用户名: 密码: 验证码:
以铝矾土为原料沸石分子筛的合成及其吸附去除水溶液中镉离子的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来国内经常发生的镉污染事件,严重威胁着人们健康。因此,探索和开发制备成本低、价格低廉、去除镉离子能力强的环保处理材料和处理技术刻不容缓。沸石分子筛由于具有很好的热稳定性和水热稳定性、良好的离子交换性能和独特的阳离子选择吸附性能,在重金属废水处理中有广泛应用前景。但目前,沸石分子筛的制造成本和价格较高,严重影响了其在环境保护等领域的大规模使用。因此,选取价格低廉的原料来合成低成本沸石分子筛成为当务之急。
     本文以廉价的低品位铝矾土为原料,经碱熔融活化后,成功地合成了沸石分子筛,并系统地研究了合成沸石分子筛的各种影响因素。利用X射线衍射、扫描电镜、红外、物理吸附分析等测试技术对产物晶相、形貌、热稳定性、钙离子吸附能力及比表面积进行了系统表征测试,将分子筛的结构及性质等与其吸附性能进行了关联。进一步研究了沸石分子筛吸附金属离子的吸附等温线、热力学和动力学特征。所有研究为有效利用低品位铝矾土矿产资源、开发廉价环境保护材料奠定实验基础。主要研究结果如下:
     1、以低品位铝矾土为原料、偏铝酸钠为补充铝源、碳酸钠为活化剂,采用碱熔融-水热法合成了单一晶相、高结晶度的A型沸石分子筛。原料经碱熔融活化后全部用于合成沸石分子筛,未再有其他后处理,合成工艺简单,使其有重要的工业应用价值。探讨了晶化反应条件对合成A型沸石分子筛的影响。最佳合成工艺条件是:反应物配比为1.5Na2O:0.5A12O3:1SiO2:128H2O,晶化温度:90℃,晶化时间:12h。合成的A型沸石分子筛形貌为斜切边的立方体形状,平均晶粒直径1-2μm,在700℃以下能够保持稳定的结构,钙离子交换能力为369mg CaCO3/g沸石分子筛,具有较高的吸附性能。
     2、首次以铝矾土类天然矿物为原料,通过氢氧化钠碱熔融活化、补充硅源后,水热合成了单一晶相、高结晶度的X型沸石分子筛;补充硅源并添加导向剂,合成出结晶度较高Y型沸石分子筛。详细研究了SiO2/Al2O3(?)匕、碱度、晶化时间、晶化温度、导向剂组成、用量及陈化时间对合成的影响,得到由低品位铝矾土制备X型、Y型沸石分子筛的结晶规律。合成的沸石分子筛X和Y形貌均为八面体结构,平均晶粒直径2-3μm,具有良好的热稳定性。X型沸石分子筛具有较大的比表面积(SBET56Om2/g)、孔容(0.441cm3/g)和较高的钙离子交换能力(317mgCaCO3/g沸石分子筛),具有良好的工业应用价值。
     3、分别以A型和X型沸石分子筛作为吸附剂,研究了水溶液中Cd2+离子在沸石分子筛上的吸附行为。研究表明Cd2+离子在沸石分子筛上的吸附过程均符合准二级动力学速率方程,其中,液膜扩散是Cd2+离子在沸石分子筛上吸附的主要控制步骤。A型沸石分子筛吸附等温线可以用Langmuir和Freundlich模型来描述,X型沸石分子筛吸附更符合Langmuir等温吸附模型。两种分子筛最大吸附容量分别为161.3mg/g和178.6mg/g。随着Cd2+离子溶液初始pH、沸石用量和吸附温度的增大,Cd2+离子去除率增大。热力学研究表明沸石分子筛吸附Cd2+离子是吸热、熵增和自发过程。沸石分子筛的解吸与再生实验表明,A型沸石分子筛可以多次再生循环使用,在处理含镉重金属废水方面表现出良好的应用前景。对竞争体系中Cd2+、Zn2+和Ni2+离子在A型沸石分子筛上的吸附规律研究发现在单组分中沸石分子筛对3种离子的吸附能力都比较强,等温吸附均可用Langmuir模型较好地描述。在所有组分体系中,吸附能力从强至弱均为:Cd2+>Zn2+>Ni2+,这与三种离子的水合焓和离子半径大小的顺序一致。
In recent years, the cadmium pollution has become a serious threat to people's health because of the frequent cadmium pollution accidents. Therefore, exploring a cost-effective material with a high ability to remove cadmium ions from wastewater is an extremely urgent environmental protection task. Synthetic zeolites are recognized to be the most promising materials for the removal of heavy metal ions from wastewater due to their special properties such as high thermal/hydrothermal stability, large surface area, uniform three-dimensional pore structure, high cation exchange capacity, and strong affinity to transition metal cations. The important practical application in wastewater treatment and the high synthesis cost for the synthetic zeolites have incentivized the development of facile methods for synthesizing zeolites from the cost-effective earth-abundant sources.
     In this study, zeolites are synthesized successfully from the cost-effective low-grade bauxite without any treatment after alkali fusion activation process. The effects on the crystallization of the zeolites were discussed. Various techniques such as X-Ray diffraction, SEM, FTIR, adsorption of nitrogen have been used to characterize the crystal phase, morphology, thermal stability, and specific surface area etc. for the synthesized zeolites. The relationship between the structure properties of zeolites and the adsorption capacity was analyzed. The adsorption isotherms, kinetics, and thermodynamics of adsorption were also studied. All these studies provided some important guidance for the utilization of the low-grade bauxite and the exploiture of low-cost environmental protection material. The main results are summarized as follows:
     1. Using sodium carbonate as an activator and sodium metaaluminate as an extra aluminum source, phase-pure high-quality zeolite A was synthesized by alkali fusion hydrothermal reaction from the cost-effective low-grade bauxite. All the fused products were used to synthesize zeolite without any futher treatment. The process reduces the costs of synthesis greatly which shows its potential value of industrial applieations. The optimized experimental conditions are:reactant molar ratio1.5Na2O:0.5Al2O3:1SiO2:128H2O, crystallization at90℃for12h. The image of the synthesized zeolite A is a chamfered-edge shape and the mean diameter of the sample is1~2μm. The structure could be retained when the temperature is below700℃. The calcium exchange capacity value is369mg/g which shows its high adsorption capacity.
     2. For the first time, Zeolite X and Y were synthesized from the raw low-grade bauxite by a two-step process method:alkali fusion activation with sodium hydroxide and hydrothermal reaction. Sodium silicate solution was added as supplementary silicon source for the synthesis of zeolite X and Y, while directing reagent was introduced into the reaction mixture for the synthesis of zeolite Y. Optimizations of the molar ratios of SiO2/AlO3, Na2O/SiO2, H2O/Na2O, the reaction time, temperature, the composition and amount of directing reagent have been investigated in details.The zeolites of X and Y are octahedral crystals with the average crystal sizes of2to3μm and high thermal stability. The data of the surface area(SBET560m2/g), pore volume(0.441cm3/g), and the calcium exchange capacity value(317mg CaCO3/g zeolite) show the zeolites have the potential value of industrial applications.
     3. The cadmium ion removal from aqueous solutions using the synthesized zeolite A and X powders were studied. The study of kinetics showed that the pseudo-second-order kinetic adsorption model is suitable for describing the adsorption of Cd2+ion on the zeolite A and X. Both Langmuir and Freundlich models could fit the experimental data well at pH=6for zeolite A, but the Langmuir models fitted better for zeolite X. The maximum adsorption capacitis for zeolite A and X are161.3mg/g and178.6mg/g, respectively. The cadmium ion removal from aqueous solutions increased with the increasing of Cd concentration, pH value, and adsorbent amount used. The studies on thermodynamics show that the adsorption of Cd2+ion on the zeolites is a entropy increment, endothermic, and spontaneous process. Regenerative experiments show that the zeolite could be cyclically used many times. The competitive adsorptions of Zn+, Cd2+and Ni2+ions onto zeolite A were also studied.The isotherms of the Zn+, Cd+and Ni+ions follow the Langmuir model. In single, binary and ternary systems, the adsorption capacity varied in the following order:Cd2+(aq)> Zn2+(aq)> Ni2+(aq), which is accordance with that of the hydration enthalpy and ionic radius of the cations.
引文
[1]MII (Mineral Information Institute),2009. Aluminium& Bauxite, http://www.mii.org/ Minerals/photoal.html. http://www.mii.org/Minerals/photoal.html.
    [2]http://zh.wikipedia.org/wiki/铝土矿.
    [3]李承元.铝土矿的选冶现状及应用展望.世界有色金属.1999,(10):12-14.
    [4]张伦和.铝十矿资源合理开发与利用.轻金属.2012,2:3-11.
    [5]钟香崇.中国耐火原料的发展.硅酸盐通报.1997,4:43-50.
    [6]钟香崇.矶十基耐火材料的研究和发展.耐火材料,1997,31(3):125-130,146.
    [7]赵杰,胡晓力,尹虹.我国高铝矾十资源及在硅酸盐工业中的应用.陶瓷,2002,(6):43-45.
    [8]徐国强.以锆英石-铝矾土制备Zr02增韧莫来石陶瓷.河北陶瓷,1995,23(1):13-15.
    [9]丁永辉.耐磨瓷球的研制.陶瓷工程,1998,32(5):26-27.
    [10]陆胜,方荣利.影响贫铝矾十中氧化铝提取率的工艺因素探讨.西南科技人学学报,2003,18(1):48-51.
    [11]穆新和.我国铝十矿资源合理开发利用的探讨.矿产与地质,2002,16(92):313-315.
    [12]杨波.常压碱性介质预处理中低品位铝土矿应用基础研究[D].北京:北京化工大学.2005.
    [13]上海试剂五厂.沸石分子筛制备与应用.上海:上海人民出版社.1976.
    [14]徐如人,庞文琴,屠昆岗.沸石沸石分子筛结构与合成.长春:吉林大学出版社.1987.
    [15]Rios C A, Williams C D, Fullen M A. Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods. Applied Clay Science,2009,42:446-454
    [16]Belmabkhout Y, Pirngruber G, Jolimaitre E, et al. A complete experimental approach for synthesis gas separation studies using static gravimetric and column breakthrough experiments. Adsorption,2007,13: 341-349.
    [17]Mulgundmath V P, Tezel F H, Saatcioglu T, et al. Adsorption and separation of CO2/N2 and CO2/CH4 by 13X zeolite. Can [J] ChemEng,2012,90:730-738.
    [18]Zhu G Q, Li Y S, Chen H L, et al. An in situ approach to synthesize pure phase FAU-type zeolite membranes:effect of aging and formation mechanism. [J] Mater Sci,2008,43:3279-3288.
    [19]Zhou H, Korelskiy D, Leppajarvi T, et al. Ultrathin zeolite X membranes for pervaporation dehydration of ethanol. [J] MembrSci,2012,399-400:106-111.
    [20]Li X S, Remias J E, Neathery J K, et al. NF/RO faujasite zeolite membrane-ammonia absorption solvent hybrid system for potential post-combustion CO2 capture application. [J] Membr Sci,2011,366: 220-228.
    [21]Zhang Z H, Desilets F, Felice V, et al. On the proton conductivity of Nafion-Faujasite composite membranes for low temperature direct methanol fuel cells. [J] Power Sources,2011,196:9176-9187.
    [22]Felice V and Tavares A C.Faujasite zeolites as solid electrolyte for low temperature fuel cells. Solid State Ionics,2011,194:53-61.
    [23]Ino T and A 1, Khattaf S. Effect of unit cell on the activity and coke selectivity of FCC catalysts. ApplCatal A-Gen,1996,142:5-17.
    [24]Corma A, Diaz-Cabanas M J, Martinez-Triguero J, et al. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature,2002,418:514-517.
    [25]Davis R J. New perspectives on basic zeolites as catalysts and catalyst supports. [J] Cata,2003,1216: 396-405.
    [26]胡宏杰,王立卓.世界洗涤剂无磷化的进程与展望.矿产保护与利用,1994,(1):34-39.
    [27]ZEODET brochure. The use of zeolite in detergents, http://wwwzeodet.org/index publications html.
    [28]Crabb C. Syntheses and reactions of mordenite. Chem. Eng.2001,108:59-61.
    [29]Lee H S, Jo Y H, Yun T S, et al. Evaluation of factors affecting performance of a zeolitic rock barrier to remove zinc from water. Journal of Hazardous Materials,2008,156:428-434.
    [30]Young S D, Ahmed I A M, Crout N M J. Time-dependent sorption of Cd2+ on CaX zeolite: Experimental observations and model predictions. Geo chimicaet Cosmochimica Acta,2006,70: 4850-4861.
    [31]Rao G, Chandra P, Satyaveni S, et al. Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite. Journal of Environmental Management,2006,81:265-272.
    [32]Kamash E 1, Zaki A M, El A A, et al. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A Joural of Hazardous. Materials,2005, 127:211-220.
    [33]Sarbak Z. Structural and thermal characterization of zeolite type Y modified by ion exchange with Zn, Cd, and Hg cations. Crystal Research and Technology,1996,31:601-610.
    [34]Ahmed I A M, Young S D, Crout N M J. Ageing and structural effects on the sorption characteristics of Cd2+by clinoptilolite and Y-type zeolite studied using isotope exchange technique. Journal of Hazardous Materials,2010,184:574-584.
    [35]Minceva M, Fajgar R, Markovska L, et al. Comparative study of Zn2+, Cd2- and Pb2+removal from water solution using natural clinoptilolitic zeolite and commercial granulated activated carbon, equilibrium of adsorption, Separation Science and Technology,2008,43(8):2117-2143.
    [36]马万山,李玉玲,杨莹琴.天然沸石颗粒吸附剂对Cr3+的吸附性能及再生研究.化工矿物与加工,2006,(3):13-15.
    [37]李德生,张金萍.天然沸石的活化与再生技术研究.中国给水排水,2005,21(6):47-49.
    [38]Zorpas A A, Kapetanios E, Zorpas G, et al. Compost produced form organic fractionof municipal solidrimary stabilized sewage and natural zeolite. Journal of Hazardous Material,2000,77(1):149-159.
    [39]Zorpas A A, Constantinides T, Vlyssides A G, et al. Heavy metal uptake by naturalzeolite and metals partitioning in sewage sludge compost. BioresourceTechnology,2000,72:113-119.
    [40]Nguyen M L. Retention and subsequent nitrification of wastewater ammonium in naturalNew Zealand zeolites. Proc. UNEP:For Life on Earth-Int. Reional Conf. Murdoch University Perth Australia,1997.
    [41]田文华,文湘华,钱易.沸石滤料曝气生物滤池云除COD和氨氮.中国给水排水,2002,18(12):13-15.
    [42]Chung Y C, Son D H, Ahn D H. Nitrogen and organics removal from industrial wastewaterusing natural zeolite media Water Science and Technology,2000,42(5):127-134.
    [43]Jorgensen T C, Weatherley L R. Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Research,2003,37:1723-1728.
    [44]孟洪,彭长生,肖举强等.活化沸石去除水中磷化物的研究.矿产综合利用,2001,(4):23-25.
    [45]陶红,周仕林,高廷耀.13X沸石分子筛处理含苯胺废水的实验研究.环境科学学报,2002,22(3):408-411.
    [46]Razee S, Masujima T. Up take monitoring of anilines and phenols using modified zeolites. Anal Chim Acta,2002,46(4):1-5.
    [47]Faghihian H, Ghannadi M M, Kazemian H.The use of clinoptilolit e and its sodium form for removal of radio active cesium, and strontium fromnuclear wastewater and Pb2+, Ni2+, Cd2+, Ba2+from municipal wastewater[J]. Applied Radiation and Isotopes,1999,50:655-660.
    [48]肖十民,李玲华,祁雁蓉等.用天然沸石离子交换制备抗菌沸石-斜发和丝光沸石的应用[J].华南理工大学学报(自然科学版),1997,25(12):12-16.
    [49]Cronstedt A F. Ron ochbeskrifnigom en obekant bar gart, somkalls zeolites. Kongl Vetenskaps Acad Handl Stoekholm,1756,17:120-123.
    [50]Barrer R M. Syntheses and reactions of mordenite. Chem [J] Soc,1948:2158-2163.
    [51]Barrer R M. Synthesis of a zeolitic mineral with chabazite-like sorptive properties. Chem[J] Soc,1948:127-132.
    [52]胡宏杰,赵恒勤,王立卓等.沸石沸石分子筛的制备及应用.矿产保护与利用,1998,(5):10-13.
    [53]Howell P H, Acara N A, Towne M K. Jr. Production of molecular sieveadsorbents from kaolin minerals. Brit Patent,1965:980-891.
    [54]Murayama N, Yamamoto H, Shi J J, et al. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. Int [J] Miner Process,2002,64:1-17.
    [55]Carlos A, Rios R, Craig D, et al.A comparative study of two methods for the synthesis of fly ash-basedsodium and potassium type zeolites. Fuel,2009,88:1403-1416.
    [56]Hollman G G, Steenbruggen G, Janssen J M. A two-step proeess for the synthesis of zeolites from coal fly ash. Fuel,1999,78(11):1225-1230.
    [57]Yusof A M, Nizam N A, Rashid N A.Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites. [J] Porous Mater,2010,17:39-47.
    [58]Wang C F, Li J S, Wang L J, et al. Influence of NaOH concentrations of synthesis of pure-form zeolite A from fly ash using two-stage method. Journal of HarzardousMateriais,2008,155(1-2):58-64.
    [59]王华,张强,宁存义.莫来石在粉煤灰碱性溶液中的反应行为.粉煤灰综合利用,2001,5:24-27.
    [60]Shigemoto N, Hayshi H, Miyuaura K. Selective formation of Na-X zeolite from coal fly ash by fusion with sodium prior to hydrothermal reaction. Mater Sei,1993,28:4781-4786.
    [61]Shigeooto N, Sugiyama S, Hayshi H.Charaeterization of Na-X, Na-A and their amorphous precursors by IR, MAS NMR and XPS. J Mater Sci,1995,30:5777-5783.
    [62]Bergaut V, Singer A. High capacity cation exchanger by hydrothermal zeolitization of coal flyash. Appl Clay Sci,1996,10(5):369-378.
    [63]刘艳辉,薛向欣,宋海.油页岩渣水热法合成沸石及其性能表征.材料导报,2009,3:97-99.
    [64]于心玉,甘俊,工向真等.NaY沸石导向剂及其表征手段的研究进展.第十五届全国沸石分子筛会议论文集,2009,11:431-437.
    [65]李守贵,李连生,徐如人.NaY沸石的合成.CN 85102733,1986,09-10.
    [66]牛静静,郭十岭,陈宜俍等.高岭十微球原位合成L沸石过程中的影响因素石油学报.石油加工,2008,24(3):237-242.
    [67]Vanghan D E W, Edwards G C, Barrett Michael G. Preparation of zeolite. US4340573,1982:07-20.
    [68]胡汉祥.用X-射线研究导向剂的作用.吉林化工学院学报,2002,19(2):14-15.
    [69]Thangaraj A, Kumar R. N. Study of soluble aluminosilicate precursors in zeolite Y synthesis. Zeolites, 1990,10:117-120.
    [70]Xiong G, Yu Y, Feng Z C, et al. UV Raman spectroscopic study on the synthesis mechanism of zeolite X. Micropor Mesopor Mater,2000,42:317-369.
    [71]周荣飞,林晓,徐南平.T型沸石分子筛的制备.第一届全国化学工程与生物化工年会论文集,2004:411-416.
    [72]Panzarella B, Tompsett G, William C, et al. In Situ SAXS/WAXS of zeolite microwave synthesis NaY, NaA and Beta zeolites. Phys Chem,2007,8:357-369.
    [73]陈晶,孙德坤.微波法燃烧高岭十及合成洗涤助剂4A沸石.无机化学学报,2000,16(5):769-774.
    [74]Park M, Choi C L, Lim W. Molten-Salt method for the synthesis of zeolitic materials Ⅰ, zeolite formation in alkaline Molten-Salt system. Micropor Mesopor MaL,2000,37(1-2):81-89.
    [75]Park M, Chio C L, Lee D H. Salt-Thermal zeolitization of fly ash. Environ Sci Technol,2001,35(13): 2812-2816.
    [761王德举.利用粉煤灰合成沸石的研究进展.粉煤灰综合利用,2002,6:32-33.
    [77]章西焕,马鸿文,白峰.利用天然矿物原料合成沸石的研究.中国矿业,2005,14(11):34-37.
    [78]Drag E B, Miecznikowski A, Abo-Lemon F, et al. Synthesis of A X and Y zeolite from clay minerals. Stud Surf SciCatal,1985:147-154.
    [79]刘文中,徐龙,冯士安等.煤系高岭土的应用研究-氯化焙烧及合成4A沸石.淮南工业学院学报,2000,3:1-5.
    [80]黄彦林.煤系高岭士合成4A沸石实验研究.岩石矿物学杂志,1999,2:178-185.
    [81]申少华,张术根,王大伟.红辉沸石合成P型沸石实验研究.矿物学报,2001,21(3):493-496.
    [82]Antoniode L, Uguina M A. Synthesis of 13X Zeolite from Calcined Kaolins and Sodium Silieate for Using Detergents. Ind Eng Chem Res,1992,31(9):2134-2140.
    [83]Bosch P, Ortiz L, Schifter I. Synthesis of Faujasite Type Zeolite From Calcined Kaolines. Ind Eng Chem Prod Res Dev,1983,22:401-406.
    [84]WangY, ShangY S, Zhu J, et al. Synthesis of magadiite using a natural diatomite material. Journal of Chem Tech and Bio,2009,84:1894-1898.
    [85]刘新锦,黄铁刚.用叶蜡石合成Y型沸石的研究.硅酸盐通报,1996,3:61-64.
    [86]章西焕,马鸿文,杨静等.利用高铁钾长石粉合成13沸石沸石分子筛的实验研究.岩石矿物学杂志,2003,2(2):167-172.
    [87]Song S, Guo J. Synthesis of Zeolite Y from Bentonite. Zeolite,1997,18:84-88.
    [88]马明燕,张东丽,王玉洁等.碱活化条件对粉煤灰合成不同类刑沸石的影响.吉林大学学报(地球科学版),2006,4:663-667.
    [89]申少华.廉价矿物原料水热法制备沸石沸石分子筛形成机理与晶体生长模型研究[D].长沙:中南大学,2001.
    [90]张平萍,陈雪刚,程继鹏等.水热条件下坡缕石在NaOH溶液中的行为和结构变化.无机化学学报,2009,25(9):1545-1550.
    [91]张术根,申少华,王大伟.临澧玻屑凝灰岩合成4A沸石工艺研究.非金属矿,2000,9:23-25.
    [92]杨慧芬,杨华.纯化天然斜发沸石合成4A沸石工艺研究[J].建材地质,1997,6:20-23.
    [93]Mondragon R F. New perspectives for coal ash utilization:synthesis of zeolite materials. Fuel., 1990, 69(2):263-266.
    [94]郗爱华.用矿物原料合成沸石的工艺条件研究[J].长春地质学院学报,1994,4:468-472.
    [95]金为群,权新军,蒋引珊,张军,利用浮石合成13X型分子筛长春地质学院学报,1997,4:236-239.
    [96]Wang Y, Shang Y S, Wu J,et al. Recrystallization ofmagadiite into offretite in the presence of tetramethylammonium cations. J Chem Technol Biotechnol 2010,85:279-282.
    [97]H·布拉特等.沉积岩成因.北京:科学出版社.1978.
    [98]Ma H C, Yao Q T, Fu Y H, Ma C and Dong X L. Synthesis of zeolite of type A from bentonite by alkali fusion activation using. Ind Eng Chem Res,2010,49:454-458.
    [99]Wang Y F, Feng L. Synthesis of high capacity cation exchangers from a low-grade Chinese natural zeolite. [J] of Hazar Mater,2009,166:1014-1019.
    [100]申少华,方克明.水热体系X型沸石晶体生长的影响因素.哇酸盐通报,2004,6:113-116.
    [101]Barrer R M. Hydrothermal chemistry of zeolites. Academic Press,1982.
    [102]陶俊,石姜国.利用膨润土和铝十矿制备4A沸石分子筛的研究.安徽理工大学学报,2007,12:53-56.
    [103]陈善忠.铝十矿生产洗涤剂用4A沸石工艺.日用化学工业,1996,2:20-21.
    [104]唐超.由天然斜发沸石和铝十矿合成4A沸石研究[D].长沙:湖南大学化学化工学院.2008.
    [105]薛茄君,张德祥,陈晓玲.低品位铝矾石制取洗衣粉用4A沸石.淮南矿业学院学报,1998,18(1):43-48.
    [106]Zhu Y L, Chang Z H, Pang L and Xiong C J. Synthesis of zeolite 4A from kaolin and bauxite by alkaline fusion at low temperature. Eng EnviroBiolo Mater,2011,685:298-306.
    [107]Puerto R A and Benito J F. Process to obtain 4A zeolite starting from bauxite. US patent,1995,5: 401-487.
    [108]Yan C J, Han L X, Mei J,et al. Process for producing 4A zeolite molecular sieve by temperature calcination. CN Patent CN:101172619-A.2007.
    [109]Choi Y S, Lee M S and Oh S H, Manufacturing method of zeolite 4A using bauxite. KR Patent,2002, 094527-A,415941-B.
    [110]Choi Y S, Lee M S and Oh S H. Method for preparing zeolite.KR Paten,2004,028246-A,491091-B.
    [111]http://zh.wikipedia.org.
    [112]中国认证人员国家注册委员会编.IS014000环境管理体系国家注册审核员基础知识通用教程.北京:中国计量出版社.2000.
    [113]]于秀娟,刘军深,蔡伟民等.氢氧化镁处理含镉废水的研究.环境化学,2003,22(6):601-604.
    [114]王绍文,姜风有.重金属废水治理技术.北京:冶金工业出版社.1993.
    [115]陈金凤.镉的污染及沸石分子筛对镉的吸附性能研究[D].太原:山西大学化学化工学院.2010.
    [116]Sang Y M, Li F S, Gu Q H, et al. Heavy metal contaminated ground water treatment by a novel nanofiber membrane. Desalination,2008,223:349-360.
    [117]高古明.纳微米炭材料吸附去除水中重金属离子的基础研究[D].大连:大连理工大学化工学院.2010.
    [118]MathildeR J, et al. Eletrodialytic removal of cadmium from wasterwater sludge. Journal of Hazardous Materious,2004,106(2-3):127-131.
    [119]Huang J H, Guang M Z, Yao Y F et al. Removal of cadmium ions using mieellar-enhanced ultrafiltration with mixed anionic-nonionic surfactants. [J] Membrane Sci,2009,326:303-309.
    [120]邓娟利,胡小玲,管萍等.膜分离技术及其在重金属废水处理中的应用.材料导报,2005,19(2):23-26.
    [121]Tiede K, Neumann T and Stueben D. Suitability of Mn-Oxyhydroxides from karst caves as filter material for drinking water treatment in gunungsewu. Indonesia [J] Soils Sediments,2007,7(1):53-58.
    [122]常秀莲,王文华,冯咏梅等.不同海藻吸附重金属镉离子的研究.离子交换与吸附,2002,18(5):432-439.
    [123]Selatnia A, Bakhti M Z, Madani A, Kertous L, Mansouri Y. Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy,2004,75: 11-24.
    [124]Kefala M I, Zouboulis A I, Matis K. A. Biosorption of cadmium ions by Actinomycetes and separation by flotation. Environmental Pollution,1999, (104):283-293.
    [125]邱廷省,成先雄.啤酒酵母吸附镉离子的试验研究.环境污染与防治,2004,26(2):95-97.
    [126]张廷安,杨欢,赵乃仁等.用壳聚糖絮凝剂处理含镉(II)废水.东北大学学报(自然科学版),2001,22(5):547-549.
    [127]谷白云.方沸石对Cd2+的交换性能及其应用研究[D].大连:大连理工大学化工学院.2010.
    [128]车容睿.离子交换法在治理含镉废水中的应用.离子交换吸附,1993,6:276-280.
    [129]徐彦芹,曹渊,魏红娟.介孔沸石分子筛在废水处理中的应用.水处理技术,2010,36(2):9-14.
    [130]邢淑建,臧甲忠,刘伟等.沸石分子筛吸附剂的工业应用研究进展.无机盐工业,2009,41(3):13-16.
    [131]付克明,张勤善,张蓓.沸石分子筛处理重金属离子污水的原理及应用.焦作大学学报,2009,4:57-58.
    [132]黄少云,葛学贵,石磊.介微孔复合沸石沸石分子筛对重金属离子吸附性能的实验研究.岩石矿物学杂志,2004,23(1):57-60.
    [133]孙家寿,刘羽,鲍世聪.天然沸石吸附剂的除铅性能研究.化工矿山技术,1997,26(7):41-44.
    [134]宝迪,张树芳,王永军.天然沸石处理含铅、镉废水的试验研究.内蒙古石油化工,2003,29:5-7.
    [135]中国科学院大连化学物理研究所沸石分子筛组.沸石沸石分子筛.北京:科学出版社,1978:48.
    [136]蔺华林.A刑沸石分子筛的离子交换及吸附性能的研究[D].太原:太原理工大学.2004.
    [137]Purna G, Chandra R, Satyaveni S, Ramesh A, et al. Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite. Journal of Environmental Management,2006,81: 265-272.
    [138]Miyaji F, Masuda S and Suyama Y. Adsorption removal of lead and cadmium ions from aqueous solution with coal fly ash-derived zeolite/sepiolite composite. Journal of the Ceramic Society of Japan 2010, 118(11):1062-1066.
    [139]Shawabkeh R, Al-Harahsheh A, Hami M, Khlaifat A. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel,2004,83:981-985.
    [140]Puls R, Bohn H. Sorption of cadmium, nickel and zinc by kaolinite and montmorillonite suspensions. [J] Soil Sci Soc,1988,52:1289-92.
    [141]El-Kamash A M, Zaki A A, Geleel M A. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite. A Journal of Hazardous Materials, 2005, B127:211-220.
    [142]Weber W J, Morris J M. Kinetics of adsorption on carbon from solutions. [J]. Sanit. Eng. Div. Am. Soc. Eng,1963,89:31-39.
    [143]Boyd G E, Adamson A W, Mayers L S, The exchange adsorption of ions from aqueous solutions by zeolites. J Am Chem Soc,1947,69:28-36.
    [144]Hasany S M, Saeed M M, A kinetic and thermodynamic study of silver sorption onto manganese dioxide from acid solutions. Sep Sci Technol,1992,27:1789-1800.
    [145]Mondale K D, Carland R M, Apian F F. The comparative ion exchange capacities of natural sedimentary and synthetic zeolites. Minerals Engineering,1995,8(4-5):535-548.
    [146]Lee J H, Kim D S, Lee S O, et al. Treatment of municipal landfill leaches using artificial zeolite. Chemical Abstracts,1997,5:34-41.
    [147]Moreno N, Querol X, Alora C. Utilisation of zeolites synthesized from coal fly ash for the purification of acid minewaters. Environ Sei Technol,2001,35:352-3534.
    [148]Otal E. Vilches L F, Moreno N. Application of zeolitised coal fly ashes to the depuration of liquid wastes. Fuel 2005,84:1440-1446.
    [149]Steenbruggen G, Hollman G G. The synthesis of zeolites from ily ash and the properties of the zeolite products. Journal of Geochemical Exploration,1998,62:305-309.
    [150]李华伟,郑寿荣,许昭怡等.13X沸石分子筛去除水中重金属离子的研究离子交换与吸附,2007,23(5):408~414.
    [151]谷白云,商云帅,吴健等.方沸石对Cd2+离子的交换性能研究.离子交换与吸附,2008,24(2):154-161.
    [152]陶红等.13x沸石分子筛处理重金属废水的试验研究.中国给水排水.2000,16:53-56.
    [153]李菲菲.频率响应法研究沸石分子筛及改性沸石分子筛的吸附性能.兰州:兰州大学,2008.
    [154]Christophliemk P, Gerike P, Potokar M. Handbook of environmental chemistry 1st ed., Springer-Verlag, Berlin,1992.
    [155]Gloxthuber C, Potokar M, Pittermann W.ZeoliteA-a phosphate substitute for detergents-toxicological investigation.Food.Chem.Toxicol.1983,21(3):209-220.
    [156]Hui K S, Chao C Y H. Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents Hazardous Materials,2006, B137:401-409.
    [157]张全昌.天然沸石离子交换性能及应用.北京:科学出版社,1986.
    [158]孙霞.粉煤灰合成NaA和NaX型沸石分子筛及其对重金属废水的吸附研究[D].南京:南京理工大学,2007.
    [159]张徐宁.粉煤灰合成沸石沸石分子筛及其对铅离子的吸附性能研究[D].太原:太原理工大学,2012.
    [160]薛茹,朱克亮.4A沸石分子筛合成中原料配比的影响.淮南工业学院学报.2001,3:44-47.
    [161]Krznaric I, Antonic T, Subotic B. Influence of the batch molar ratio SiO2/Al2O3 on chemical composition of the gels. Microporous and Mesoporous,1998,20:161-175.
    [162]Mohamed R M, Aly H M, El-Shahat M F, et al. Effect of the silica sources on the crystallinity of nanosized ZSM-5 zeolite. Microporous Mesoporous Mater,2005,79:7-12.
    [163]王春峰,李健生,韩卫清,孙秀云,王连军.碱熔融法合成NaA和NaX刑粉煤灰沸石的品质表征.环境工程学报,2008,2:814-819。
    [164]杨效益.连续晶化法合成高性能4A沸石的研究[D].太原:太原理工大学.2003.
    [165]陈红梅.NaY沸石分子筛合成的研究[D].大连,大连理工大学.2007.
    [166]满卓.以硅藻土为原料合成沸石分子筛的探索研究[D].大连,大连理工大学.2006.
    [167]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学(21世纪科学版化学专著系列).北京:科学出版社.1987.
    [168]Wu D Y, Lu Y K, Kong,H N,et al.Synthesis of Zeolite From Thermally Treated Sediment. Ind. Eng. Chem. Res.2008,47,295-302.
    [169]袁琳.天然矿物原料合成沸石分子筛研究[D].长春,吉林大学,2007.
    [170]Kornatowski J. Adsorption isotherms of water as a tool for charaeterization of metal substituted aluminophosphate molecular sieves.C.R.Chimie,2005,8:561-568.
    [171]Zhu GQ, Li YS, Chen HL, Liu J and Yang WS, An in situ approach to synthesize pure phase FAU-type zeolite membranes:effect of aging and formation mechanism. J Mater Sci,2008:43:3279-3288.
    [172]Barthomeuf D B. Zeolites:characterization and uses in adsorption and catalysis. Catalysis Reviews-Science and Engineering.1996,38(4):521-612.
    [173]李亮.FCC废催化剂细粉合成超细Y型沸石分子筛[D].北京:中国石油大学,2011.
    [174]Li X S, Remias J E, Neathery J K, et.al. NF/RO faujasite zeolite membrane-ammonia absorption solvent hybrid system for potential post-combustion CO2 capture application. J Membr Sci,2011,366: 220-228.
    [175]Belmabkhout Y, Pirngruber G, Jolimaitre E and Alain MA, A complete experimental approach for synthesis gas separation studies using static gravimetric and column breakthrough experiments. Adsorption 2007,13:341-349.
    [176]周继红,陈振宇,朱玉霞等.Y型分子筛复合材料的改性及其裂化性能.石油炼制与化工,2010,41(5):34-38.
    [177]Inada M, Egnchi Y, Synthesis of zeolite from coal fiy ashes with different silica-calumina composition. Fuel.,2005,84(2-3):299-304.
    [178]Nugteren H W. Secondary Industrial Minerals from Coal Fly Ash and Aluminium Anodising Waste Solutions, PhD thesis Delft University of Technology,2010.
    [179]Chandrasekhar, Pramada P N. Investigation on the synthesis of zeolite NaX from Kerala kaolin. [J] Porous Mater,1999,6:283-297.
    [180]Shih W H, Chang H L, Conversion of fly ash into zeolites for ion-exchange applications. Mater Lett. 1996,28:263-268.
    [181]Breck D W. Zeolite Molecular Sieves, John Wiley and Sons. New York,1974.
    [182]陶红,马鸿文.钾长石合成13X分子筛的实验研究.无机材料学报,2001,16:63-68
    [183]Ye Y P, Zeng X Q, Qian W L,et al. Synthesis of pure zeolites from supersaturated silicon and aluminum alkali extracts from fused coal fly ash. Fuel,2008,87:1880-886.
    [184]Mezni M, Hamzaoui A, Hamdi N,et al. Synthesis of zeolites from the low-grade Tunisian natural illite by two different methods. Applied Clay Science,2011,52:209-218.
    [185]Fonta O, Morenoa N, Di'eza S, Differential behaviour of combustion and gasification fly ash from Puertollano Power Plants (Spain) for the synthesis of zeolites and silica extraction Journal of Hazardous Materials,2009,166:94-102.
    [186]Flanigen E M, Khatami H, Szymanski H A. Molecular sieve zeolites. Advances in Chemistry Series, 1971,101:201-228.
    [187]熊晓云.一种硅源活化合成硅铝沸石的方法[D].吉林:吉林大学,2007.
    [188]Franus W, Characterization of X-type zeolite prepared from coal fly ash. J Envirion Studies 2012,21: 337-343.
    [189]白峰,马鸿文.13X沸石分子筛的比表面积和孔分布.现代地质,2008,22(5):838-844.
    [190]Zhan B Z, White M A, Lumsden M, et al. Chem Mater.2002,14:2636-2340.
    [191]郭克瑞.利用膨润十合成沸石分子筛[D].大连:大连理工大学,2005.
    [192]贾立胜,田震.以煤矸石为原料合成Y型沸石.非金属矿,2000,25:29-30.
    [193]徐如人,张建民.沸石沸石分子筛生长机理与晶体生长(I)-八面沸石导向剂结构的研究.高等学校化学学报,1982,3:287-291.
    [194]Castaldi P, Santona L, Enzob St, et al. Sorption processes and XRD analysis of a natural zeolite exchanged with Pb2+, Cd2+ and Zn2+ cations Journal of Hazardous Materials,2008,156:428-434.
    [195]Minceva M, Fajgar R, Markovska L, et al. Comparative study of Zn2+, Cd2+ and Pb2+ removal from water solution using natural clino ptilolitic zeolite and commercial granulated activated carbon equilibrium of adsorption. Separation Science and Technology,2008,43:2117-2122.
    [196]Pitcher S K, Slade R C T, Ward N I. Heavy metal removal from motorway stormwater using zeolites.Science of the Total Environment,2004,334-335:161-166.
    [197]Mabel Vaca Mier, Raymundo Lopez Callejas, Ronald Gehr. Et al. Heavy metal removal with Mexican Clinoptilolite:Multi-component ionic exchange. Wat. Res,2001,35(2):373-378.
    [198]罗道成,易平贵,陈安国.改性沸石对电镀废水中pb2-,Zn2+,Ni2+的吸附.材料保护,2002,35(7):8-10.
    [199]Namasivayam C, Kavitha D. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments,2002,54:47-58.
    [200]Rao M M, Ramesh A, Rao G P C, et al. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. Journal of Hazardous materials,2006,129: 123-129.
    [201]McKay G, Bino M J and Altamemi A R. Adsorption of various pollutants from aqueous-solutions on to activated carbon. Water Res,1985,19:491-497.
    [202]Ho Y S, Mckay G. Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 1998,70(2):115-124.
    [203]Ho Y S, Mckay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research,2000,34(3):735-742.
    [204]Sprynskyy M, Buszewski B, Terzyk A P. Study of the selection mechanism of heavy metal (Pb2 Cu2+, Ni2+and Cd2-) adsorption on clinoptilolite. Journal of Colloid and Interface Science,2006,304: 21-30.
    [205]Teutli-S. A, Solache-R M, Olguin M T. Influence of Na-, Ca2+,Mg2+and NH1- on the sorption behavior of Cd2+ from aqueous solutions by a Mexican zeolitic material, Hydrometallurgy,2009,97: 46-53.
    [206]罗彦伟.超声波强化沸石分子筛离子交换吸附传质过程的研究[D].长沙,湖南工业大学,2008.
    [207]万东锦,袁海静,曲丹等.不同硅铝比的ZSM-5型沸石分子筛吸附水中Cu2+离子的研究.环境工程学报.2011,5:2681-2686.
    [208]Dodds R, Hudson P L, Kershenbaum L,et al. Operation and modeling of a periodic countercurrent, solid-liquid reactor. Chem.Eng.Sci,1973,28(6):1233-1248.
    [209]Vaillard R G.Performance of continuous cyclic ion-exchange reactors. Chem. Eng. Sci.,1981,36(2): 307-317.
    [210]JenaP R, Basu J K and De S.A generalized shrinking core model for multicomponent batch adsorption processes.Chemical Engineering Journal,2004,102(3):267-275.
    [211]Dicinoski W G, Gahan L R and Lawson P J,et al.Application of the shrinking core model to the kinetics of extraction of gold(Ⅰ),silver(Ⅰ)and nickel(Ⅱ)cyanide complexes by novel anion exchange resins.Hydrometallurgy,2000,56(3):369-336.
    [212]Pritzker M. Shrinking core model for multispecies uptake onto an ion exchange resin involving distinct reaction fronts.Separation and Purification Technology,2005,42(1):15-24.
    [213]杨铁笙,熊祥忠,詹秀玲等.粘性泥沙悬浮液中颗粒表面滑动层厚度的计算.水利学报,2002,5:20-25.
    [214]曾辉,王志海.膨润土水化膜结构与活化机理辨析.铸造,1998,9:12-13.
    [215]Dzombak D A, Morel F M M. Guidelines for Drinking-water Quality. New York:Wiley,1990.
    [216]Erdem N, Karapinar R J. The removal of heavy metal cations by natural zeolites, Colloid Interface Sci,2004,280:309-310.
    [217]肖万,马鸿文,杨静等.13X沸石对Ni2+吸附性能的实验研究.地球科学,2003,28(1):21-25.
    [218]Rao G P C, Satyaveni S, Ramesh A, et al. Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite. Journal of Environmental Management,2006,81:265-270.
    [219]张兆春,刘兴沛,管清佩等.活性矸吸附剂处理含磷废水的研究.山东煤炭科技,1995,(1):51-53.
    [220]Manceau A, Schlegel M, Nagy K L. Evidence for the formation of trioctahedral clay upon sorption of Co2+ on Quartz. Journal of Colloid and Interface Science,1999,220:181-190.
    [221]Trgo M, Peri J, Vukojevi N,et al. A comparative study of ion exchange kinetics in zinc/lead—modified zeolite-clinoptilolite systems. Journal of Hazardous Materials,2006 136:938-945.
    [222]章璟嵩,王少明.由膨润土合成介孔分子筛及其吸附性能研究.安徽建筑工业学院学报,2009,17(5):12-16.
    [223]柳萍,王建龙.天然沸石在水污染控制中的应用.离子交换与吸附,1996,12(4):378-382.
    [224]Zamzow M J, Murphy, J E, Removal of metal cations from water using zeolites. Separation Science and Technology,1992,27:1969-1983.
    [225]Faghihian H, Ghannadi Marageh M, Kazemian H. The use of clinoptilolite and its sodium form for removal of radioactive cesium, and strontium from nuclear wastewater and Pb2+, Ni2+, Cd2+, Ba2+ from municipal wastewater. Appl. Radiation and Isotopes,1999,50:655-659.
    [226]Mondale K D, Carland R M, Aplan F F. The comparative ion exchange capacities of natural sedimentary and synthetic zeolites. Minerals Eng.,1995,8:535-540.
    [227]Langella A, Pansini M, Cappelletti P, et al. NH4+, Cu2+, Zn2+, Cd2+ and Pb2+ exchange for Natin a sedimentary clinoptilolite, North Sardinia, Italy. Microporous Mesoporous Mater,2000,37:337-340.
    [228]Park S J, KimYM. Adsorption behaviors of heavy metal ions onto electroehemically oxidized activated carbonfibers. Materials Science and Engineering A,2005,391(1-2):121-123.
    [229]Wulfsberg, G. Principles of Descriptive Chemistry; Brooks Cole Publishing:Monterey, CA.1987.
    [230]Nightingale, J E R. Phenomenological theory of ion solvation. Effective radia of hydrated ions. J Phys Chem,1959,63:1381.
    [231]G Wulfsberg. Inorganic Chemistry. USA:University Science Book.2000:57.
    [232]Barrer R M, Davies J A, Rees L V C. Inorg Nucl Chem,1968,30:3333-3349.
    [233]Tangkawanit S, Rangsriwatananon K, Dyer A. Ion exchange of Cu2+, Ni2+ Pb2+ and Zn2+ in analcime(ANA) synthesized from Thai perlite. Microporous and Mesoporous Materials,2005,79(1-3): 171-175.
    [234]冯长君,王超.阳离子标准熵、水合焓与配分函数的相关性.吉林大学学报,2003,41(4):543-547.
    [235]许秀云,蔡玉曼.改性沸石对重金属离子竞争吸附特性研究.地质学刊,2010,34(1):92-97.
    [236]Allen S J, Brown P A. Isotherm analyses for single component and multi-component metal sorption onto lignite. Journal of Chemical Technology and Biotechnology,1995,62(1):17-24.
    [237]Mcvr I B. Envirenmental chemistry of soils. New York:Oxford University Press.1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700