用户名: 密码: 验证码:
城市个体黑碳暴露特征与儿童呼吸道健康效应关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由燃料不完全燃烧产生的黑碳颗粒物(Black Carbon, BC),在大气传输过程中会引发一系列气候、环境和健康风险。黑碳颗粒物粒径范围为0.1~1μm,因此能够进入人体的呼吸系统,甚至深达肺部,并可能通过引发呼吸道的炎性反应而诱发哮喘等疾病。近年来,黑碳颗粒物的暴露风险研究已成为是国内外学者重要的研究领域。
     尽管大量的流行病学和毒理学研究将黑碳暴露与呼吸系统和心血管疾病关联,但这些研究的结论大多建立在室外定点观测结果的基础上。由于个体行为以及污染物时空分布差异,定点观测对人群暴露风险的表征有一定的局限性,研究结果具有较大的不确定性。建立更为准确的个体暴露表征方法得到国内外学者的重视。因此,解析黑碳污染的时空分布、探索定点黑碳观测水平对个体暴露水平的代表度及有效性,既可以对现有的流行病学结果进行补充,提高暴露风险评价的可靠性;又可以更准确地比较不同环境黑碳水平与暴露风险的关系。
     论文围绕城市地区个体黑碳暴露特征开展研究,首次对新近设计的MicroAeth黑碳采样仪应用于个体黑碳暴露特征研究的可行性进行了全面的评估,并将该采样体系应用于纽约地区个体黑碳暴露与儿童呼吸道急性效应关系的研究,以及上海地区地铁站工作人员黑碳个体暴露特征的研究中。基于上海和纽约两大城市进行的室内外和个体黑碳的观测,论文尝试比较了两大城市黑碳污染分布特征和个体暴露特征。在纽约地区的研究,对9-10岁儿童(包括哮喘儿童)进行了室内黑碳观测以及多次重复24小时个体黑碳和呼吸道指标(肺功能测试和呼出气一氧化氮)采集,采用多元线性方程表征了室内外黑碳水平对个体黑碳暴露水平的表征度;建立线性混合效应模型,估算了个体黑碳暴露与9~10岁纽约儿童呼吸道急性效应的关系;在上海地区开展的研究,则初步对比分析了上海地区室内外黑碳观测水平与个体暴露水平的关系,并通过对某地铁站工作人员的个体黑碳暴露采样,评估了封闭空间个体污染物暴露特征,估算了不同环境中个体黑碳暴露长期、短期的相对风险度。
     通过论文的研究,取得了如下主要研究成果:
     (1)纽约城市地区,中心点位黑碳浓度呈冬夏高,春秋低的季节分布特征及工作日高于周末的周分布特征;而同时期测得的不同家庭室内黑碳浓度具有显著差异。该污染特征表明纽约地区黑碳主要受人为活动(局部源贡献)和气象因素主导而与纽约地区略有不同,上海地区碳污染时空分布特征还可能受到周边外地源短程或长距离输入的作用。
     (2)对纽约地区中心点位、家庭室内黑碳和个体黑碳浓度水平的对比发现,中心点位和家庭室内黑碳不能完全表征对个体黑碳暴露特征。中心点位黑碳仅能表征个体黑碳37%的变异性;而家庭室内黑碳浓度水平在非供暖季对个体黑碳的表征度为59%,供暖季为45%。这一结果主要与黑碳在城市地区显著的时空分布和研究对象的个体行为差异有关。因此个体采样对于研究黑碳暴露风险更为有效。
     (3)线性混合效应模型结果显示,个体黑碳日均浓度每增加1μg/m3,非哮喘儿童的肺功能指标FEV1/FVC和FEF2575/FVC分别下降0.008个单位和0.03个单位(p<0.05),表明黑碳对非哮喘儿童的肺功能有抑制作用;但对哮喘儿童却没有观察到类似的结论。个体黑碳日均浓度与研究人群炎症指标的关系不明显。模型结果还发现,室内环境中NO的浓度与呼吸道炎性指标具有显著相关性。室内环境空气质量值得关注。
     (4)通过对上海某地铁站工作人员个体采样与定点监测结果比较,在上海地区无论室内还是室外固定点观测,对个体黑碳浓度进行表征的结果都存在较大的误差。地铁站定点观测值对个体黑碳暴露真实水平的估计偏低近2倍。地铁室内研究结果还表明,尽管车控室环境中黑碳水平相对较低,但是由于地铁站采样对象在车控室滞留时间占到72%,导致人体在车控室的黑碳暴露剂量高于非车控室。因此,地铁工作人员职业黑碳暴露健康风险研究应以车控室环境为主;而公众短期暴露急性健康效应研究应以非车控室环境为主。
     论文的主要特色和创新点在于:
     (1)对MicroAeth黑碳采样仪个体采样中湿度和振动的影响进行了系统的分析和研究,提出了异常数据自动诊断和处理的方法,为该仪器在暴露研究中的应用奠定了基础。
     (2)采用多次重复测定个体黑碳水平和多次重复采集生物指标来研究黑碳呼吸道健康效应,降低了由随机抽样导致的个体效应带来的不确定性。在混合效应模型中,将随机效应列入调整项,提高了模型表征总体样本特征的精度。
     (3)以上海地区地铁站个体黑碳暴露特征为研究对象,比较了封闭空间黑碳水平与个体暴露水平,评估了不同环境中长期、短期黑碳暴露的风险度。相似的研究尚未见报道,可为探讨黑碳职业暴露和公众暴露水平,以及制定污染物控制对策提供依据。
     (4)论文基于个体暴露风险特征研究,建立了完整的,包括室外固定点采样、室内采样以及个体采样的暴露特征表征体系关系,具有特色,可为更为准确的评价个体黑碳暴露提供依据。
Black carbon (BC), which mainly results from incomplete combustion of biomass and fossil fuels, is responsible for significant climate, environmental and health effects in the atmosphere. BC with particle size ranging from0.1to1μm, can enter the respiratory system, possibly penetrating deep into the lungs; this might trigger asthma attacks or other diseases by causing airway inflammation. In recent years, scientific attention has shifted to the role of BC as a risk factor of human health.
     A mountain of epidemiological and toxicological studies implicate that exposure to BC is associated significantly with respiratory and cardiovascular diseases. In those studies, the assessment of exposure to air pollutants has been primarily based on ambient measurements. However, stationary data may not properly reflect personal exposure due to the differences in personal activities among different subjects and the spatial heterogeneity of the air pollutants measured (e.g. BC). Interpretation of findings from epidemiologic and toxicological studies has been hampered by uncertainties in exposures. Accordingly, much attention has been directed toward the need for more appropriate exposure assessment methodology. A detailed study on the characteristics of temporal and spatial distribution of BC in urban settings and the contribution of outdoor/indoor BC levels to personal BC exposure will help in gaining a better understanding of the extent to which fixed-site BC measurements are representative of personal exposure, which is essential to the validation of epidemiological studies that are based on stationary measurements as well as to the determining of the true association between BC exposure and human health.
     This study focuses on the characteristics of personal exposure to BC in urban settings. It validated a newly developed BC monitor-MicroAeth for personal BC exposure measurements and investigated for its application in personal exposure study. MicroAeth was used as a personal BC sampler in the study on relationship of personal BC exposure and airway response in Children in New York City (NYC) and in the study on characteristics of personal exposure to BC in a Shanghai (SH) subway station. Based on the outdoor/indoor BC monitoring and personal BC sampling in both NYC and SH, this study preliminarily compared characteristics of ambient BC distributions and personal BC exposures among two cities. Home indoor BC,6repetitions of personal BC measurements as well as lung function and exhaled NO data were collected from9-10years old children in NYC:multivariable linear regression was conducted to model the relationship between ambient, home indoor and personal BC; linear mixed effected models were conducted to estimate the relationship between personal BC exposure and airway acute response in9-10years old children in NYC. A preliminary comparison of outdoor/indoor BC and personal BC was conducted in the SH study. And it characterized the personal exposure to air pollutants in an enclosed space and assessed the long-term and short-term risks of BC exposure in different environments via conducting personal sampling on staff from a subway station in SH.
     The main results from this study are described below:
     (1) It is very apparent from central site BC and home indoor BC measurements that BC is temporally and spatially heterogeneous in NYC. Strong seasonal (higher BC levels in winter and summer than ones in spring and autumn) and weekly patterns (higher BC in weekdays than one in weekend) suggest that BC distribution in NYC is mainly affected by meteorological conditions and local sources; in contrast with BC distribution characteristics in NYC, the SH area seems to be significantly affected by contributions from regional and long distance transportation in addition to local BC sources
     (2) Comparison among ambient, home indoor and personal measurements show that ambient BC at central site can explain37%of variability of personal BC; while home indoor BC in non-heating season and heating season can explain59%and45%of variability of personal BC, respectively, suggesting that ambient BC and home indoor BC do not adequately reflect personal BC exposure of a cohort of NYC children; while home indoor BC performs better than ambient BC due to the fact that most of the subjects' time is spent at home and BC concentrations are heterogeneously distributed in NYC. Hence, to accurately capture BC exposures of a cohort of NYC children, personal monitoring is essential.
     (3) Linear mixed effect model analysis shows that the lung function of FEVi/FVC and FEF2575/FVC will decrease0.8%and0.03with1μg/m3of personal BC increases among non asthmatic children, suggesting exposure to BC may have adverse effects on lung development in children without asthma; however, similar results were not observed in children with asthma. The levels of inflammation biomarkers were significantly associated with home indoor NO, but not with personal BC, suggesting that more attention needs to be paid on indoor air quality.
     (4) Similarly, it was concluded that outdoor/indoor BC do not adequately reflect personal BC exposure based on the comparison of stationary measurements and personal sampling conducted by staff working in a subway station in Shanghai. It suggested that the strength of exposure risk to BC in the Shanghai area varies greatly among different environments. Although BC levels in the dispatcher's office in a subway station were relatively lower than in non-office environments, the exposure dose of personal BC was higher in the office probably due to the fact that subjects spent approximately72%of their workday in the office environment. Therefore, it indicated that the office should be considered as the priority environment for professional exposure risk study, while the non-office environment should be considered as the priority one for the study of public exposure risk.
     Overall, the following points stand out in this study:
     (1) As far as we are aware, the usage of the microAeth as a personal BC real-time monitor has not been validated in peer-reviewed literature. This study presented on the detailed analysis of the performance of the microAeth as a personal sampler under varying conditions of humidity and vibration. A post hoc procedure was developed to identify causes of and to remediate problematic BC readings for personal data quality assurance and control.
     (2) The repeated personal BC, lung function and inflammation biomarkers measurements obtained for each subject enables the use of the linear mixed effect model with random intercepts for random effect adjustment to investigate the relationship between BC exposure and airway response with much less uncertainty.
     (3) As far as we aware, a study on characteristics of personal exposure to BC in Shanghai subway stations has not been published in the scientific literature. This study characterized personal BC exposure in professional environments, i.e. a subway station, and assessed long-term and short-term exposure risks in different subway micro-environments by comparing personal BC levels and BC concentrations in an enclosed space. Furthermore, it provides information for the investigation of both professional and public exposure risk and provides a scientific basis for enacting measures for air pollution control.
     (4) This study stands out in its establishment of a complete exposure characterization, including ambient, indoor and personal measurements and provides a better understanding of proper BC exposure assessment.
引文
[1]. Han, Y.M., J.J. Cao, B.Z. Yan, et al., Comparison of Elemental Carbon in Lake Sediments Measured by Three Different Methods and 150-Year Pollution History in Eastern China[J]. Environmental Science & Technology,2011.45(12):5287-5293.
    [2]. Hedges, J.I., G. Eglinton, P.G. Hatcher, et al., The molecularly-uncharacterized component of nonliving organic matter in natural environments[J]. Organic Geochemistry,2000. 31:945-958.
    [3]. Masiello, C.A., New directions in black carbon organic geochemistry [J]. Marine Chemistry,2004.92(1-4):201-213.
    [4]. Schmidt, M.W.I, and A.G. Noack, Black carbon in soils and sediments:Analysis, distribution, implications, and current challenges [J]. Global Biogeochemical Cycles,2000.14(3): 777-793.
    [5]. Akhter, M.S., A.R. Chughtai and D.M. Smith, The Structure of Hexane Soot II: Extraction Studies[J]. Appl. Spectrosc.,1985.39(1):154-167.
    [6]. Ogren, J.A. and R.J. Charlson, Elemental carbon in the atmosphere:cycle and lifetime[J]. Tellus B,1983:241-254.
    [7]. Cornell, A.G., S.N. Chillrud and R.B. Mellins, et al, Domestic black carbon in air and exhaled nitric oxide in children in NYC[J]. Journal of Exposure Science and Environmental Epidemiology,2012.22(3):255-266.
    [8]. Jansen, K.L., T.V. Larson, J.Q. Koenig, et al., Associations between health effects and particulate matter and black carbon in subjects with respiratory disease [J]. Environmental Health Perspectives,2005.113(12):1741-1746.
    [9]. Patel, M.M., S.N. Chillrud, J.C. Correa, et al., Spatial and temporal variations in traffic-related particulate matter at New York City high schools [J]. Atmospheric Environment,2009. 43(32):4975-4981.
    [10]. Wentzel, M., H. Gorzawski, K.H. Naumann, et al., Transmission electron microscopical and aerosol dynamical characterization of soot aerosols [J]. Journal of Aerosol Science,2003. 34(10):1347-1370.
    [11]. Johnson, K.S., B. Zuberi, L.T. Molina, et al., Processing of soot in an urban environment: case study from the Mexico City Metropolitan Area[J]. Atmos. Chem. Phys.,2005.5(11):3033-3043.
    [12]. Gustafsson,O. and Gschwend P.M., The Flux of Black Carbon to Surface Sediments on the New England Continental Shelf[J]. Geochimica et Cosmochimica Acta,1998.62(3):465-472.
    [13]. Rockne, K.J., G.L. Taghon and D.S. Kosson, Pore structure of soot deposits from several combustion sources.2000:1125-1135.
    [14]. Sergides, C.A., J.A. Jassim, A.R. Chughtai, et al., The Structure of Hexane Soot. Part III: Ozonation Studies[J]. Appl. Spectrosc.,1987.41(3):482-492.
    [15]. Streets, D.G., S. Gupta, S.T. Waldhoff, et al., Black carbon emissions in China[J]. Atmospheric Environment,2001.35(25):4281-4296.
    [16]. Bond, T.C., D.G. Streets, K.F. Yarber, et al., A technology-based global inventory of black and organic carbon emissions from combustion[J]. J. Geophys. Res.,2004.109(D14): D14203.
    [17]. Cooke, W.F. and J.J.N. Wilson, A global black carbon aerosol model[J]. J. Geophys. Res., 1996.101(D14):19395-19409.
    [18]. Houghton, J.T., Climate Change 2001:The Scientific Basis. Intergovernmental Panel on Climate Change (IPCC) [J].2001, New York:Cambridge Univ. Press.880.
    [19].曹国良,王亚强等.中国大陆黑碳气溶胶排放清单[J].气候变化研究进展,2006.259-264.
    [20]. Andreae, M.O., The dark side of aerosols[J]. Nature,2001.409(6821):671-672.
    [21]. Jacobson, M.Z., Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J]. Nature,2001.409(6821):695-697.
    [22]. Frazer, L., Seeing through the soot[J]. Environmental Health Perspectives,2002.110(8): A471-A473.
    [23]. Rosen, H., A.D.A. Hansen, L. Gundel, et al., Identification of the optically absorbing component in urban aerosols[J]. Appl. Opt.,1978.17(24):3859-3861.
    [24]. Crutzen, P.J. and M.O. Andreae, Biomass burning in the tropics:impact on atmospheric chemistry and biogeochemical cycles[J]. Science (New York, N.Y.),1990.250(4988):1669-1678.
    [25]. Kuhlbusch, T.A.J., A.-m. Hertlein and L.W. Schutz, Sources, determination, monitoring, and transport of carbonaceous aerosols in Mainz, Germany[J]. Atmospheric Environment,1998. 32(6):1097-1110.
    [26]. Grenfell, T.C., D.K. Perovich and J.A. Ogren, Spectral albedos of an alpine snowpack[J]. Cold Regions Science and Technology,1981.4(2):121-127.
    [27]. Hansen, J. and L. Nazarenko, Soot climate forcing via snow and ice albedos[J]. Proceedings of the National Academy of Sciences of the United States of America,2004.101(2): 423-8.
    [28]. Zhou, X., J. Gao, T. Wang, et al., Measurement of black carbon aerosols near two Chinese megacities and the implications for improving emission inventories [J]. Atmospheric Environment,2009.43(25):3918-3924.
    [29]. Viidanoja, J., M. Sillanpaa, J. Laakia, et al., Organic and black carbon in PM2.5 and PM10:1 year of data from an urban site in Helsinki, Finland[J]. Atmospheric Environment,2002. 36(19):3183-3193.
    [30]. Froines, J.R., Monitoring and modeling of ultrafine particles and black carbon at the Los Angeles International Airport[R].2007:California Environmental Protection Agency, Air Resources Board, Research Division.
    [31]. Chang, S.G., R. Brodzinsky, L.A. Gundel, et al., Chemical and catalytic properties of elemental carbon[J]. Particulate Carbon.1980:159-181.
    [32]. Zhang, D., Y. Iwasaka and G. Shi, Soot particles and their impacts on the mass cycle in the Tibetan atmosphere[J]. Atmospheric Environment,2001.35:5883-5894.
    [33]. Pope, C.A. and D.W. Dockery, Health Effects of Fine Particulate Air Pollution:Lines that Connect[J]. Journal of the Air & Waste Management Association,2006.56(6):709-742.
    [34]. Gong, J.H., W.S. Linn, C. Sioutas, et al., Controlled Exposures of Healthy and Asthmatic Volunteers to Concentrated Ambient Fine Particles in Los Angeles [J]. Inhalation Toxicology, 2003.15(4):305-325.
    [35]. Li, X.Y., P.S. Gilmour, K. Donaldson, et al., Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo and in vitro[J]. Thorax,1996.51(12):1216-1222.
    [36]. Gan, W.Q., S.F.P. Man, A. Senthilselvan, et al., Association between chronic obstructive pulmonary disease and systemic inflammation:a systematic review and a meta-analysis[J]. Thorax,2004.59(7):574-580.
    [37]. Garg. R, Karpati A, Leighton J, et al., Asthma Facts,2003, New York City Department of Health and Mental Hygiene.
    [38]. Kim, J.J., S. Smorodinsky, M. Lipsett, et al., Traffic-related air pollution near busy roads-The East Bay children's respiratory health study [J]. American Journal of Respiratory and Critical Care Medicine,2004.170(5):520-526.
    [39]. Wjst, M., P. Reitmeir, S. Dold, et al., Road Traffic and Adverse-Effects on Respiratory Health in Children[J]. British Medical Journal,1993.307(6904):596-600.
    [40]. Wilker, E.H., A. Baccarelli, H. Suh, et al., Black Carbon Exposures, Blood Pressure, and Interactions with Single Nucleotide Polymorphisms in MicroRNA Processing Genes [J]. Environmental Health Perspectives,2010.118(7):943-948.
    [41]. Dockery, D.W., C.A. Pope, X.P. Xu, et al., An Association between Air-Pollution and Mortality in 6 United-States Cities[J]. New England Journal of Medicine,1993.329(24):1753-1759.
    [42]. Wilson, J.G., S. Kingham, J. Pearce, et al., A review of intraurban variations in particulate air pollution:Implications for epidemiological research[J]. Atmospheric Environment,2005. 39(34):6444-6462.
    [43]. Bell, M.L., K. Ebisu, R.D. Peng, et al., Hospital Admissions and Chemical Composition of Fine Particle Air Pollution[J]. American Journal of Respiratory and Critical Care Medicine, 2009.179(12):1115-1120.
    [44]. Dominici, F., R.D. Peng, M.L. Bell, et al., Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases [J]. Jama-Journal of the American Medical Association,2006.295(10):1127-1134.
    [45]. Ozkaynak, H., J. Xue, J. Spengler, et al., Personal exposure to airborne particles and metals:Results from the particle team study in Riverside, California[J]. Journal of Exposure Analysis and Environmental Epidemiology,1996.6(1):57-78.
    [46]. Klepeis, N.E., W.C. Nelson, W.R. Ott, et al., The National Human Activity Pattern Survey (NHAPS):a resource for assessing exposure to environmental pollutants[J]. Journal of Exposure Analysis and Environmental Epidemiology,2001.11(3):231-252.
    [47]. Spengler, J.D. and M.L. Soczek, Evidence for Improved Ambient Air-Quality and the Need for Personal Exposure Research[J]. Environmental Science & Technology,1984.18(9): A268-A280.
    [48]. Molnar, P., P. Gustafson, S. Johannesson, et al., Domestic wood burning and PM2.5 trace elements:Personal exposures, indoor and outdoor levels[J]. Atmospheric Environment,2005. 39(14):2643-2653.
    [49]. Spengler, J.D. and K. Sexton, Indoor Air-Pollution-a Public-Health Perspective[J]. Science,1983.221(4605):9-17.
    [50]. Chillrud, S.N., D. Epstein, J.M. Ross, et al., Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City's subway system[J]. Environmental Science & Technology,2004.38(3):732-737.
    [51]. Spengler, J.D., R.D. Treitman, T.D. Tosteson, et al., Personal Exposures to Respirable Particulates and Implications for Air-Pollution Epidemiology[J]. Environmental Science & Technology,1985.19(8):700-707.
    [52]. Behrentz, E., L.D. Sabin, A.M. Winer, et al., Relative importance of school bus-related microenvironments to children's pollutant exposure[J]. Journal of the Air & Waste Management Association,2005.55(10):1418-1430.
    [53]. Dons, E., L.I. Panis, M.V. Poppel, et al., Personal exposure to Black Carbon in transport microenvironments[J]. Atmospheric Environment,2012.55(In Press):392-398.
    [54]. Krivacsy, Z., A. Hoffer, Z. Sarvari, et al., Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites [J]. Atmospheric Environment,2001.35(36):6231-6244.
    [55]. Kleefeld, S., A. Hoffer, Z. Krivacsy, et al., Importance of organic and black carbon in atmospheric aerosols at Mace Head, on the West Coast of Ireland[J]. Atmospheric Environment, 2002.36(28):4479-4490.
    [56]. 温玉璞,汤洁,徐晓斌等青海瓦里关大气气溶胶元素富集特征及其来源[J].应用气象学2001.400-408.
    [57]. 汤洁,周凌晞等.中国西部大气清洁地区黑碳气溶胶的观测研究[J],应用气象学报.1999.160-170.
    [58]. 秦世广,四川温江黑碳气溶胶浓度观测研究[J],环境科学学报.2007.1370-1376.
    [59]. Bahadur, R., Y. Feng, L.M. Russell, et al., Impact of California,Aos air pollution laws on black carbon and their implications for direct radiative forcing[J]. Atmospheric Environment, 2011.45(5):1162-1167.
    [60]. Butterfield, D.M., Beccaceci, S, Sweeney, B P, Williams, M, Fuller, G, Green, D, Grieve, A,2010 Annual Report for the UK Black Carbon Network[R] 2010, Nathonal Physical Laboratory.63.
    [61].荆俊山,陶俊等.北京郊区夏季PM2.5和黑碳气溶胶的观测资料分析[J].气象科学,2011.510-515.
    [62].肖秀珠,耿福海等.上海市区和郊区黑碳气溶胶的观测对比[J].应用气象学报,2011.158-168.
    [63]. Cao, J.J., S.C. Lee, K.F. Ho, et al., Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China[J]. Atmospheric Environment, 2004.38(27):4447-4456.
    [64].李杨,张小曳等.2003年秋季西安大气中黑碳气溶胶的演化特征及其来源解析[J].气候与环境研究,2005.229-237.
    [65]. Pakkanen, T.A., V.M. Kerminen, C.H. Ojanen, et al., Atmospheric black carbon in Helsinki[J]. Atmospheric Environment,2000.34(9):1497-1506.
    [66]. Salcedo, D., T.B. Onasch, K. Dzepina, et al., Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry:results from the CENICA Supersite[J]. Atmospheric Chemistry and Physics,2006.6(4):925-946.
    [67]. Madhavi L.K. and Badarinath, K.V.S., Black carbon aerosols over tropical urban environment-a case study[J]. Atmospheric Research,2003.69(1-2):125-133.
    [68]. Wolff, G.T., Particulate Elemental Carbon in the Atmosphere [J]. Journal of the Air Pollution Control Association,1981.31(9):935-938.
    [69]. Horvath, H., I. Kreiner, C. Norek, et al., Diesel Emissions in Vienna[J]. Atmospheric Environment,1988.22(7):1255-1269.
    [70]. Chow, J.C., J.G. Watson, D. Crow, et al., Comparison of IMPROVE and NIOSH carbon measurements[J]. Aerosol Science and Technology,2001.34(1):23-34.
    [71].鲍林发,汤大钢.黑碳的研究现状和前景[J].海洋地质与第四纪地质.2005.284-287.
    [72]. Japar, S.M., W.W. Brachaczek, R.A. Gorse Jr, et al., The contribution of elemental carbon to the optical properties of rural atmospheric aerosols[J]. Atmospheric Environment (1967),1986. 20(6):1281-1289.
    [73]. Countess, R.J., Interlaboratory Analyses of Carbonaceous Aerosol Samples [J]. Aerosol Science and Technology,1990.12(1):114-121.
    [74]. Birch, M.E. and R.A. Cary, Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust[J]. Aerosol Science and Technology,1996. 25(3):221-241.
    [75]. Quincey, P., D. Butterfield, D. Green, et al., An evaluation of measurement methods for organic, elemental and black carbon in ambient air monitoring sites [J]. Atmospheric Environment, 2009.43(32):5085-5091.
    [76]. Hansen, A.D.A., H. Rosen and T. Novakov, The Aethalometer-an Instrument for the Real-Time Measurement of Optical-Absorption by Aerosol-Particles[J]. Science of the Total Environment,1984.36(7):191-196.
    [77]. Lawless, P.A., C.E. Rodes and D.S. Ensor, Multiwavelength absorbance of filter deposits for determination of environmental tobacco smoke and black carbon[J]. Atmospheric Environment,2004.38(21):3373-3383.
    [78]. Yan, B., D. Kennedy, R.L. Miller, et al., Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components [J]. Atmospheric Environment 2011.45(39):7478-7486.
    [79]. Allen, G.A., J. Lawrence and P. Koutrakis, Field validation of a semi-continuous method for aerosol black carbon (aethalometer) and temporal patterns of summertime hourly black carbon measurements in southwestern PA[J]. Atmospheric Environment,1999.33(5):817-823.
    [80]. Yasa, Z., N.M. Amer, H. Rosen, et al., Photoacoustic Investigation of Urban Aerosol-Particles[J]. Applied Optics,1979.18(15):2528-2530.
    [81]. Moosmuller, H., W.P. Arnott, C.F. Rogers, et al., Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality Study (Colorado 1996/1997) [J]. Journal of Geophysical Research-Atmospheres,1998.103(D21):28149-28157.
    [82]. Babich, P., M. Davey, G. Allen, et al., Method comparisons for particulate nitrate, elemental carbon, and PM2.5 mass in seven US cities[J]. Journal of the Air & Waste Management Association,2000.50(7):1095-1105.
    [83]. Jeong, C.H., P.K. Hopke, E. Kim, et al., The comparison between thermal-optical transmittance elemental carbon and Aethalometer black carbon measured at multiple monitoring sites[J]. Atmospheric Environment,2004.38(31):5193-5204.
    [84]. Venkatachari, P., L. Zhou, P.K. Hopke, et al., An Intercomparison of Measurement Methods for Carbonaceous Aerosol in the Ambient Air in New York City[J]. Aerosol Science and Technology,2006.40(10):788-795.
    [85]. Binder, R.E., C.A. Mitchell, H.R. Hosein, et al., Importance of Indoor Environment in Air-Pollution Exposure[J]. Archives of Environmental Health,1976.31(6):277-279.
    [86]. Wallace, L., Indoor particles:A review[J]. Journal of the Air & Waste Management Association,1996.46(2):p.98-126.
    [87]. Janssen, N.A.H., G. Hoek, B. Brunekreef, et al., Personal sampling of particles in adults: Relation among personal, indoor, and outdoor air concentrations[J]. American Journal of Epidemiology,1998.147(6):537-547.
    [88]. Sarnat, J.A., P. Koutrakis and H.H. Suh, Assessing the relationship between personal particulate and gaseous exposures of senior citizens living in Baltimore, MD[J]. Journal of the Air & Waste Management Association,2000.50(7):1184-1198.
    [89]. Williams, R., J. Suggs, J. Creason, et al., The 1998 Baltimore particulate matter Epidemiology-Exposure Study:Part 2. Personal exposure assessment associated with an elderly study population[J]. Journal of Exposure Analysis and Environmental Epidemiology,2000.10(6): 533-543.
    [90]. Williams, R., J. Suggs, R. Zweidinger, et al., The 1998 Baltimore particulate matter Epidemiology-Exposure Study:Part 1. Comparison of ambient, residential outdoor, indoor and apartment particulate matter monitoring[J]. Journal of Exposure Analysis and Environmental Epidemiology,2000.10(6):518-532.
    [91]. Buckley, T.J., J.M. Waldman, N.C.G. Freeman, et al., Calibration, Intersampler Comparison, and Field Application of a New Pm-10 Personal Air-Sampling Impactor[J]. Aerosol Science and Technology,1991.14(3):380-387.
    [92]. Janssen, N.A.H., T. Lanki, G. Hoek, et al., Associations between ambient, personal, and indoor exposure to fine particulate matter constituents in Dutch and Finnish panels of cardiovascular patients[J]. Occupational and Environmental Medicine,2005.62(12):868-877.
    [93]. 白志鹏,王宗爽,朱坦等.人体对室内外空气污染物的暴露量与潜在剂量的关系[J].环境与健康杂志,2002.425-429.
    [94].周剑,白志鹏,张杰峰.空气颗粒物人体暴露来源解析研究进展[J].环境与健康杂志,2009.1121-1125.
    [95]. Zhao, W., P.K. Hopke, E.W. Gelfand, et al., Use of an expanded receptor model for personal exposure analysis in schoolchildren with asthma[J]. Atmospheric Environment,2007. 41(19):4084-4096.
    [96]. Clayton, C.A., R.L. Perritt, E.D. Pellizzari, et al., Particle Total Exposure Assessment Methodology (Pteam) Study-Distributions of Aerosol and Elemental Concentrations in Personal, Indoor, and Outdoor Air Samples in a Southern California Community [J]. Journal of Exposure Analysis and Environmental Epidemiology,1993.3(2):227-250.
    [97]. Brook, R.D., H.H. Shin, R.L. Bard, et al., Exploration of the Rapid Effects of Personal Fine Particulate Matter Exposure on Arterial Hemodynamics and Vascular Function during the Same Day[J]. Environmental Health Perspectives,2011.119(5):688-694.
    [98]. Weisel, C.P., J. Zhang, B.J. Turpin, et al., Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses. Research report (Health Effects Institute),2005(130 Pt 1):1-107; discussion 109-27.
    [99]. Turpin, B.J., C.P. Weisel, M. Morandi, et al., Relationships of Indoor, Outdoor, and Personal Air (RIOPA):part Ⅱ. Analyses of concentrations of particulate matter species [J]. Res Rep Health Eff Inst,2007(130 Pt 2):1-77; discussion 79-92.
    [100]. Rodes, C.E., P.A. Lawless, J.W. Thornburg, et al., DEARS particulate matter relationships for personal, indoor, outdoor, and central site settings for a general population [J]. Atmospheric Environment,2010.44(11):1386-1399.
    [101]. Rabinovitch, N., A.H. Liu, L.N. Zhang, et al., Importance of the personal endotoxin cloud in school-age children with asthma[J]. Journal of Allergy and Clinical Immunology,2005.116(5): 1053-1057.
    [102]. Lippmann, M., Targeting the components most responsible for airborne particulate matter health risks. Journal of Exposure Science and Environmental Epidemiology,2010.20(2):117-118.
    [103]. Michel, F.B., N. F., B. J., et al., L'asthme-probleme mondial de sante'publique[J]. Asthma-a worldwide public health problem.1995.179(2).
    [104]. Beasley, R., Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema:ISAAC[J]. The Lancet,1998.351(9111):1225-1232.
    [105].全国儿科哮喘协作组,中国城市儿童哮喘患病率调查[J].中华儿科杂志,2003.123-127.
    [106].陈育智,中国儿童哮喘防治近况[J].中华儿科杂志,2004.81-82.
    [107]. Ait-Khaled, N., D. Enarson and J. Bousquet, Chronic respiratory diseases in developing countries:the burden and strategies for prevention and management J]. Bull World Health Organ, 2001.79(10):971-9.
    [108]. Statewide Planning and Research Cooperative System(SPARCS)[R]. New York State Asthma Surveillance Summary Report.,2007, New York State Department of Health.
    [109]. Maantay, J., Asthma and air pollution in the Bronx:methodological and data considerations in using GIS for environmental justice and health research[J]. Health Place,2007. 13(1):32-56.
    [110]. Eder, W., M.J. Ege and E. von Mutius, The Asthma Epidemic[J]. New England Journal of Medicine,2006.355(21):2226-2235.
    [111]. McConnell, R., K. Berhane, L. Yao, et al., Traffic, susceptibility, and childhood asthma[J]. Environmental Health Perspectives,2006.114(5):766-772.
    [112]. Kinney, P.L., M. Aggarwal, M.E. Northridge, et al., Airborne concentrations of PM2.5 and diesel exhaust particles on Harlem sidewalks:A community-based pilot study[J]. Environmental Health Perspectives,2000.108(3):213-218.
    [113]. Spira-Cohen, A., L.C. Chen, M. Kendall, et al., Personal Exposures to Traffic-Related Air Pollution and Acute Respiratory Health among Bronx Schoolchildren with Asthma[J]. Environmental Health Perspectives,2011.119(4):559-565.
    [114]. Gauderman, W.J., E. Avol, F. Gilliland, et al., The effect of air pollution on lung development from 10 to 18 years of age[J]. New England Journal of Medicine,2004.351(11): 1057-1067.
    [115]. Services, U.S.D.o.h.a.h. What is Asthma? 2012; Available from: http://www.nhlbi.nih.gov/health/health-topics/topics/asthma/
    [116].郑劲平,钟南山.支气管哮喘的病因与发病机理[J].支气管哮喘专题讨论,1992.
    [117]. Walters, S., R.K. Griffiths and J.G. Ayres, Temporal association between hospital admissions for asthma in Birmingham and ambient levels of sulphur dioxide and smoke [J]. Thorax,1994.49(2):133-140.
    [118]. McDonnell, W.F., D.E. Abbey, N. Nishino, et al., Long-term ambient ozone concentration and the incidence of asthma in nonsmoking adults:the AHSMOG Study[J]. Environmental research,1999.80(2 Pt 1):110-121.
    [119].浙江省纺织慢性病气管炎办公室,慢性支气管炎[M].1979,北京:科学出版社.
    [120].张蕾,呼出气一氧化氮测定与哮喘的气道炎症[J].国际儿科学杂志.2008.p.213-215.
    [121]. Beydon, N., S.D. Davis, E. Lombardi, et al., An Official American Thoracic Society/European Respiratory Society Statement:Pulmonary Function Testing in Preschool Children. American Journal of Respiratory and Critical Care Medicine [J].2007.175(12):1304-1345.
    [122].欧阳钦,临床诊断学[M].2006,北京:人民卫生出版社.
    [123]. Miller, M.R., R. Crapo, J. Hankinson, et al., General considerations for lung function testing[J]. Eur Respir J,2005(26):153-161.
    [124]. FRISCHER, T., M. STUDNICKA, C. GARTNER, et al., Lung Function Growth and Ambient Ozone [J]. American Journal of Respiratory and Critical Care Medicine,1999.160(2): 390-396.
    [125]. Suglia, S.F., A. Gryparis, R.O. Wright, et al., Association of black carbon with cognition among children in a prospective birth cohort study [J]. American Journal of Epidemiology,2008. 167(3):280-286.
    [126]. Redington, A.E., Q.-H. Meng, D.R. Springall, et al., Increased expression of inducible nitric oxide synthase and cyclo-oxygenase-2 in the airway epithelium of asthmatic subjects and regulation by corticosteroid treatment[J]. Thorax,2001.56(5):351-357.
    [127].宫继成,张军锋.人体呼出气中NO作为超细颗粒物健康效应生物标记物的测量[J].环境化学,2006.768-771.
    [128]. Buchvald, F., E. Baraldi, S. Carraro, et al., Measurements of exhaled nitric oxide in healthy subjects age 4 to 17 years[J]. Journal of Allergy and Clinical Immunology,2005.115(6): 1130-1136.
    [129].马煜,黄永坚等.呼出气体中的一氧化氮检测与哮喘[J].中华儿科杂志,2005.421-422.
    [130]. Kharitonov, S. and P. Barnes, Clinical aspects of exhaled nitric oxide[J]. European Respiratory Journal,2000.16(4):781-792.
    [131]. Slutsky, A., P. Silkoff, J. Drazen, et al., Recommendations for standardized procedures for the on-line and off-line measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children-1999[J]. Am J Respir Crit Care Med,1999.160(6):2104-17.
    [132]. CRATER, S.A., E.A. PETERS, M.A. MARTIN, et al., Expired Nitric Oxide and Airway Obstruction in Asthma Patients with an Acute Exacerbation[J]. American Journal of Respiratory and Critical Care Medicine,1999.159(3):806-811.
    [133]. Pijnenburg, M.W., W. Hofhuis, W.C. Hop, et al., Exhaled nitric oxide predicts asthma relapse in children with clinical asthma remission[J]. Thorax,2005.60(3):215-218.
    [134].杨男,舒林华等.哮喘患儿呼出气一氧化氮水平与肺功能相关性研究[J].中国小儿急救医学,2010.34-36.
    [135]. Rosa, M.J., A. Divjan, L. Hoepner, et al., Fractional exhaled nitric oxide exchange parameters among 9-year-old inner-city children[J]. Pediatric Pulmonology,2011.46(1):83-91.
    [136]. Smith, A.D., J.O. Cowan, S. Filsell, et al., Diagnosing Asthma[J]. American Journal of Respiratory and Critical Care Medicine,2004.169(4):473-478.
    [137]. Koenig, J.Q., K. Jansen, T.F. Mar, et al., Measurement of offline exhaled nitric oxide in a study of community exposure to air pollution[J]. Environ Health Perspect,2003.111(13):1625-9.
    [138]. Paraskakis, E., C. Brindicci, L. Fleming, et al., Measurement of Bronchial and Alveolar Nitric Oxide Production in Normal Children and Children with Asthma[J]. American Journal of Respiratory and Critical Care Medicine,2006.174(3):260-267.
    [139]. Perzanowski, M.S., M.J. Rosa, A. Divjan, et al., Modifications improve an offline exhaled nitric oxide collection device for use with young children[J]. The Journal of allergy and clinical immunology,2008.122(1):213.
    [140]. Arnott, W.P., H. Moosmuller, P.J. Sheridan, et al., Photoacoustic and filter-based ambient aerosol light absorption measurements:Instrument comparisons and the role of relative humidity [J]. Journal of Geophysical Research-Atmospheres,2003.108(D1):AAC 15-1-AAC 15-11.
    [141]. Fischer, S.L. and C.P. Koshland, Field performance of a nephelometer in rural kitchens: effects of high humidity excursions and correlations to gravimetric analyses[J]. Journal of exposure science & environmental epidemiology,2007.17(2):141-50.
    [142]. Borak, J., G. Sirianni, H.J. Cohen, et al., Comparison of NIOSH 5040 method versus Aethalometer (TM) to monitor diesel particulate in school buses and at work sites[J]. Aiha Journal,2003.64(2):260-268.
    [143].李礼,唐晓等.AE31型黑碳气溶胶监测仪的使用与日常维护[J].分析仪器,2012.85-90.
    [144]. Hansen, A.D.A. and T. Novakov, Real-Time Measurement of Aerosol Black Carbon During the Carbonaceous Species Methods Comparison Study[J]. Aerosol Science and Technology,1990.12(1):194-199.
    [145]. Ruoss, K., R. Dlugi, C. Weigl, et al., Intercomparison of Different Aethalometers with an Absorption Technique-Laboratory Calibrations and Field-Measurements [J]. Atmospheric Environment Part a-General Topics,1992.26(17):3161-3168.
    [146]. Hagler, G.S.W., T.L.B. Yelverton, R. Vedantham, et al., Post-processing Method to Reduce Noise while Preserving High Time Resolution in Aethalometer Real-time Black Carbon Data[J]. Aerosol and Air Quality Research,2011.11(5):539-546.
    [147]. NYC. http://www.nyc.gov/html/hpd/html/tenants/heat-and-hot-water.shtml.2012.
    [148]. Cromar, K.R. and J.A. Schwartz, Residual risks:the unseen costs of using dirty oil in New York City boiler.2010b.
    [149]. Seamonds, D., D. Lowell, T. Balon, et al., The bottom of the barrel:How the dirtiest heating oil pollutes our air and harms our health.2009.
    [150].刘随心,曹军骥.西安2005年春季大气碳气溶胶的理化特征[J].过程工程学报,2006.5-9.
    [151].王宗爽,段小丽等.环境风险评价中我国居民呼吸速率暴露参数研究[J].环境科学研究.2009.1171-1175.
    [152]. Ho, K.F., J.J. Cao, R.M. Harrison, et al., Indoor/outdoor relationships of organic carbon (OC) and elemental carbon (EC) in PM2.5 in roadside environment of Hong Kong[J]. Atmospheric Environment,2004.38(37):6327-6335.
    [153]. Zielinska, B., J. Sagebiel, W.P. Arnott, et al., Phase and Size Distribution of Polycyclic Aromatic Hydrocarbons in Diesel and Gasoline Vehicle Emissions[J]. Environmental Science & Technology,2004.38(9):2557-2567.
    [154]. Wang, L., L. Morawska, E.R. Jayaratne, et al., Characteristics of airborne particles and the factors affecting them at bus stations[J]. Atmospheric Environment,2011.45(3):611-620.
    [155].王扬锋,陆忠艳等.辽宁地区大气黑碳气溶胶质量浓度在线连续观测[J].环境科学研究.2011.1088-1096.
    [156].刘宏剑,上海地区黑碳污染特征及其源分布研究[A].第28届中国气象学会年会-S9大气物理学与大气环境,2011.
    [157]. Stenfors, N., C. Nordenhall, S.S. Salvi, et al., Different airway inflammatory responses in asthmatic and healthy humans exposed to diesel[J]. European Respiratory Journal,2004.23(1): 82-86.
    [158]. Loeb, J.S., W.C. Blower, J.F. Feldstein, et al., Acceptability and repeatability of spirometry in children using updated ATS/ERS criteria[J]. Pediatric Pulmonology,2008.43(10): 1020-1024.
    [159]. Stanojevic, S., A. Wade, J. Stocks, et al., Reference Ranges for Spirometry Across All Ages[J]. American Journal of Respiratory and Critical Care Medicine,2008.177(3):253-260.
    [160].何小兵,李静等.呼气中期流量与用力肺活量的比值在支气管哮喘诊断中的价值[J].,中华结核和呼吸杂志.2010.549-550.
    [161]. Szefler, S.J., S. Wenzel, R. Brown, et al., Asthma outcomes:Biomarkers[J]. Journal of Allergy and Clinical Immunology,2012.129(3, Supplement):S9-S23.
    [162]. Baraldi, E., N.M. Azzolin, A. Cracco, et al., Reference values of exhaled nitric oxide for healthy children 6-15 years old[J]. Pediatric Pulmonology,1999.27(1):54-58.
    [163]. Kovesi, T., R. Kulka and R. Dales, Exhaled Nitric Oxide Concentration Is Affected by Age, Height, and Race in Healthy 9-to 12-Year-Old Children[J]. CHEST Journal,2008.133(1): 169-175.
    [164]. Malmberg, L.P., T. Petays, T. Haahtela, et al., Exhaled nitric oxide in healthy nonatopic school-age children:Determinants and height-adjusted reference values[J]. Pediatric Pulmonology,2006.41(7):635-642.
    [165]. Suri, R., E. Paraskakis and A. Bush, Alveolar, but not bronchial nitric oxide production is elevated in cystic fibrosis[J]. Pediatric Pulmonology,2007.42(12):1215-1221.
    [166]. Baayen, R.H., D.J. Davidson and D.M. Bates, Mixed-effects modeling with crossed random effects for subjects and items[J]. Journal of Memory and Languag,2008.59(4):390-412.
    [167]. Raudenbush, S.W., A Crossed Random Effects Model for Unbalanced Data with Applications in Cross-Sectional and Longitudinal Research[J]. Journal of Educational Statistics, 1993.18(4):321-349.
    [168]. Verbeke, G. and G. Molenberghs, Linear Mixed Models for Longitudinal Data[J]. Technometrics,2001.43(3):375-375.
    [169].王松桂,线性混合模型理论的新发展[J].北京工业大学学报,2006.73-81.
    [170]. Lehtimaki, L., V. Turjanmaa, H. Kankaanranta, et al., Increased bronchial nitric oxide production in patients with asthma measured with a novel method of different exhalation flow rates[J]. Annals of Medicine,2000.32(6):417-423.
    [171]. Lehtimaki, L., H. Kankaanranta, S. Saarelainen, et al., Extended Exhaled NO Measurement Differentiates between Alveolar and Bronchial Inflammation[J]. American Journal of Respiratory and Critical Care Medicine,2001.163(7):1557-1561.
    [172]. Lehtimaki, L., H. Kankaanranta, S. Saarelainen, et al., Increased alveolar nitric oxide concentration in asthmatic patients with nocturnal symptoms[J]. European Respiratory Journal, 2002.20(4):841-845.
    [173]. Martin, R.J., Therapeutic significance of distal airway inflammation in asthma[J]. Journal of Allergy and Clinical Immunology,2002.109(2, Supplement):S447-S460.
    [174]. Kraft, M., R. Djukanovic, S. Wilson, et al., Alveolar tissue inflammation in asthma[J]. American Journal of Respiratory and Critical Care Medicine,1996.154(5):1505-10.
    [175]. KRAFT, M., J. PAK, R.A. MARTIN, et al., Distal Lung Dysfunction at Night in Nocturnal Asthma[J]. American Journal of Respiratory and Critical Care Medicine,2001.163(7): 1551-1556.
    [176]. Roberts, G., C. Hurley, A. Bush, et al., Longitudinal study of grass pollen exposure, symptoms, and exhaled nitric oxide in childhood seasonal allergic asthma[J]. Thorax,2004.59(9): 752-6.
    [177].杨男,舒林华等.哮喘患儿呼出气一氧化氮水平与肺功能相关性研究[J].中国小儿急救医学,2010.34-36.
    [178]. Jung, K.H., M.M. Patel, K. Moors, et al., Effects of heating season on residential indoor and outdoor polycyclic aromatic hydrocarbons, black carbon, and particulate matter in an urban birth cohort[J]. Atmospheric Environment,2010.44(36):4545-4552.
    [179]. Delfino, R.J., N. Staimer, D. Gillen, et al., Personal and ambient air pollution is associated with increased exhaled nitric oxide in children with asthma[J]. Environmental Health Perspectives,2006.114(11):1736-43.
    [180]. Jung, K.H., S.I. Hsu, B. Yan, et al., Childhood exposure to fine particulate matter and black carbon and the development of new wheeze between ages 5 and 7 in an urban prospective cohort[J]. Environment international,2012.45:44-50.
    [181]. Davila, D.R., D.L. Romero and S.W. Burchiel, Human T Cells Are Highly Sensitive to Suppression of Mitogenesis by Polycyclic Aromatic Hydrocarbons and This Effect Is Differentially Reversed by α-Naphthoflavone[J]. Toxicology and Applied Pharmacology,1996. 139(2):333-341.
    [182]. Vorderstrasse, B.A., L.B. Steppan, A.E. Silverstone, et al., Aryl Hydrocarbon Receptor-Deficient Mice Generate Normal Immune Responses to Model Antigens and Are Resistant to TCDD-Induced Immune Suppression[J]. Toxicology and Applied Pharmacology,2001.171(3): 157-164.
    [183]. Xiao, G.G., M. Wang, N. Li, et al., Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line[J]. J Biol Chem,2003.278(50):50781-90.
    [184.]胡二邦.环境风险评价实用技术.方法和案例[M].北京:中国环境科学出版社.2009:455

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700