. Simulation of rotational arc sensing in gas metal arc welding [J]. Science and Technology ofWelding&Joining,1999,4(6):347-51.
    [134] KIM G-H, NA S-J. A study of an arc sensor model for gas metal arc welding with rotating arc Part1:Dynamic simulation of wire melting [J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2001,215(9):1271-9.
    [135] KIM G-H, NA S-J. A study of an arc sensor model for gas metal arc welding with rotating arc Part2:Simulation of an arc sensor in mechanically rotating gas metal arc welding [J]. Proceedings of theInstitution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2001,215(9):1281-8.
    [136] SANG-KWUN J, GUN-YOU L, WON-KI L, et al. Development of high speed rotating arc sensor andseam tracking controller for welding robots; proceedings of the Industrial Electronics,2001ProceedingsISIE2001IEEE International Symposium on, F2001,2001[C].
    [137] KIM J-W, SHIN J-H. A study of a dual-electromagnetic sensor system for weld seam tracking of I-buttjoints [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of EngineeringManufacture,2003,217(9):1305-13.
    [138] YOU B-H, KIM J-W. A study on an automatic seam tracking system by using an electromagnetic sensorfor sheet metal arc welding of butt joints [J]. Proceedings of the Institution of Mechanical Engineers, PartB: Journal of Engineering Manufacture,2002,216(6):911-20.
    [139] PURSLOW M A C, OH, US), ROOT, JEFF (COLUMBUS, OH, US), NAGY, BRADLEY A.(COLUMBUS,OH, US), PENROD, VICTOR M.(COLUMBUS, OH, US). TANDEM GAS METAL ARC WELDINGSYSTEM: United States.2012-. http://www.freepatentsonline.com/y2012/0061364.html.
    [140] CHERNYKH A V, CHERNYKH V V. Determination of the angular velocity of rotation of the droplet atthe electrode tip in arc welding in a magnetic field [J]. Welding International,2011,25(12):957-8.
    [141]吴世德,廖宝剑,潘际銮.高速旋转电弧传感器[J].焊接学报,1997,(01):63-8.
    [142]现代弧焊控制[M].机械工业出版社,2000.
    [143]黄凌翔,张华,马国红等.旋转电弧传感器的结构优化[J].上海交通大学学报,2008,(S1):17-9.
    [144]卢志国,程培元.虚拟样机技术及其在ADAMS中的应用[J].机械研究与应用,2006,(05):53-4.
    [145] ANSYS热分析教程与实例解析[M].中国铁道出版社,2007.
    [146]李慨,戴士杰,孙立新等.机器人焊接大型接头多道焊填充策略[J].焊接学报,2001,(02):46-8+2.
    [147] TU EK J. Mathematical modeling of melting rate in twin-wire welding [J]. Journal of MaterialsProcessing Technology,2000,100(1–3):250-6.
    [148]李凯,崔丽娟,黄厚宽.一种新的支持向量机分类器的设计方法[J].河北大学学报(自然科学版),2002,(04):316-21.
    [149]贾剑平,徐坤刚,李志刚等.电弧传感器技术在焊缝跟踪中的应用[J].机电技术,2008,(01):62-4+9.
    [150]薛家祥,李海宝,张丽玲等.弧焊过程电信号的频谱分析[J].电焊机,2005,(08):43-6.
    [151]徐博尧,杨刚,李欣欣.小波变换的时频分析及其在实际中的应用[J].中国传媒大学学报(自然科学版),2011,(02):79-83+59.
    [152]黄军芬,蒋力培.基于二维小波分析的焊缝坡口边缘检测[J].焊接学报,2003,(06):69-72+4.
    [153]马跃洲,王春柏,陈剑虹. CO_2焊接过程动态信号的特征分析[J].焊接学报,2001,(02):67-70+1.
    [154] LEGENDRE S, MASSICOTTE D, GOYETTE J. Ultrasonic aluminum weld testing method based on thewavelet transform and a neural classifier; proceedings of the Electrical and Computer Engineering,1999IEEE Canadian Conference on, F9-12May1999,1999[C].
    [155] CHIA-TE C, SHENG-WEN S, DUAN-YU C. Design of Gabor Filter Banks for Iris Recognition;proceedings of the Intelligent Information Hiding and Multimedia Signal Processing,2006IIH-MSP '06International Conference on, F Dec.2006,2006[C].
    [156] IDRISSA M, ACHEROY M. Texture classification using Gabor filters [J]. Pattern Recognition Letters,2002,23(9):1095-102.
    [157]邓洪波,金连文.一种基于局部Gabor滤波器组及PCA+LDA的人脸表情识别方法[J].中国图象图形学报,2007,(02):322-9.
    [158] KELLEY M E. Principal Component Analysis [M]. The Corsini Encyclopedia of Psychology. John Wiley&Sons, Inc.2010.
    [159] NAGRATH R K M I J. Robotics And Control [M]. McGraw-Hill Education (India) Pvt Limited,2003.
    [160] TSAI L W. Robot Analysis: The Mechanics of Serial and Parallel Manipulators [M]. Wiley,1999.
    [161]彭福红,任作新.基于A3977两相步进电机驱动器的应用[J].可编程控制器与工厂自动化,2007,(07):122-3+88.
    [162]张天鹏,徐磊. L298N控制直流电机正反转[J].工业设计,2011,(03):98-9.
    [163]洪焕凤,李传伟.电气隔离在电气控制线路上的应用[J].机械制造与自动化,2007,(02):134-6.
    [164]李清兵,杨泽富,李鹏.基于线性光耦HCNR201的交直流电压传感器的研制[J].仪表技术与传感器,2009,(08):68-70.
    [165]杨小晨,王欣.高精度线性光耦HCNR200/201及其应用[J].仪器仪表用户,2003,(05):41-2.
    [166]杨晶东,杨敬辉,洪炳熔.一种有效的移动机器人里程计误差建模方法[J].自动化学报,2009,(02):168-73.
    [167] BOSTAN I, LITA I, FRANTI E, et al. Systematic odometry errors compensation for mobile robotpositioning; proceedings of the CAD Systems in Microelectronics,2003CADSM2003Proceedings of the7th International Conference The Experience of Designing and Application of, F18-22Feb.2003,2003[C].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700