用户名: 密码: 验证码:
高温稠密物质结构及状态方程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在密度泛函理论(DFT)框架下,针对高温稠密、中温稠密、低温常态等不同的物理条件,采用Thomas-Fermi模型(TF)、平均原子模型(AA)、广义梯度近似模型(GGA)和局域密度近似模型(LDA)等不同能量密度泛函形式,描述了物质的电子结构。在适当描述电子结构的基础上,计算原子(或者离子)之间的相互作用,根据计算得到的相互作用,利用经典分子动力学方法分别对物质的离子结构及其物态方程进行描述;在过渡区域采用经典的分子动力学方法研究固体的熔化和等离子体的成核过程。
     首先对交换作用分别采用广义梯度近似(GGA)和局域密度近似(LDA),用缀加平面波加局域轨道方法(APW+lo),对金和铝的面心立方晶格结构(fcc)、体心立方晶格结构(bcc)和六角密堆积晶格结构(hcp)在固体状态下的电子结构及固-固结构相变进行了计算,并分别给出了金和铝在绝对零度(不考虑晶格振动的贡献)时的物态方程数据。对金在不同晶格结构(fcc、bcc、hcp)、不同体积下电子态密度的特征进行了深入研究,找出发生固-固结构相变时费米面附近电子态密度变化规律,然后对发生这种固-固结构相变的物理原因进行了定性的分析。最后采用平均场理论,讨论了在固体状态下晶格振动对系统能量的贡献。
     随着体系温度升高、密度变大,在碰撞电离效应和压致电离效应共同作用下,原子将会发生电离。在这样的外部条件下,离子或原子之间具有较强的相互作用,物质处于固体时的高对称性晶格结构受到破坏,离子或原子的能级简并被解除,能级发生分裂。这时体系既不能采用固体理论来描述,又不能把离子当成单个原子进行描述。但离子或原子的分裂能级之差较小,不同离子的同一能级就形成一个准连续的带,原子或离子的同一轨道电子将在带中服从Fermi-Dirac分布。在平均原子模型中,考虑了这种物理过程后,模型更接近于物理实际。以金和铝为例,分别在温度为1、10、100、1000eV时对物态方程和平均电离度进行了计算,结果表明:考虑了能级展宽效应后计算出的电子态密度与第一原理的结果吻合较好,而且考虑了能级展宽效应后,计算结果可以得到较大的改进,与实验和其他理论结果符合较好,并消除了由于压致电离导致物态方程和电离度随物质密度变化产生跳跃的台阶,这也充分证明了考虑这种物理效应的必要性。
     在平均原子模型中,束缚电子的径向分布通过求解Dirac径向方程得到,把能量大于离子球边界上势能的电子认为是自由电子,自由电子的径向分布采用Thomas-Fermi统计模型得到。事实上,在等离子体中由于有带正电的原子核存在,自由电子还处于局域化状态,特别是在中低温状态下,采用Thomas-Fermi统计模型来描述能量刚刚大于零的自由电子将与物理事实产生较大差别。因此,在平均原子模型的基础上,我们通过求解能量大于零的Dirac径向方程来描述这些局域的自由电子。
     随着温度的降低,离子之间的关联效应变得越来越重要。为了探索在高温稠密等离子体条件下原子或离子间强的关联效应,我们首先采用已经修正的平均原子模型计算单个原子或离子周围电子的径向分布,在含温的密度泛函理论框架下,计算离子-离子之间的相互作用势;然后将其应用到经典的分子动力学程序中,计算了Al和Fe等离子体在高温稠密状态下的离子结构及离子对总压强的贡献,计算结果与实验和其它理论计算结果符合较好。同时也检验了我们提出的计算离子间相互作用势模型的合理性。
     随着温度的进一步降低,离子的平均动能减少,当离子的动能小于离子间相互作用的势能时,离子将发生聚集,所以在低温等离子体中将发生成核现象;或者从另一角度来说,当物质处于固体时离子在平衡位置附近振动,随着温度的升高,离子的动能增加,当离子的动能大于相互作用的势能时,物质将发生熔化。因此,在得到离子间相互作用势的基础上,运用分子动力学研究在这一区域微观粒子的运动规律、空间位形分布以及随着外部环境(温度和密度)变化导致的固相、液相、等离子体状态和团簇之间的相变。
In the framework of density functional theory (DFT), electronic structures are described using the different energy density functions in the different temperature regions. The Thomas-Fermi model (TF), the average atom model (AA), the local density approximation (LDA) and the generalized gradient approaximation (GGA) are used in the hot dense matter, warm dense matter and low temperature region, respectively. The ion-ion pair potentials are calculated based on the electronic structures. And the classical molecular dynamics simulations are performed for the ion motion on the basis of the calculated pair potentials. In the middle region, microcosmic characters of melting and nucleation are discussed by using classical molecular dynamics.
     Firstly, the electronic structures and phase transitions of Aluminium and Gold have been calculated at the structure of the face-certered cubic (fcc), body-centered cubic (bcc), and hexagonal close-packed (hcp), by using the augmented plane wave plus local orbital method with two distinct exchange-correlation energy functions: the generalized gradient approaximation (GGA) and the local density approximation (LDA). The phase transitions and the equation of state (EOS) at zero temperature are obtained, and possible reasons are disscused by analyzing the electronic density of state at the different phases and different volumes. The contributions from the vibration of crystal lattice are treated by using mean field theory.
     With the increase of density and temperature, the matter state will be changed from solid to plasma due to the thermo-ionizaiton and pressure-ionization. In these cases, the periodical boundary condition for the electronic state does not exist any longer and the broadening of the valence electron states does not have the itinerant characteristic either. Furthemore, the electronic energy levels of the atoms and ions will be split into many sublevels due to the interactions among the particles in the hot dense plasmas. However, the splittings are generally so small that the distribution of the sublevels can be treated by broadening the corresponding energy level into energy band with a Gaussian profile, which is normalized to ensure that the integration of the density of state over one hand is equal to the statistical weight of the corresponding atomic level. The distribution of the bound electrons among the energy bands is determined by the continuum Fermi-Dirac distribution. Within a self-consistent field average atom approach, it has been shown that explicit considerations for the electronic energy level broadening have significant effects on the ionization of the atoms and the EOS in hot and dense plasmas. The instability of the pressure induced electronic ionization with density increasing, which occurs often in a normal average atom model and is avoided usually by introducing pseudo-shape resonance states, disappears naturally. As examples, the density dependence of the average ionization and the EOS of Al and Au at 1, 10, 100, and 1000 eV are presented.
     In the average atom (AA) model, when the energy of an electron is greater than the potential of the atomic boundary, this electron is considered to be a bound electron, and its radial distribution can be obtained from the radial Dirac equation. If one electron is smaller than the potential of the atomic boundary, it is taken to be a free electron, and the radial distribution can be obtained from Thomas-Fermi statistics. In fact, when electron energy is greater than zero, the electron is localized due to the interaction between electron and nucles in plasmas. In particular, when plasma temperature is very low, the Thomas-Fermi statistics will have big difference. So the description of free electron is modified by solving the radial Dirac equation.
     With the temperature decreasing, the ion-ion correlation effects become important in hot dense plasmas. In order to study the ion-ion correlation effects, we develop a model to calculate the ion-ion potentials based on temperature-dependent density functional theory (TDDFT). The electronic structures, including the energy levels and space distributions, are calculated using a modified average-atom model. The calculated electron space number density is divided into two parts: one is a uniformly distributed electronic sea with a density equaling to the total electronic density at the ionic sphere boundary, which is redistributed when space overlap occurs between the interacted ions; the left part of the electronic density represents the dramatic space variations of the electrons due to the nuclear attraction and the shell structure of the bound states, which maintains unchanged during the interactions between the ions. The ion-ion potential is obtained through space integrations for the energy density functions of electron density. Molecular dynamics simulations are performed for the ionic motions on the basis of the calculated potentials in a wide regime of density and temperature. As an example, hot and dense Al and Fe plasmas are simulated to give the EOS and ion-ion pair distribution function.
     When plasma temperature continues to reducing, the ionic average kinetic energy will decrease. And while the ionic average potential energy is larger than its kinetic energy, the ions will be close to each other and clusters will be formed. On the other hand, with the temperature increasing, the ionic average kinetic energy in the solid state will also increase. And solid state will become liquid state or plasma when the ionic average kinetic energy is larger than its potential energy. In the case, the molecular dynamics are performed to simulate the phase transitions among the matter state of solid, liquid, plasma and cluster with the change of temperature.
引文
[1]徐锡申,张万箱等.实用物态方程理论导引[M].北京:科学出版社, 1986年8月.
    [2]经福谦著.实验物态方程导引[M].北京:科学出版社, 1986年10月.
    [3]汤文辉,张若棋著.物态方程理论及计算概论[M].长沙:国防科技大学出版社,1999年11月.
    [4] Mayer J E. The Statistical Mechanics of Condensing Systems. I [J]. J. Chem. Phys., 1937, 5(1): 67-73.
    [5]钱学森编.物理力学讲义[M].上海:上海交通大学出版社, 2007.
    [6]李正中.固体理论[M],北京:高等教育出版社第二版, 2002.
    [7]黄昆原著,韩汝琦改编.固体物理学[M]第二版.北京:高等教育出版社,2004年2月.
    [8] Kittel C. Introduction to solid state physics [M]. New York: John Wiley & Sons, Inc, 1996.
    [9] Alder B J, and Wainwright T E. Phase transition for a hard-sphere systems [J]. J. Chem. Phys., 1957, 27(5): 1208.
    [10] Lees A W, and Edeards S F. The computer study of transport processes under extreme conditions [J]. J. Phys. C: Solid State Phys., 1972, 5(15): 1921-1928.
    [11] Anderson H C. Molecular dynamics simulations at constant press and/or temperature [J]. J. Chem. Phys., 1980, 72(4): 2384-2393.
    [12] Gillan M J, and Dixon M. The calculation of thermal conductivities by perturbed molecular dynamics simulation [J]. J. Phys. C: Solid State Phys., 1983, 1(5): 869-878.
    [13] Nose S. A unified formulation of the constant temperature molecular dynamics methods [J]. J. Chem. Phys., 1984, 81(1): 511-519.
    [14] Thomas L H. The calculation of atomic fields [J]. Proc. Cambridge Philos. Soc., 1927, 23: 542-598.
    [15] Fermi E. Eine statistische Methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theories des periodischen systems der elemente [J]. Z. Phys., 1928, 48: 73-79.
    [16]赵伊君,张志杰.原子结构的计算[M].北京:科学出版社, 1987年9月.
    [17]李世昌.高温辐射物理与量子辐射理论[M].北京:国防工业出版社, 1992.
    [18] Feynman R P, Metropolis N, and Teller E. Equation of state of elements based on the generalized Fermi-Thomas theory [J]. Phys. Rev., 1949, 75(10): 1561-1573.
    [19] Letter R. Temperature behavior of the Thomas-Fermi statistical model for atoms [J]. Phys. Rev., 1955, 99(6): 1854-1870.
    [20] Dirac P A M. Note on exchange phenomena in the Thomas atom [J]. Proc. Camb. Phil. Soc., 1930, 26: 376-385.
    [21] Kirzhnits D A. Sov. Phys. JETP. 1957, 5: 64.
    [22] Zink J W. Shell Structure and the Thomas-Fermi Equation of State [J]. Phys. Rev., 1968, 176(1): 279-284.
    [23] Rozsnyai B F. Relativistic Hartree-Fock-Slater Calculations for Arbitrary Temperature and Matter Density [J]. Phys. Rev. A,1972,5(3): 1137-1149; Rozsnyai B F. An overview of the problems connected with theoretical calculations for hot plasmas [J]. J. Quant. Spectrosc. Radiat. Transf., 1982, 27(3): 211-217.
    [24] Rozsnyai B F, and Lamoureux M. Continuum wave functions and bremsstrahlung in plasmas based on the ion-sphere and jellium models [J]. J. Quant. Spectrosc. Radiat. Transf., 1990, 43(5): 381-395.
    [25] Faussurier G, Blancard C, and Decoster A. Statistical Mechanics of highly charged ion plasmas in local thermodynamic equilibrium [J]. Phys. Rev. E, 1997, 56(3): 3474-3487; Faussurier G, Blancard C, and Decoster A, Statistical Treatment of radiative Transitions in local thermodynamic equilibrium plasmas [J]. Phys. Rev. E,1997, 56(3): 3488-3497.
    [26] Mayer H L. Opacity of nitrogen by hand calculation [J]. J. Quant. Spectrosc. Radiat. Transf., 1965, 5(1): 39-47.
    [27] Green J M. The statistical mechanics of the interdependent electrons in the screening constant model of the many-electron-atom [J]. J. Quant. Spectrosc. Radiat. Transf., 1964, 4(5): 639-662.
    [28] Fetter A L, and Walecka J D. Quantum Theory of Many-Particale Systems [M]. (MacGraw Hill, New York, 1971).
    [29] Lokke W A, and Grassberger W H. Repoert UCRL-52276, Lawrence Livemore National Laboratory (Livermore, 1977).
    [30] Zimmermann G B, and More R M. Pressure ionization in laser-fusion target simulation [J]. J. Quant. Spectrosc. Radiat. Transf., 1980, 23(5): 517-522.
    [31] Liberman D A. Self-consistent field model for condensed matter [J]. Phys. Rev. B, 1979, 20(12): 4981-4989; Inferno: A better model of atom in dense plasmas [J]. J. Quant. Spectrosc. Radiat. Transf., 1982, 27(3): 335-339.
    [32] Yuan Jianmin. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture [J]. Phys. Rev. E, 2002, 66(4): 047401.
    [33] Hou Yong, Jin Fengtao, and Yuan Jianmin. Influence of the electronic energy level broadening on the ionization of atoms in hot and dense plasmas: An average atom model demonstration [J]. Phys. Plasmas, 2006, 13(9): 093301.
    [34] Hou Yong, Jin Fengtao, and Yuan Jianmin. Energy level broadening effect on the equation of state of hot dense Al and Au plasma [J]. J. Phys.: Condens. Matter, 2007, 19(42): 425204.
    [35] Bauche-Arnoult C, Bauche J, and Klapisch M. Mean wavelength and spectral width of transition arrays in x-uv atomic spectra [J]. J. Opt. Soc. Am., 1978, 68: 1136.
    [36] Bauche-Arnoult C, Bauche J, and Klapisch M. Variance of the distributions of energy levels and of the transiton arrays in atomic spectra [J]. Phys. Rew. A, 1979, 20(6): 2424-2439.
    [37] Bauche-Arnoult C, Bauche J, and Ekberg J O. Some properties of the J-file intensity sums in ionic spectra [J]. J. Phys. B: At. Mol. Phys., 1982, 15(5): 701-711.
    [38] Bauche-Arnoult C, Bauche J, and Klapisch M. Variance of the distributions of energy levels and of the transiton arrays in atomic spectra. II. Configurations with more than two open sunshells [J]. Phys. Rew. A, 1982, 25(5): 2641-2646.
    [39] Bauche J, Bauche-Arnoult C, Luc-Koenig E, and Klapisch M. Non-relative energies from relativistic radial integrals in atoms and ions [J]. J. Phys. B: At. Mol. Phys., 1982, 15(15): 2325-2338.
    [40] Bauche J, Bauche-Arnoult C, Luc-Koenig E, and Wyart J–F. Emissive zones of complex atomic configurations in highly ionized atoms [J]. Phys. Rew. A, 1983,28(2): 829-835.
    [41] Bauche-Arnoult C, Bauche J, and Klapisch M. Asymmetry of IN+1-INI’transition-array patterns in ionic spectra [J]. Phys. Rew. A, 1984, 30(6): 3026-3032.
    [42] Bauche-Arnoult C, Bauche J, and Klapisch M. Variance of the distributions of energy levels and of the transiton arrays in atomic spectra. III. Case of spin-orbit-split arrays [J]. Phys. Rew. A, 1985, 31(4): 2248-2259.
    [43] Bauche-Arnoult C, Luc-Koenig E, Wyart J -F, Geindre J -P, Audebert P, Monier P, Gauthier J -C, and Chenais-Popovics C. Interpretation of the spectra of a laser-irradiated Au plasma in the 3.0-4.0 A range [J]. Phys. Rew. A, 1986, 33(1): 791-793.
    [44] Bauche J, and Bauche-Arnoult C. Level and line statistic in atomic spectra [J]. J. Phys. B: At. Mol. Phys., 1987, 20(8): 1659-1677.
    [45] Bauche J, Bauche-Arnoult C, Klapisch M, Mandelbaum P and Schwol J L. Quenching of transition arrays though configuration mixing [J]. J. Phys. B: At. Mol. Phys., 1987, 20(7): 1443-1450.
    [46] Bauche-Arnoult C, Bauche J, and Klapisch M. Transition arrays in the spectra of ionized atoms [J]. Adv. At. Mol. Phys., 1987, 23: 131.
    [47] Bar-Shalom A, Oreg J, Goldstein W H, Shvart D, and Zigler A. Super-transition-arrays: A model for the spectral analysis of hot, dense plasma [J]. Phys. Rev. A, 1989, 40(5): 3183-3193.
    [48] Bar-Shalom A, Oreg J, and Goldstein W H. in 4th International Workshop on Radiative Properties of Hot Dense Matter. Sarasota, 1990, edited by Goldstein H, Hooper C, Gautier J, Seely J, and Lee R W, (Word Scientific, Singapore, 1990), P163.
    [49] Oreg J, Goldstein W H, Bar-Shalom A and Klapisch M. Configuratioion average of general n-body symmetrical tensor operators [J]. J. Comput. Phys., 1990, 91(2): 460-477.
    [50] Bar-Shalom A, Oreg J, and Goldstein W H. in Atomic Processes in Plasmas, 8th topical Conference of APS, Porland Maine, 1991, edited by Marmar E S, and Terry J L(AIP, New York) P68.
    [51] Bar-Shalom A, Oreg J, and Goldstein W H. Configuration interation in LTE spectra of heavy elements [J]. J. Quant. Spectrosc. Radiat. Trans., 1994, 51(1-2): 27-39.
    [52] Bar-Shalom A, Oreg J, and Goldstein W H. Effect of configuration widths on the spectra of local thermodynamic equilibrium plasmas [J]. Phys. Rew. E, 1995, 51(5): 4882-4890.
    [53] Bar-Shalom A, Oreg J, Seely J F, Feldman U, Brown C M, Hammel B A, Lee R W, and Back C A, Interpretation of hot and dense absorption spectra of a near-local-thermodynamic-equilibrium plasma by super-transition-array method [J],Phys. Rew. E, 1995, 52(6): 6686-6691.
    [54] Bar-Shalom A, and Oreg J. Photoelectric effect in the super transition array model [J]. Phys. Rew. E, 1996, 54(2): 1850-1856.
    [55] Oreg J, Bar-Shalom A, and Klapisch M. Collisional radiative model for heavy atoms in hot non-local-thermodynamic-equilibrium plasmas [J]. Phys. Rew. E, 1997, 55(5): 5874-5882.
    [56] Bar-Shalom A, Oreg J, and Klapisch M. EOSTA-an improved quantum mechanical model in the STA opacity code [J]. J. Quant. Spectrosc. Radiat. Transf., 2006, 99(1-3): 35-54.
    [57] Iglesias C A, Rogers F J, and Wilson B G. Reexamination of the metal contribution to astrophysical opacity [J]. Astrophys. J., 1987, 322(1): L45-L48.
    [58] Iglesias C A, Rogers F J, and Wilson B G. Spin-Orbit Interaction Effects on the Rosseland Mean Opacity [J]. Astrophys. J., 1992, 397(2): 717-728.
    [59] Iglesias C A, Rogers F J, and Wilson B G. Calculation of detailed atomic data using parametric potentials [J]. Rev. Mexicana Astron. & Astrof., 1992, 23: 9-18.
    [60] Iglesias C A, Rogers F J, and Wilson B G. Opacities for classical Cepheid models [J]. Astrophys. J., 1990, 360: 221-226.
    [61] Iglesias C A, and Rogers F J. Opacity tables for Cepheid variables [J]. Astrophys. J., 1991, 371: L73-L75.
    [62] Iglesias C A, and Rogers F J. Opacity for the solar radiative interior [J]. Astrophys. J., 1991, 371(10): 408-417.
    [63] Zeng Jiaolong, Jin Fengtao, Yuan Jianmin, and Lu Qisheng. Detailed-term-accounting-approximation simulation of x-ray transmission through laser-produced Al plasmas [J]. Phys. Rev. E, 2000, 62: 7251-7257.
    [64] Zeng Jiaolong, Jin Fengtao, and Yuan Jianmin. Detailed Spectral Line Effects on the Radiative Opacity of Laserr-Produced Al Plasmas [J]. Chin. Phys. Lett., 2001, 18(7): 924-926.
    [65] Zeng Jiaolong, Yuan Jianmin, and Lu Qisheng. Photoionization of OIII low-lying states: autoionization resonance energies and widths of some 1s–2p excited states [J]. J. Phys. B: At. Mol. Opt. Phys., 2001, 34(14): 2823-2833.
    [66] Zeng Jiaolong, Yuan Jianmin, and Lu Qisheng. Detailed-term-accounting approximation calculations of the radiative opacity of laser-produced Al plasmas [J]. Phys. Rev. E, 2001, 64(6): 066412.
    [67] Zeng Jiaolong, and Yuan Jianmin. Detailed-term-accounting approximation calculations of the radiative opacity of aluminum plasmas: A systematic study [J]. Phys. Rev. E, 2002, 66(1): 016401.
    [68] Zeng Jiaolong, Jin Fengtao, and Yuan Jianmin. The influence of core–valence electron correlations on the convergence of energy levels and oscillator strengths of ions with an open 3d shell using Fe VIII as an example [J]. J. Phys. B: At. Mol. Opt.Phys., 2003, 36(16): 3457-3465.
    [69] Zeng Jiaolong, Jin Fengtao, Zhao gang, and Yuan Jianmin. Temperature Diagnostics for iron Plasmas by Means of Transmission Spectrum Obtained by Accurate Atomic Data [J]. Chin. Phys. Lett., 2003, 20(6): 862-864.
    [70] Jin Fengtao, Zeng Jiaolong, and Yuan Jianmin. Radiative opacities and configuration interaction effects of hot iron plasma using a detailed term ccounting model [J]. Phys. Rev. E, 2003, 68(6): 066401.
    [71] Zeng Jiaolong, Zhao Gang, and Yuan Jianmin. Influence of detailed line treatment on the opacity of iron plasmas in the 2p-3d energy region [J]. Phys. Rev. E, 2004, 70(2), 027401.
    [72] Zeng Jiaolong, Zhao Gang, and Yuan Jianmin. The 1s→2p resonance photoionization from the low-lying states of O+ [J]. Eur. Phys. J. D, 2004, 28(2): 163-170.
    [73] Jin Fengtao, Zeng Jiaolong, and Yuan Jianmin. A detailed simulation for the transmission spectrum of hot Aluminum plasma [J]. Phys. Plasmas, 2004, 11(9): 4318-4322.
    [74] Jin Fengtao, Zeng Jiaolong, Yuan Jianmin et al. L to M shell transitions and model comparisons for radiateve opacities of sodium fluoride plasma [J]. J. Quant. Spectrosc. Radiat. Transf., 2005, 95(2): 241-253.
    [75] Born M, and Huang K. Dynamical Theory of Crystal Lattice [M]. Oxford: Oxford University Press, 1954.
    [76] Hartree D R. The wave mechanics of an atom with non-coulomb central field. I. Theory and methods [J]. Proc. Cam. Phil. Soc., 1928, 24: 89.
    [77] Fock V. Naherungsmethode zur Losung des quanten-mechanischen Mehrkorperprbleme [J]. Z. Phys., 1930, 61: 126-148.
    [78] Hohenerg P, and Kohn W. Inhomogeneous electron gas [J]. Phys. Rev., 1964, 136(3B): B864-B871.
    [79] Kohn W, and Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev., 1965, 140(4A): A1133-A1138.
    [80]谢希德,陆栋主编.固体能带理论[M].上海:复旦大学出版社,1998年12月.
    [81] Car R, and Parrinello M. Unified approach for molecular dynamics and density-functional theory [J]. Phys. Rew. Lett., 1985, 55(22): 2471-2474.
    [82] Clérouin J, Pollock E L, and Zérah G. Thomas-Fermi molecular dynamics [J]. Phys. Rev. A, 1992, 46(8): 5130-5137.
    [83] Zérah G, Clérouin J, and Pollock E L. Thomas-Fermi Molecular-Dynamics, Liner Screening, and Mean-Field Theories of Plasmas [J]. Phys. Rev. Lett., 1992, 69(3): 446-449.
    [84] Flavien Lambert, Jean Clérouin, and Gilles Zérah. Very-high-temperature molecular dynamics [J]. Phys. Rev. E, 2006, 73(1): 016403.
    [85] Mazevet S, Lambert F, Bottin F, Zérah G, and Clérouin J. Ab initio molecular dynamics simulations of dense boron plasmas up to the semiclassical Thomas-Fermi regime [J]. Phys. Rev. E, 2007, 75(5): 056404.
    [86]陈其峰.氢、氘及其混合物物态方程和不透明度的研究[D].绵阳:中国工程物理研究院,2000年6月.
    [87]蔡灵仓,刘福生,经福谦,陈栋泉.固氢固氦等温压缩线的理论计算[J].物理学报,1999,48(2): 279-283.
    [88]蔡灵仓.高温高密度氦的物态方程及辐射不透明度研究[D].绵阳:中国工程物理研究院,1999年8月.
    [89]陈其锋,蔡灵仓,王为,傅秋卫,陈栋泉,经福谦.稠密氘气物态方程研究[J].高压物理学报,2000,14(3): 176.
    [90]陈敬平.冲击压缩产生的稠密Ar等离子体不透明度及物态方程研究[D].绵阳:中国工程物理研究院,1998年6月.
    [91] Sun Jiuxun, Cai lingcang, Wu qiang, and Jing Fuqian. Equivalence of the analytic mean-field potential approach with free-volume theory and verification of its applicability based on the Vinet equation of state [J]. Phys. Rev. B, 2005, 71(2): 024107.
    [92] Sun Jiuxun, Cai lingcang, Wu qiang, and Jing Fuqian. Analytic equation of state for solid fcc C60 based on generalized free-volume theory [J]. Phys. Rev. B, 2006, 73(15): 155431.
    [93]向士凯.金属铝、铜、铂和锂高压物理性质的从头计算[D].博士学位论文,2006年6月.
    [94] Xiang Shi-Kai, Cai Ling-Cang, Jing Fu-Qian, and Wang Shun-Jin. Thermal properties of Al at high pressures and temperatures [J]. Phys. Rev. B, 2004, 70(17): 174102.
    [95] Xiang Shi-Kai, Cai Ling-Cang, Jing Fu-Qian, and Wang Shun-Jin. Thermal equation of state for Pt [J]. Phys. Rev. B, 2005, 72(18): 184102.
    [96] Yuan J K, Sun Y S, and Zheng S T. Inelastic electron-ion scattering in hot dense plasma [J]. J. Phys. B: At. Mol. Opt. Phys., 1996, 29(1): 153-162.
    [97]孙永盛,孟续军,李世昌.平均原子辐射振子强度的研究[J].原子与分子学报, 1994, 11(1): 35-42.
    [98] Yuan Jiankui, Sun Yongsheng, and Zheng Shaotang. Average Atom Model in Hot Plasmas [J]. Chin. J. At. Mol. Phys., 1995, 12(2): 118-126.
    [99]孟续军,孙永盛.任意温度密度下的原子结构计算[J].计算物理, 1990, 7(4): 467-471.
    [100]孟续军,宗晓萍,白云,孙永盛,张景琳.混合物质原子结构的自洽场计算[J].物理学报, 2000, 49(11): 2133-2138.
    [101]朱希睿,孟续军,田明锋,姜旻昊.中低温等离子体原子能量的分波法计算[J],物理学报, 2007, 56(4): 2053-2060.
    [102]朱希睿,孟续军,田明锋,王志刚,姜旻昊.等离子体电子压强的Hartree-Fock-Slater自洽场计算[J].物理学报, 2005, 54(09): 4101-4107.
    [103]贾洪祥,孟续军.一种含势阱具有混合交换势形式的平均原子模型[J],物理学报, 2005, 54(01): 0070-0077.
    [104]朱希睿,孟续军.中低温稠密等离子体电子压强的自洽场计算[J],高压物理学报, 2004, 18(4): 333-338.
    [105]朱希睿,孟续军,田明锋.包含过渡区的等离子体电子状态的理论研究[J],物理学报, 2008, 57(7): 4049-4058.
    [106] Yong Hou, and Jianmin Yuan. Alternative ion-ion pair-potential model applied to molecular dynamics simulations of hot and dense plasmas: Al and Fe as examples [J]. Phys. Rev. E, 2009, 79(1): 016402.
    [107] Bridgeman P W. The physics of high pressure [M]. Bell and Sons Press, London, 1958.
    [108] Jayraman A. Ultrahigh Pressure [J]. Rev. Sci. Instrum, 1986, 57(6): 1013-1031.
    [109] Ming Li-chung, and Bassett William A. Laser heating in the diamond anvil press up to 2000℃sustained and 3000℃pulsed at pressure up to 260 Kilobars [J]. Rev. Sci. Instrum, 1974, 45(9): 1115-1118.
    [110] Xu J A, Mao H K, and Bell P M. High-pressure ruby and diamond fluorescence: Observation at 0.21 to 0.55 terapascal [J]. Science, 1986, 232(4756): 1404-1406.
    [111] Xiao Wan-sheng, Weng Ke-nan, Liu Jing, et al. Progress in high-pressure and high-temperature experiments using microbeam X-ray diffraction technique and its applications to earth sciences [J]. Earth Science Frontiers, 2005, 12: 102.
    [112] Katsura T, Funakoshi K, Kubo A, et al. A large-volume high-pressure and high-temperature apparatus for in situ X-ray observation,“SPEED-MK. II”[J]. Phys Earth Planet Inter, 2004, 143-144: 497-506.
    [113] Irifune T, Nishiyama N, Kuroda K, et al. The post-spinel phase boundary in Mg2SiO4 determined by in-situ X-ray diffraction[J]. Science, 1998, 279: 1698-1700.
    [114] Kubo A, Ito E, Katsura T, et al. In situ X-ray observation of iron using Kawai-type apparatus equipped with sintered diamond: Absence ofβphase up to 44 GPa and 2 100 K [J]. Geophys. Res. Lett., 2003, 30(3):1126.
    [115] Davidson S J, Foster J M, Smith C C, Warburton K A, and Rose S J. Investigation of the opacity of hot, dengs aluminum in the region of its K edge [J]. Appl. Phys.Lett., 1988, 52(10): 847-849.
    [116] Perry T S, et al. Opacity measurements in a hot dense medium [J]. Phys. Rev. Lett., 1991, 67(27): 3784-3787.
    [117] Foster J M, Hoarty D J, Smith C C, Rosen P A, Davidson S J, Rose S J, Perry T S, and Serduke F J D. L-shell absorption spectrum of an open-M-shell germanlun plasma: Comparison of experimental data with a detailed configuration-accounting calculation [J]. Phys. Rev. Lett., 1991, 67(23): 3255-3258.
    [118] Da Silva L B, MacGowan B J, Kania D R, Hammel B A, Back C A, Hsieh E, Doyas R, Iglesias C A, Rogers F J, and Lee R W. Absorbtion measurements demonstration the importance ofΔn=0 transitions in the opacity of iron [J]. Phys. Rev. Lett., 1992, 69(3): 438-441.
    [119] Springer P T, et al. Spectroscopic avsorption measurements of an iron plasma [J]. Phys. Rev. Lett., 1992, 69(26): 3735-3738.
    [120] Koch J A, et al. Time-resolved temperature measurements of radiatively heated tamped MgO foils by Kαabsorption spectroscopy [J]. J. Quant. Spectrosc. Radiat. Transfer., 1995, 54(1-2): 227-236.
    [121] Winhart G, Eidmann K, Iglesias C A, and Bar-Shalom A. Measurements of extreme uv opacities in hot dense Al, Fe, and Ho [J]. Phys. Rev. E, 1996, 53(2): R1332-R1335.
    [122] Perry T S, et al. Absorption experiments on x-ray-heated mid-Z constrained samples [J]. Phys. Rev. E, 1996, 54(5): 5617-5631.
    [123] Springer P T, et al. Laboratory measurement of opacity for stellar envelopes [J]. J. Quant. Spectrosc. Radiat. Transfer., 1997, 58(4-6): 927-935.
    [124] Han S W et al. Design and Modeling of Ignition Targets for the National Ignition Facility. Lawrence Livemore National Laboratory, UCRL-JC-117034, 1994.
    [1]赵伊君,张志杰编著.角动量与原子能量[M].北京:科学出版社, 1982.
    [2]赵伊君,张志杰编著.原子结构的计算[M].北京:科学出版社, 1987.
    [3] Cowan R D. The Theory of Atomic Structure and Spectira [M]. University of California Press, Berkly, 1981.
    [4] Friedrich H. Theoretical Atomic Physics [M]. Springer-Verlag, Berlin, 1990.
    [5] Condon E U, and Shortley G H. The Theory of Atomic Spectria [M]. The Syndics of Cambridge University Press, Cambridge, 1979.
    [6]芶秉聪,吴晓丽,王菲.原子结构与原子光谱[M].北京:国防工业出版社, 2007年1月.
    [7]А.Ф.尼基弗洛夫,В.Г.诺维科夫,В.Б.乌瓦洛夫著,李国政译.高温等离子体辐射不透明度和状态方程的计算[M].北京:国防工业出版社, 2004年1月.
    [8]徐锡申,张万箱著.实用物态方程导引[M].北京:科学出版社, 1986年8月.
    [9] Thomas L H. The calculation of atomic fields [J]. Proc. Cambridge Philos. Soc., 1927, 23: 542-598; Fermi E. Eine statistische Methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theories des periodischen systems der elemente [J]. Z. Phys., 1928, 48: 73-79.
    [10] Feynman R P, Metropolis N, and Teller E. Equation of State of Elements Based on the Generalized Fermi-Thomas Theory [J]. Phys. Rev., 1949, 75(10): 1561-1573.
    [11] Letter R. Temperature behavior of the Thomas-Fermi statistical model for atoms [J]. Phys. Rev., 1955, 99(6): 1854-1870.
    [12] Cowan R D, and Ashkin J. Extension of the Thomas-Fermi-Dirac Statistical Theory of the Atom to Finite Temperatures [J]. Phys. Rev., 1957, 105(1): 144-157.
    [13] Hohenberg H, and Kohn W. Inhomogeneous Electron Gas [J]. Phys. Rev., 1964, 136(2B): B864-B871.
    [14] Kohn W, and Sham L J. Self-Consistent Equation Including Exchange and Correlation Effects [J]. Phys. Rev., 1965, 140(4A): A1133-A1138.
    [15]谢希德,陆栋主编,固体能带理论,上海:复旦大学出版社,1998
    [16] Hansen J P, and McDonald I R. Theory of Simple Liquids [M]. Academic Press, Lodon, 1976
    [17] Yuan Jiankui, Sun Yongsheng, Zheng Shangtang. Average Atom Model in Hot Plasmas [J]. Chinese Journal of Atomic and Molecular Physics, 1995, 12(2): 118-126.
    [18] Callaway J, and March N H. Density Functional Methods: Theory and Applications [J]. Solid State Phys., 1984, 38: 135-221.
    [19] Perdew J P, Burke Kieron, and Ernzerhof Matthias. Generalized Gradient Approximation Made Simple [J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.
    [20] Allen M P, and Tildesley D J. Computer Simulation of Liquids [M]. (Clarendon Press, Oxford, 1987).
    [21] Verlet L. Computer experiments on classical fluids, I. Thermodynamical properities of Lennard-Jones molecules [J]. Phys. Rew., 1967, 159(1): 98-103.
    [22] Honeycutt R W. The potential calculation and some application [J]. Methods in Computational Physics, 1970, 9: 135-211.
    [23] Swope W C, Anderson H C, Berens P H, and Wilson K R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters [J]. J. Chem. Phys., 1982, 76(1): 637-639.
    [24] Gear C W. Numerical initial value problems in ordinary differential equation [M]. Englewood Cliffs, NJ: Prentice-Hall, 1971, 1~54.
    [25] Rahman A. Correlations in the motion of atoms in liquid argon [J]. Phys. Rew., 1964, 136(2A): A 405-A411.
    [26] Hoffmann K H, and Schreiber M. Computational Physics [M]. Berlin Heidelberg: Springer-Verlag, 1996, 268~326.
    [27] Berendsen H J C, Postma J P M, Gunseren W F V, et al. Molecular dynamics with coupling to an external bath [J]. J. Chem. Phys., 1984, 81(8): 3684-3690.
    [28] Hoover W G. Computational Statistical Mechanics [M]. New York: Elsenieer, 1991, 121~128.
    [29] Nose S. A unified formulation of constant temperature molecular dynamics methods [J]. Phys. Rew. A, 1985, 31(3): 1695-1697.
    [30] Anderson H C. Molecular dynamics simulations at constant press and/or temperature [J]. J. Chem. Phys., 1980, 72(4): 2384-2393.
    [31] Alder B J, and Wainwright T E. Phase transition for a hard-sphere system [J]. J. Chem. Phys., 1957, 27()5:1208.
    [32] Rahman A, and Stillinger F H, Molecular dynamics study of liquid water [J], J. Chem. Phys., 1971, 55(7): 3336-3359.
    [33] Alder B J, and Wainwright T E. Study in Molecular Dynamics. I. General Method [J]. J. Chem. Phys., 1959, 31(2): 459-466.
    [34] Alder B J, and Wainwright T E. Phase transition in elastic disks [J]. Phys. Rev., 1962, 127(2): 359-361.
    [35]钱学森.物理力学讲义[M].北京:科学出版社, 1962: 223-227.
    [36] Morse P M. Diatomic molecules according to the wave mechanics. II. Vibrational levels [J]. Phys. Rev., 1929, 34(1): 57-64.
    [37] Born M, and Mayer J E. Zur Gittertheorie der Ionenkristalle [J]. Z. Physik, 1932, 75: 1.
    [38] Daw M S, and Baskes M I. Embedded atom method derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev. B, 1984, 29(12): 6443-6453.
    [39] Finnis M W, and Sinclair J E. A simple empirical n-body potential for transition-matals [J]. Philosophic Magazine A, 1984, 50: 45.
    [40] Foiles S M, Baskes M I, and Daw M S. Embedded-atom-method function for the fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys [J]. Phys. Rev. B, 1986, 33(12): 7983-7991.
    [41] Manninen M, and Johnson R A. Interatomic interactions in solids [J]. Phys. Rev. B, 1986, 34(12): 8486-8495.
    [42] Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Phys. Rev. B, 1992, 46(5): 2727-2742.
    [43] Baskes M I, and Johnson R A. Modified embedded-atom potentials for hcp metals[J]. Modelling Simul. Matter. Sci. Eng., 1994, 2(1): 147-163.
    [44] Baskes M I. Calculation of the behaviour of Si ad-dimers on Si (001) [J]. Modelling Simul. Matter. Sci. Eng., 1997, 5(2): 149-158.
    [45] Ackland G J, and Vitek V. Many-body potentials and atom-scale relaxations in noble-metal alloys [J]. Phys. Rev. B, 1990, 41(15): 10324-10333.
    [46] Frenkel and Smit著,汪文川等译. Understanding Molecular Simulation–FromAlgorithms to Applications [M],分子模拟——从算法到应用[M].北京:化学工业出版社, 2002.
    [47] Andrew R L. Molecular Modeling: Principle an Practice [M]. Berlin Heidelberg: Spring-Verlag, 1996, 357~359.
    [48] Jellinek J, Beck T L, and Berry R S. Solid-liquid phase changes in simulated isoenergetic Ar13 [J]. J. Chem. Phys., 1986, 84(5): 2783-2794.
    [49]汪志诚.热力学·统计物理[M].北京:高等教育出版社,1993.
    [1]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998.
    [2] Andersen O K. Fermi surface and energy bands of copper [J]. Phys. Rev., 1962, 125(1): 109-122.
    [3] Sj?stedt E, Nordstr?m L, and Singh D J. An alternative way of linearizing the augmented plane-wave method [J]. Solid State communications, 2000, 114(1): 15-20.
    [4] Balaha P, Schwarz K, Madsen G, Kvasnicka D, Luitz J. WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties [M]. Vienna University of Thechnology, 2002.
    [5] Hedin L, and Lundqvist B I. Explicit local exchange-correlation potentials [J]. J. Phys. C: Solid State Phys., 1971, 4(14): 2064-2083.
    [6] Perdew J P, Burke K, and Ernzerhof M. Generalized Gradient Approximation Made Simple [J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.
    [7] Boettger J C, and Trickey S B. High-precision calculation of the equation of state and crystallographic phase stability for aluminum [J]. Phys. Rev. B, 1995, 53(6): 3007-3012.
    [8] Janak J F, Moruzzi V L, and Williams A R. Ground-state thermomechanical proterties of some cubic elements in the local-density formalism [J]. Phys. Rev. B, 1975, 12(4): 1257-1261.
    [9] Boettger J C, and Trickey S B. Total energy and pressure in the Gaussian-orbitals technique. II. Pressure-induced crystallographic phase transition and equilibrium propreties of aluminum [J]. Phys. Rev. B, 1984, 29(12): 6434-6442.
    [10] Dufek P, Blaha P, and Schwarz K. Applications of Engel and Vosko’s generalized gradient approximation in solids [J]. Phys. Rev. B, 1994, 50(11): 7279-7283.
    [11] Juan Y M, Kaxiras E, and Gordon R G. Use of the generalized gradient approximation in pseudopotential calculations of solids [J]. Phys. Rev. B, 1995, 51(15): 9521-9525.
    [12] Lam P K, and Cohn M L. Ab initio calculation of the static structural properties of Al [J]. Phys. Rev. B., 1981, 24(8): 4224-4229.
    [13] Ashcroft N W, and Mermin N D. Solid State Physics [M]. (Rinehart and Winston, New York, 1975).
    [14] Khein Alexander, Singh D J, and Umriger C J. All-electron study of gradient corrections to the local-density functional in metallic systems [J]. Phys. Rev. B, 1995, 51(7): 4105-4109.
    [15] Teter D M, Gibbs G V, Boisen Jr. M B, Allan D C, and Teter M P. First-principles study of several hypothetical silica framework structures [J]. Phys. Rev. B, 1995,52(11): 8064-8073.
    [16] Mcmhan A K, and Moriary J A. Structural phase stability in third-period simple metals [J]. Phys. Rev. B, 1983, 27(6): 3235-3251; see also, Moriary J A, and Mcmhan A K. High-Pressure structural phase transition in Na, Mg, and Al [J]. Phys. Rev. Lett., 1982, 48(12): 809-812.
    [17] Lam P K, and Cohn M L. Calculation of High-Pressure Phase of Al [J]. Phys Rev B, 1983, 27(10): 5986-5991.
    [18] Greene R G, Luo Huan, and Ruoff A L. Al as a simple solid: High pressure study to 220 GPa (2.2 Mbar) [J]. Phys. Rev. Lett., 1994, 73(15): 2075-2078.
    [19] Nellis W J, Moriarty J A, Mitchell A C, Ross M, Dandrea R G, Ashcroft N W, Holmes N C, and Gathers G R. Metals physics at ultrahigh pressure: Aluminum, copper, and lead as prototypes [J]. Phys. Rev. Lett., 1988, 60(14): 1414-1417.
    [20] More R M, Warren K H, Yong D A, and Zimmerman G B. A new quotidian equation of state (QEOS) for hot dense matter [J]. Phys. Fluids, 1988, 31(10): 3059-3078.
    [21] Wang Yi, and Li Li. mean-field potential approach to thermodynamic properties of metal: Al as a prototype [J]. Phys. Rev. B, 2000, 62(1): 196-202.
    [22] Xu J A, Mao H K, and Bell P M. High-pressure ruby and diamond fluorescence: Observation at 0.21 to 0.55 terapascal [J]. Science, 1986, 232(4756): 1404-1406.
    [23] Dubrovinsky L S, Saxena S K, Tutti F, Rekhi S, and Lebehan T. In situ X-Ray Study of Thermal Expansion and Phase Transition of Iron at Multimegabar Pressure [J]. Phys. Rev. Lett., 2000, 84(8): 1720-1723.
    [24] Akahama Y, Nishimura M, Kinoshita K, Kawamura H, and Ohishi Y. Evidence of a fcc-hcp Transition in Aluminum at Multimegabar Pressure [J]. Phys. Rev. Lett., 2006, 96(4): 045505.
    [25] Hohenerg P, and Kohn W. Inhomogeneous electron gas [J]. Phys. Rev., 1964, 136(3B): B864-B871.
    [26] Kohn W, and Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev., 1965, 140(4A): A1133-A1138.
    [27]宫长伟,王轶农,杨大智. NiTi形状记忆合金马氏体相变的第一原理研究[J].物理学报,2006,55(6):2877-2881.
    [28]吕梦雅,陈洲文,李立新,刘日平,王文魁. 3C-SiC高压相变的理论研究[J].物理学报,2006,55(7):3576-3580.
    [29] Xiang S K, Cai L C, Jing F Q, Wang S J. First-Prinsiple-Based Calculation of the Hugoniot of Cu [J]. Chin. Phys. Lett., 2005, 22(2): 424-426.
    [30] Godwal B K, and Jeanloz R. First-principles equation of state of gold [J]. Phys. Rev. B, 1989, 40(11): 7501-7507.
    [31] Ahuja R, Rekhi S, and Johansson B. Theoretical prediction of a phase transition ingold [J]. Phys. Rev. B, 2001, 63(21): 212101.
    [32] Boettger J C. Theoretical extension of the gold pressure calibration standard beyond 3 Mbars [J]. Phys. Rev. B, 2003, 67(17): 174107.
    [33] Korhonen T, Puska M J, and Nieminen R M. Vacancy-formation energies for fcc and bcc transition metals [J]. Phys. Rev. B, 1995, 51(15): 9526-9532.
    [34] Mehl M J, and Papaconstantopoulos D. Applications of a tigh-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals [J]. Phys. Rev. B, 1996, 54(7): 4519-4530.
    [35] Philipsen P H T, and Vaerends E J. Relativistic calcualtions to assess the ability of the generalized gradient approximation to reproduce trends in cohesive properties of solids [J]. Phys. Rev. B, 2000, 61(3): 1773-1778.
    [36] Tsuchiya T, and Kawamura K. Ab initio study of pressure effect on elastic properties of crystalline Au [J]. J. Chem. Phys., 2002, 116(5): 2121-2124.
    [37] Heinz D L, and Jeanloz R. The equation of state of the gold calibration standard [J]. J. Appl. Phys., 1984, 55(4): 885-893.
    [38] Lu L Y, Chen X R, Yu B R, and Gou Q Q. Firs-principles calculations of transition phase and thermodynamic properties of GaAs [J]. Chin. Phys., 2006, 15(4): 802-806.
    [39]侯永,张栋文,袁建民.第一原理对铝静态结构和相变的计算[J].高压物理学报, 2005, 19(4): 377-380.
    [40] Shim S H, Duffy T S, and Takemura K. Equation of state of gold and its application to th phase boundaries near 660 km depth in earth’s mantle [J]. Earth Planet Sci. Lett., 2002, 203(2): 729-739; Greeff C W, and Graf M J. Lattice dynamics and the high-pressure equation of stateso Au [J]. Phys. Rev. B, 2004, 69(5): 054107.
    [41] Batani D, Balducci A, Beretta D, Beretta D, Bernardinello A, L?wer T, Koenig M, Benuzzi A, Faral B, and Hall T. Equation of state data for gold in the pressure range <10 TPa [J]. Phys. Rev. B, 1999, 61(14): 9287-9294.
    [42] Souvatzis P, Delin A, and Eriksson O. Calculation of the equation of state of fcc Au from first principles [J]. Phys. Rev. B, 2006, 73(5): 054110.
    [43] Bell P M, Xu J, and Mao H K. Shock Waves in Condensed Matter [M], edited by Gupta Y M (Plenum, New York, 1986).
    [44] Mermin N D. Thermal Properties of Inhomogeneous Electron Gas [J]. Phys. Rev., 1965, 137(5A): A1441-A1443.
    [45] Bennett B T, Johnson J D, Kerley G I, and Rood G T. Recent developments in the sesame equation-of-state library [R]. Los Alamos Scientific Lab, Report. LA 7130, 1978.
    [46] Hou Yong, Jin Fengtao, and Yuan Jianmin. Influence of the electronic energy levelbroadening on the ionization of atoms in hot and dense plasmas: An average atom model demonstration [J]. Phys. Plasmas, 2006, 13(9): 093301.
    [47] Hou Yong, Jin Fengtao, and Yuan Jianmin. Energy level broadening effect on the equation of state of hot dense Al and Au plasma [J]. J. Phys.: Condens. Matter, 2007, 19(42): 425204.
    [48] J R Asay, L C Chhabildas, G I Kerley, and Trucani. Shock Wave in Condensed Matter [M], edited by Y M Gupta (Plenum, New York, 1986).
    [49] Xiang Shi-Kai, Cai Ling-Cang, Jing Fu-Qian, and Wang Shun-Jin. Thermal properties of Al at high pressures and temperatures [J]. Phys. Rev. B, 2004, 70(17): 174102.
    [1] Rozsnyai B F. Relativistic Hartree-Fock-Slater Calculations for Arbitrary Temperature and Matter Density [J]. Phys. Rev. A, 1972, 5(3): 1137-1149; Rozsnyai B F. An overview of the problems connected with theoretical calculations for hot plasmas [J]. J. Quant. Spectrosc. Radiat. Transf., 1982, 27(3): 211-217; Rozsnyai B F. and Lamoureux M, Continuum wave functions and bremsstrahlung in plasmas based on the ion-sphere and jellium models [J]. J. Quant. Spectrosc. Radiat. Transf., 1990, 43(5): 381-395.
    [2] Faussurier G, Blancard C, and Decoster A. Statistical Mechanics of highly charged ion plasmas in local thermodynamic equilibrium [J]. Phys. Rev. E, 1997, 56(3): 3474-3487; Faussurier G, Blancard C, and Decoster A. Statistical Treatment of radiative Transitions in local thermodynamic equilibrium plasmas [J]. Phys. Rev. E, 1997, 56(3): 3488-3497.
    [3] Mayer H L. Opacity of nitrogen by hand calculation [J]. J. Quant. Spectrosc. Radiat. Transf., 1965, 5(1): 39-47.
    [4] Green J M. The statistical mechanics of the interdependent electrons in the screening constant model of the many-electron-atom [J]. J. Quant. Spectrosc. Radiat. Transf., 1964, 4(5): 639-662.
    [5] Fetter A L, and Walecka J D. Quantum Theory of Many-Particale Systems [M]. (MacGraw Hill, New York, 1971).
    [6] Lokke W A, and Grassberger W H. Repoert UCRL-52276, Lawrence Livemore National Laboratory (Livermore, 1977).
    [7] Zimmermann G B, and More R M. Pressure ionization in laser-fusion target simulation [J]. J. Quant. Spectrosc. Radiat. Transf., 1980, 23(5): 517-522.
    [8] Liberman D A. Self-consistent field model for condensed matter [J]. Phys. Rev. B,1979, 20(12): 4981-4989; Inferno: A better model of atom in dense plasmas [J]. J. Quant. Spectrosc. Radiat. Transf., 1982, 27(3): 335-339.
    [9] Yuan Jianmin. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture [J]. Phys. Rev. E, 2002, 66(4): 047401.
    [10]徐锡申,张万箱等.实用物态方程理论导引[M].北京:科学出版社, 1986年8月.
    [11]А.Ф.尼基弗洛夫,В.Г.诺维科夫,В.Б.乌瓦洛夫著,李国政译.高温等离子体辐射不透明度和状态方程的计算[M].北京:国防工业出版社, 2004年1月.
    [12]经福谦著.实验物态方程导引[M].北京:科学出版社, 1986年10月.
    [13] More R M. Pressure Ionization, resonances, and the continuity of bound and free states [J]. Adv. At. Mol. Phys., 1985, 21(1): 305-354.
    [14] Legrand P, and Perrot F. Virial theorem and pressure calculations in the GGA [J]. J. Phys.: condens. Matter, 2001, 13(2): 287-302.
    [15] Nantel M, Ma G, Gu S, C?téC Y, Itatani J, and Umstadter D. Pressure Ionization and Line Merging in Strongly Coupled Plasmas Produced by 100-fs Laser Pulses [J]. Phys. Rev. Lett., 1998, 80(20): 4442-4445.
    [16] Saemann A, Eidmann K, Golovkin I E, Mancini R C, Andersson E, F?rster E, and Witte K. Isochoric Heating of Solid Aluminum by Ultrashort Laser Pulses Focused on a Tamped Target [J]. Phys. Rev. Lett., 1999, 82(24): 4843-4846.
    [17] Hou Yong, Jin Fengtao, and Yuan Jianmin. Influence of the electronic energy level broadening on the ionization of atoms in hot and dense plasmas: An average atom model demonstration [J]. Phys. Plasmas, 2006, 13(9): 093301.
    [18] Debye P, and Huckel E. The theory of electrolytes. I. Lowering of freezing point and related phenomena [J]. Z. Phys., 1923, 24: 185-206.
    [19] Stewart J C, and Pyatt K D. Lowering of Ionization Potentials in Plasmas [J]. Astrophys. J, 1966, 144: 1203-1211.
    [20] Heading D J, Bennett G R, Wark J S, and Lee R W. Simulations of Spectra from dense aluminium plasmas [J]. J. Quant. Spectrosc. Radiat. Transf., 1995, 54(1-2): 167-180.
    [21] Djaoui A. Time-dependent hydrogenic ionization model for non-LTE mixtures [J]. J. Quant. Spectrosc. Radiat. Transf., 1999, 62(3): 303-320.
    [22] Chiu G, and Ng A. Pressure ionization in dense plasmas [J]. Phys. Rev. E, 1999, 59(1): 1024-1032.
    [23] Blaha P, Schwarz K, Madsen G K, Kvasnick D and Luitz J. 2002 WIEN2k An Augumented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology).
    [24] Bar-Shalom A, Oreg J, Goldstein W H, Shvarts D, and Zigler A.Super-transition-arrays: A model for tne spectral analysis of hot, dense plasma [J]. Phys. Rev. A, 1989, 40(6): 3183-3193.
    [25] Bar-Shalom A, Oreg J, and Goldstein W H. in 4th International Workshop on Radiative Properties of Hot Dense Matter, Sarasota, 1990, edited by Goldstein W H, Hooper C, Gautier J, Seely J, and Lee R W, (World Scientifi, Singapore,1990), P163.
    [26] Oreg J, Goldstein W H, Bar-Shalom A, and Klapisch M. Configuration average of general n-body symmetrical tensor operators [J]. J. Comput. Phys., 1990, 91(2): 460-477.
    [27] Bar-Shalom A, Oreg J, and Goldstein W H. in Atomic Processes in Plasmas, 8th Topiccal Conference of APS, Porland Maine, 1991, edited by Marmar E S, ans Terry J L, (AIP, New York, 1991), P68.
    [28] Bar-Shalom A, Oreg J, Goldstein W H, and Shvarts D. Configuration interaction in LTE spectra of heavy elements [J]. J. Quant. Spectrosc. Radiat. Transf., 1994, 51(1-2): 27-39.
    [29] Bar-Shalom A, Oreg J, and Golestein W H. Effect of congfiguration widths on the spectra of local thermodynamic equilibrium plasmas [J]. Phys. Rev. E, 1995, 51(5): 4882-4890.
    [30] Bar-Shalom A, Oreg J, Seely J, Feldman U, Brown C M, Hammel B A, Lee R W, and Back C A. Interpretation of hot and dense absorption spectra of a near-local-thermodynamic-equilibrium plasma by the super-transition-array method [J]. Phys. Rev. E, 1995, 52(6): 6686-6691.
    [31] Bar-Shalom A, and Oreg J. Photoelectric effect in the super transition array model [J]. Phys. Rev. E, 1996, 54(2): 1850-1856.
    [32] Bar-Shalom A, Oreg J, and Klapisch M. EOSTA-an improved EOS quantum mechnical model in the STA opacity code [J]. J. Quant. Spectrosc. Radiat. Transf., 2006, 99(1-3): 35-54.
    [33] Hou Yong, Jin Fengtao, and Yuan Jianmin. Energy level broadening effect on the equation of state of hot dense Al and Au plasma [J]. J. Phys.: Condens. Matter, 2007, 19(42): 425204.
    [34] Meng Xujun, Zhu Xirui, Tian Mingfeng, Jiang Minhao, and Wang Zhigang. Free or Quasi-free Electronic Density of States in a Confined Atom [J]. Chin. Phys. Lett., 2005, 22(2): 310-313.
    [35]朱希睿,孟续军,田明锋,姜旻昊.中低温等离子体原子能量的分波法计算[J].物理学报, 2007, 56(4): 2053-2060.
    [36]朱希睿,孟续军,田明锋,王志刚,姜旻昊.等离子体电子压强的Hartree-Fock-Slater自洽场计算[J].物理学报, 2005, 54(09): 4101-4107.
    [37]贾洪祥,孟续军.一种含势阱具有混合交换势形式的平均原子模型[J].物理学报, 2005, 54(01): 0070-0077.
    [38]朱希睿,孟续军.中低温稠密等离子体电子压强的自洽场计算[J].高压物理学报, 2004, 18(4): 333-338.
    [39]朱希睿,孟续军,田明锋.包含过渡区的等离子体电子状态的理论研究[J].物理学报, 2008, 57(7): 4049-4058.
    [1]钱学森.物理力学讲义[M],北京:科学出版社, 1962: 223-227.
    [2] Morse P M. Diatomic molecules according to the wave mechanics. II. Vibrational levels [J]. Phys. Rev., 1929, 34(1): 57-64.
    [3] Born M, and Mayer J E. Zur Gittertheorie der Ionenkristalle [J]. Z. Physik, 1932, 75: 1-18.
    [4] Daw M S, and Baskes M I. Embedded atom method derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev. B, 1984, 29(12): 6443-6453; Foiles S M, Baskes M I, and Daw M S. Embedded-atom-method function for the fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys [J]. Phys. Rev. B, 1986, 33(12): 7983-7991; Manninen M, and Johnson R A. Interatomic interactions in solids [J]. Phys. Rev. B, 1986, 34(12): 8486-8495;Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Phys. Rev. B, 1992, 46(5): 2727-2742; Baskes M I, and Johnson R A. Modified embedded-atom potentials for hcp metals [J]. Modelling Simul. Mater. Sci. Eng., 1994, 2(1): 147-163; Baskes M I. Calculation of the behaviour of Si ad-dimers on Si(001) [J]. Modelling Simul. Mater. Sci. Eng., 1997, 5(2): 149-158.
    [5] Finnis M W, and Sinclair J E. A simple empirical n-body potential for transition-matals [J]. Philosophic Magazine A, 1984, 50(1): 45-55.
    [6] Gordon R G and Kim Y S. Theory for the Force between Closed-Shell Atoms and Molecules [J]. J. Chem. Phys., 1972, 56(6): 3122-3132.
    [7] Kim Y S, and Gordon R G. Theory of binding of ionic crystals: application to alkali-halide and alkaline-earth-dihalide crystals [J]. Phys. Rev. B, 1974, 9(8): 3548-3554.
    [8] Rae A I M. A calculation of the interaction between pairs of rare-gas atoms [J]. Mol. Phys., 1975, 29(2): 467-483; A theory for the interactions between closed shellsystems [J]. Chem. Phys. Lett., 1973, 18(4): 574-577.
    [9] Cohen A J, and Gordon R G. Theory of the lattice energy, equilibrium structure, elastic constants, and pressure-induced phase transitions in alkali-halide crystals [J]. Phys. Rev. B, 1975, 12(8): 3228-3241; Modified electron-gas study of the stability, elastic properties, and high-pressure behavior of MgO and CaO crystals [J]. Phys. Rev. B, 1976, 14(10): 4593-4605.
    [10]袁建民,赵伊君和张志杰.碱卤离子晶体结合能及弹性常数的物理力学计算[J].力学学报, 1989, 21(4): 479-487.
    [11] Slater J C. Quantum Theory of Atomic Structure 2 [M], Mcgraw-Hill, (1960)
    [12] Carr W J, Coldwell-Horsfall R A, and Fein A E. Anharmonic contribution to the energy of a dilute electron gas-interpolation for the correlation energy [J]. Phys. Rev., 1961, 124(3): 747-752; Carr W J, and Maradudin A A. Ground-state energy of a high-density electron gas [J]. Phys. Rev., 1964, 133(2A): A371-A374.
    [13] Flygare W H. Molecular Structure and Dynamics [M]. prentice-Hall, 1978.
    [14] Rozsnyai B F. Relativistic Hartree-Fock-Slater Calculations for Arbitrary Temperature and Matter Density [J]. Phys. Rev. A, 1972, 5(3): 1137-1149; Rozsnyai B F. An overview of the problems connected with theoretical calculations for hot plasmas [J]. J. Quant. Spectrosc. Radiat. Transf., 1982, 27(3): 211-217; Rozsnyai B F. and Lamoureux M, Continuum wave functions and bremsstrahlung in plasmas based on the ion-sphere and jellium models [J]. J. Quant. Spectrosc. Radiat. Transf., 1990, 43(5): 381-395.
    [15] Faussurier G, Blancard C, and Decoster A. Statistical Mechanics of highly charged ion plasmas in local thermodynamic equilibrium [J]. Phys. Rev. E, 1997, 56(3): 3474-3487; Faussurier G, Blancard C, and Decoster A. Statistical Treatment of radiative Transitions in local thermodynamic equilibrium plasmas [J]. Phys. Rev. E, 1997, 56(3): 3488-3497.
    [16] Mayer H L. Opacity of nitrogen by hand calculation [J]. J. Quant. Spectrosc. Radiat. Transf., 1965, 5(1): 39-47.
    [17] Green J M. The statistical mechanics of the interdependent electrons in the screening constant model of the many-electron-atom [J]. J. Quant. Spectrosc. Radiat. Transf., 1964, 4(5): 639-662.
    [18] Fetter A L, and Walecka J D. Quantum Theory of Many-Particale Systems [M]. (MacGraw Hill, New York, 1971).
    [19] Lokke W A, and Grassberger W H. Repoert UCRL-52276, Lawrence Livemore National Laboratory (Livermore, 1977).
    [20] Zimmermann G B, and More R M. Pressure ionization in laser-fusion target simulation [J]. J. Quant. Spectrosc. Radiat. Transf., 1980, 23(5): 517-522.
    [21] Liberman D A. Self-consistent field model for condensed matter [J]. Phys. Rev. B,1979, 20(12): 4981-4989; Inferno: A better model of atom in dense plasmas [J]. J. Quant. Spectrosc. Radiat. Transf., 1982, 27(3): 335-339.
    [22] Yuan Jianmin. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture [J]. Phys. Rev. E, 2002, 66(4): 047401.
    [23] Hou Yong, Jin Fengtao, and Yuan Jianmin. Influence of the electronic energy level broadening on the ionization of atoms in hot and dense plasmas: An average atom model demonstration [J]. Phys. Plasmas, 2006, 13(9): 093301.
    [24] Hou Yong, Jin Fengtao, and Yuan Jianmin. Energy level broadening effect on the equation of state of hot dense Al and Au plasma [J]. J. Phys.: Condens. Matter, 2007, 19(42): 425204.
    [25] Blaha P, Schwarz K, Madsen G K, Kvasnick D and Luitz J. 2002 WIEN2k An Augumented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology).
    [26] Thomas L H. The calculation of atomic fields [J]. Proc. Cambridge Philos. Soc., 1927, 23: 542-598; Fermi E. Eine statistische Methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theories des periodischen systems der elemente [J]. Z. Phys., 1928, 48: 73-79.
    [27] Feynman R P, Metropolis N, and Teller E, Metropolis N, and Teller E. Equation of state of elements based on the generalized Fermi-Thomas theory [J]. Phys. Rev., 1949, 75(10): 1561-1573.
    [28] Letter R. Temperature behavior of the Thomas-Fermi statistical model for atoms [J]. Phys. Rev., 1955, 99(6): 1854-1870.
    [29] Zink J W. Shell Structure and the Thomas-Fermi Equation of State [J]. Phys. Rev., 1968, 176(1): 279-284.
    [30] Dirac P A M. Note on exchange phenomena in the Thomas atom [J]. Proc. Cambridge Philos. Soc., 1930, 26: 376-385.
    [31] Car R , and Parrinello M. Unified approach for molecular dynamics and density-functional theory [J]. Phys. Rev. Lett., 1985, 55(22): 2471-2474.
    [32] Mazevet S, Lambert F, Bottin F, Zérah G. and Clérouin J, Ab initio molecular dynamics simulations of dense boron plasmas up to the semiclassical Thomas-Fermi regime [J]. Phys. Rev. E, 2007, 75(5): 056404.
    [33] Dharma-wardana M W C, and Perrot Francois. Density-functional theory of hydrogen plasmas [J]. Phys. Rev. A, 1982, 26(4): 2096-2104.
    [34] Dharma-wardana M W C, and Murillo Michael S. Pair-distribution functions of two-temperature two-mass systems: Comparison of molecular dynamics, classical-map hypernetted chain, quantum Monte Carlo, and Kohn-Sham calculations for dense hydrogen [J]. Phys. Rev. E, 2008, 77(2): 026401.
    [35] Ofer Dror, Nardi E, and Rosenfeld Y. Interionic correlations in plasmas:Thomas-Fermi hypernetted-chain density-functional theory [J]. Phys. Rev. A, 1988, 38(11): 5801-5809.
    [36] Furukawa H, and Nishihara K. Fermi-degeneracy and discrete-ion effects in the spherical-cell model and electron-electron correlation effects in hot dense plasmas [J]. Phys. Rev. A, 1992, 46(10): 6596-6607.
    [37] Zérah G, Clérouin J G, and Pollock E L. Thomas-Fermi molecular-dynamics, linear screening, and mean-field theories of plasmas [J]. Phys. Rev. Lett., 1992, 69(3): 446-449.
    [38] Clérouin J G, Pollock E L, and Zérah G. Thomas-Fermi molecular dynamics [J]. Phys. Rev. A, 1992, 46(8): 5130-5137.
    [39] Lambert Flavien, Zérah Gilles. Very-high-temperatue molecular dynamics [J]. Phys. Rev. E, 2006, 73(1): 016403.
    [40] Danel J -F, Kazandjian L, and Zérah G. Equation of state and sound velocity of a helium plasma by Thomas-Fermi-Dirac molecular dynamics [J]. Phys. Plasmas, 2006, 13(9): 092701; Equatin of state of dense boron plasma by Thomas-Fermi-Dirac-Weizsacker molecular dynamics [J]. 2008, 15(7): 072704.
    [41] Salzmann D, and Fisher D V. Ion Ellipsoid Model– A new model for atomic physics in hot dense plasmas [J]. High Energy Density Phys., 2007, 3(1-2): 242-249.
    [42] Rozsnyai B F, Albritton J R, Young D A, Sonnad V N, and Liberman D A. Theory and experiment for ultrahigh pressure shock Hugoniots [J]. Phys. Lett. A, 2001, 291(4-5): 226-231.
    [43] Allen M P, and Tildesley D J. Computer Simulation of Liquids [M], 1987, Clarendon, Oxford.
    [44] Verlet L. Computer experiments on classical fluids I. Thermodynamical properties of Lennard-Jones molecules [J]. Phys. Rev., 1967, 159(1): 98-103.
    [45] More R M, Warren K H, Yong D A, and Zimmerman G B. A new quotidian equation of state (QEOS) for hot dense matter [J]. Phys. Fluids, 1988, 31(10): 3059-3078.
    [46] Trainor K. Handbook of Material Properties Data Bases [M], edited by W. Huebner (Los Alamos National Laboratory, Los Alamos, 1984), Vol Ic, P 3712.
    [47] Perrot F, Dharma-wardana M W C, and Benage J. Possibility of an unequivocal test of different models of the equation of state of aluminum in the coupling regimeΓ~1-50 [J]. Phys. Rew. E, 2002, 65(4): 046414.
    [48] Lambert Flavien, Clérouin Jean, and Zérah Gilles. Very-high-temperature molecular dynamics [J]. Phys. Rev. E, 2006, 73(1): 016403.
    [49] Fromy P, Deutsh C, and Maynard G. Thomas-Fermi-like and average atom models for dense and hot matter [J]. Phys. Plasmas, 1996, 3(3): 714-730.
    [1] Morris J R, Wang C Z, Ho K M, and Chan C T. Melting line of aluminum from simulations of coexisting phases [J]. Phys. Rev. B, 1994, 49(5): 3109-3115.
    [2] Laio A, Bernard S, Chiarotti G L, Scandolo S, and Tosatti E. Physics of Iron at Earth’s Core Conditions [J]. Science, 2000, 287(5455): 1027-1030.
    [3] Belonoshko A B, Ahuja R, and Johansson B. Quasi-Ab Initio Molecular Dynamic study of Fe Melting [J]. Phys. Rev. Lett., 2000, 84(16): 3638-3641.
    [4] Belonoshko A B, Ahuja R, Eriksson O, and Johansson B. Quasi ab initio molecular dynamic study of Cu melting [J]. Phys. Rev. B, 2000, 61(6): 3838-3844.
    [5] Jesson B J, and Madden P A. Structure and dynamics at the aluminum solid-liquid interface: An ab initio simulation [J]. J. Chem. Phys., 2000, 113(14): 5935-5946.
    [6] Sugino O, and Car R. Ab Initio Molecular Dynamics Study of First-Order Phase Transitions: Melting of Silicon [J]. Phys. Rev. Lett., 1995, 74(10): 1823-1826.
    [7] Dario Alfè. First-principles simulations of direct coexistence of solid and liquid aluminum [J]. Phys. Rev. B, 2003, 68(6): 064423.
    [8] Alemany M M G, Gallego L J, and González D J. Kohn-Sham ab initio molecular dynamics study of liquid Al near melting [J]. Phys. Rev. B, 2004, 70(13): 134206.
    [9] Moriarty J A, Yong D A, and Ross M. Theoretical study of thealuminum melting curve to very high pressure [J]. Phys. Rev. B, 1984, 30(2): 578-588.
    [10] Broughton J Q, and Li X P. Phsae diagram of silicon by molecular dynamics [J]. Phys. Rev. B, 1987, 35(17): 9120-9127.
    [11] Mei J, and Davenport J W. Free-energy calculations and the melting point of Al [J]. Phys. Rev. B, 1992, 46(1): 21-25.
    [12] Straub G K, Aidun J B, Wills J M, Sanchez-Castro C R, and Wallace D C. Ab inito calcultation of meltiong and thermodynamic properties of crystal and liquid aluminum [J]. Phys. Rev. B, 1994, 50(8): 5055-5061.
    [13] Jesson B J, and Madden P A. Ab initio determination of the melting point of aluminum by thermodynamic itergration [J]. J. Chem. Phys., 2000, 113(14): 5924-5934.
    [14] Vocadlo L, and AlfèD. Ab initio melting curve of the fcc phase of aluminum [J]. Phys. Rev. B, 2002, 65(21): 214105.
    [15] Wijs G A de, Kresse G, and Gillan M J. First-order phase transitions by first-principles free-energy calculations: the melting of Al [J]. Phys. Rev. B, 1998, 57(14): 8223-8234.
    [16] AlfèD, Gillan M J, and Price G D. The melting curve of iron at the pressures of the Earth’s core from ab initio calculations [J]. Nature (London), 1999, 401: 462-464.
    [17] AlfèD, Price G D, and Gillan M J. Thermodynamics of hexagonal-close- packed iron under Earth’s core conditions [J]. Phys. Rev. B, 2001, 64(4): 045123.
    [18] AlfèD, Price G D, and Gillan M J. Iron under Earth’s core conditions: Liquid-state thermodynamics and high-pressure melting curve form ab inito calculations [J]. Phys. Rev. B, 2002, 65(16): 165118.
    [19] Vocadlo L, and AlfèD. Ab initio melting curve of the fcc phase of aluminum [J]. Phys. Rev. B, 2002, 65(21): 214105.
    [20] Sturgeon J B, and Laird B B. Determination of the TiO2(110)(2x3) surface structure via a parametric approach to STM image simulation [J]. Phys. Rev. B, 2000, 62(7): 4720-4725.
    [21] Foiles S M, Adeams J B. Thermodynamic properties of fcc transiton metals as calculated with the embedded-atom method [J]. Phys. Rev. B, 1989, 40(9): 5909-5915.
    [22] AlfèD, and Gillan M J. Exchange-correlation energy and the phase diagram of Si [J]. Phys. Rev. B, 2003, 68(20): 205212.
    [23] Allen M P, and Tildesley D J. Computer Simulation of Liquids [M],1987,Clarendon, Oxford.
    [24] Verlet L. Computer experiments on classical fluids I. Thermodynamical properties of Lennard-Jones molecules [J]. Phys. Rev., 1967, 159(1): 98-103.
    [25] Rahman A. Correlation in the Motion of Atoms in Liquid Argon [J]. Phys. Rev., 136(2A): A405-A411.
    [26] Jellinek J, Beck T L, and Berry R S. Solid-liquid phase changes in simulated isoenergetic Ar13 [J]. J. Chem. Phys., 1986, 84(5): 2783-2794.
    [27]汪志诚.热力学·统计物理[M].北京:高等教育出版社, 1993.
    [28] Nayak S K, Khanna S N, Rao B K, and Jena P. Thermodynamics of small nickel clusters [J]. J. Phy: Condens. Matter., 1998, 10(48): 10853-10862.
    [29] CRC Handbook of Chemistry and Physics [M], 77th ed., edited by D. R. Lide ~CRC Press, New York, 1996-1997.
    [30] González D J, González L E, López J M, and Stott M J. Dynamical properties of liquid Al near melting: An orbital-free molecular dynamics study [J]. Phys. Rev. B,2002, 65(18): 184201.
    [31] Alemany M M G, Gallego L J, and González D J. Kohn-Sham ab initio molecular dynamics study of liquid Al near melting [J]. Phys. Rev. B, 2004, 70(13): 134206.
    [32] Ediger M D, Angell C A, and Nagel S R. Supercooled Liquids and Glasses [J], J. Phys. Chem., 1996, 100(31): 13200-13212.
    [33] Nayak S K, Jena P, Ball K D, and Berry R S. Dynamics and instabilities near the glass transition: From clusters to crystals [J]. J. Chem. Phys., 1998, 108(1): 234-239.
    [34] Hiro K, Ohde Y, and Tanzaba Y. Stagnations of increasing trends in negative pressure with repeated cavitation in water/metal Berthelot tubes as a result of mechanical sealing [J]. J. Phys. D: Appl. Phys., 2003, 36(5): 592-597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700