用户名: 密码: 验证码:
降落伞气动变形分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
降落伞的张开、膨胀和最后稳态下降是一个流体和伞衣相互耦合、非线性和时变的过程。在过去几十年里,风洞和飞行试验占到降落伞系统设计总任务量的80%,理论和设计参数研究仅占20%。目前,降落伞设计的任务越来越重,要求更高,试验成本也更加昂贵。随着计算机和数值仿真技术的发展,在计算机上对降落伞的的开伞过程进行数值模拟来取代试验为降落伞设计提供理论参考越来越成为一种趋势。
     本文的工作基于MpCCI流固耦合分析软件,采用松散耦合的方法对降落伞的张开过程进行分析。在张开过程中,考虑伞顶孔的影响,本文分别对无伞顶孔和有顶孔两种不同类型伞的张开过程进行了分析计算。对计算结果进行了详细的分析比较,发现在伞衣阻力相同的条件下有伞顶孔型伞的各方面性能优于无伞顶孔型伞。最后论文对伞顶孔在降落伞开伞过程中的作用进行了阐述。通过对基于不同开伞速度、不同的伞绳长度和不同的伞绳数量等一系列模型的相互比较,论文进一步研究了模型的结构参数对伞衣载荷的影响。
Parachute deployment, inflation and terminal steady descent are fluid medium and parachute coupled, nonlinear and time-dependent processes. During the past several decades, in the development of parachute systems time spent in wind tunnel and flight experiment is 80% of the total volume of the work, and that of theoretical and design parametric study is 20% only. At present, the missions of parachute design have increased tremendously, requirements have become more stringent and the experiments become more costly. With the development of computer technology and numerical simulation technology, computational methods have the greatest potential of providing the necessary reference for parachute design.
     This thesis is to use loosely coupled methods to simulate the process of parachute deployment, by means of using MpCCI fluid-structure interaction analysis software. To consider the impact of the umbrella top-hole, deployment processes of two different types of flat-circular parachute (one type without an umbrella top-hole and the other with an umbrella top-hole) are calculated respectively, the computational results are analyzed and compared in detail, finding that the flat-circular parachute with an umbrella top-hole is more superior in all aspects than the flat-circular parachute without an umbrella top-hole under the same conditions of canopy resistance. Finally the role of the umbrella top-hole in the process of canopy deployment is explained. Models with varying parameters such as different velocities, different rope lengths and numbers of ropes have been investigated for discovering the further effects of the canopy load.
引文
[1]Muller W. Parachute for aircraft, NACATM450, 1927.
    [2]Scheubel F.N. Note on opening shock of a parachute progress report No.IRE-65, April 1946.
    [3]J.R.A.S 1949, Vol.53, pp1053-1062.
    [4]Kenneth E, Trench. Inflation of a parachute, AIAA Journal,1963,1(11):2615-2617.
    [5]Berndt. AIAA Aerodynamic Deceleration Systems Conference, AIAA Step 1966 17-32.
    [6]Heinrich H.G., Noreen R.A. Analysis of parachute opening dynamics with supporting wind tunnel experiments, AIAA-68-0924,1968.
    [7]McEwan A J. An investigation of parachute opening load, and a new engineering method for their determination, AIAA-70-1168,1970.
    [8]Toni R A. Theory on the dynamics of a parachute system undergoing its inflation process, AIAA-70-1170,1970.
    [9]Mcvey D F, Wolf D F. Analysis of deployment and inflation of large ribbon parachutes, J. Aircraft,1974,11(2),28-33.
    [10]Macha J.M. A simple Approximate model of inflation dynamics, AIAA-93-1206, 1993.
    [11]Robert B.W, Reddy K.R.A. Discussion of parachute inflation theories, AIAA Paper,1975, No.75-1351.
    [12]Robert B.W. Theory of inflation of shell type, parachute structures, J. Aircraft, 1974,11(7):390.
    [13]Klimas P.C. Internal parachute flow. J. Aircraft,1972,9(4):313-314.
    [14]Klimas P.C. Inflation parachute canopy differential pressure, J. Aircraft,1979, 16(12):861-862.
    [15]Robert M, Nerem, Frank A, Pake. A model and calculation procedure for prediction parachute inflation, AIAA paper 73-453.
    [16]Purvis J.W. Theoretical analysis of parachute inflation including fluid kinetics, AIAA-81-1925.
    [17]Accorsi M, Leonard J.W. Structure modeling of parachute dynamic, AIAA Journal,2000,38(1):139-146.
    [18]K Lu, Leonard J.W. Pseudo-flexural elements for parachute simulation, Computer&Structure,78(1000),257-267.
    [19]Manish Gupta, Xu Zhenlong, Zhang Wenqing, Michael Accorsi, John Leonard. Recent advances in structural modeling of parachute dynamics, AIAA-2001-2030.
    [20]Lyalin V.V, Morozov V.I, Ponomarev A.T. Parachute performance computer analysis, AIAA 2001-2064,2001.
    [21]苏媛,邓辉.降落伞物理模型和充气过程的系统仿真分析,系统仿真学报,2003,Vol.15 No.4.
    [22]Xu Zhenlong, Michael Accorsi, John Leonard. Simulation of dynamic contact problems in parachute systems, Journal of Areospace Computing, Information,and Communication, July 2004, Vol.1.
    [23]Stephen Lingard J, Matthew G, Darley. Simulation of parachute fluid structure interaction in supersonic flow, AIAA 2005-1607.
    [24]Zhang Wenqing, Michael L, Accorsi, John W. Leonard. Parallel implementation of structural dynamic analysis for parachute simulation, AIAA Journal July 2006,Vol.44, No.7.
    [25]Cao Yihua, Wang Kan, Yu Ziwen and Pan Xing. Numerical simulation of parachute fluid-structure interaction and flow field analysis, AIAA 2007-2573.
    [26]余莉,史献林,明晓.降落伞充气过程的数值模拟,航空学报,2007,Vol.28No.1.
    [27]Vladimir S, Drozd1. Axisymmetric parachute shape study, AIAA 2009-2944.
    [28]Murakami S. Comparison of various turbulence model applied to a bluff body, Journal of Wind Engineering and Industrial Aerodynamics, 1993,46-47:21-36.
    [29]匡振邦.非线性连续介质力学,上海:上海交通大学出版社,2002.
    [30]彭勇,程文科,宋旭民,张青斌.降落伞充气过程研究方法综述,中国空间科学技术,2004,Vol.3.
    [31]廖前芳.降落伞回收过程动力学仿真与分析,湖南长沙:国防科技大学,2005.
    [32]王利荣.降落伞理论与应用[M],北京:宇航出版社,1997.
    [33]Lyalin V.V, Morozov V.I, Ponomarev A.T. Parachute performance computer analysis, AIAA 2001-2064.
    [34]Christine Espinosa, Yves de Lassat de Pressigny. Pascal Bordenave and Luke enke. Fluid-Structure interaction simulation of parachute dynamic behaviour, AIAA 2007-2510.
    [35]余莉,明晓,胡斌.降落伞开伞过程的实验研究,南京航空航天大学学报,2006,Vol.38 No.2.
    [36]余莉.飞行器救生及生命保障技术,北京:国防工业出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700