用户名: 密码: 验证码:
水的太赫兹谱测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是自然界广泛存在的物质,尽管其分子结构十分简单,但却有着奇特的物理和热力学性质。水分子与氢键相互作用形成了复杂的多体系统,该系统与太赫兹波相互作用会有较强的吸收,因而太赫兹光谱对于研究水的特性有很大的帮助。太赫兹时域光谱技术以其宽带宽、高信噪比、高时间分辨率及良好的相干性等独特的优势在许多研究领域中发挥着越来越重要的作用。本论文利用太赫兹时域光谱技术,实验测量了液态水和冰在不同温度下的吸收系数和折射率,对于理解水的结构和热力学性质,具有重要的基础研究和实际应用价值。
     本文对常见的太赫兹产生及探测方法做了简要的总结,对THz时域光谱技术作了详细的描述,设计了实验方案并测量了水在不同温度下的太赫兹光谱。提出了利用冰透射波形的时间延迟间接测量水样品厚度的实验方案,克服了采用透射方法测量水在太赫兹波段光学常数所面临的主要困难。水在太赫兹波段有着广泛的吸收,除了理论预言的在60cm?1附近的吸收峰,没有其他共振吸收峰的存在。实验结果与文献发表的水在太赫兹波段的光学常数一致,验证了太赫兹时域光谱技术的有效性。实验还测量了冰以及冰水混合物在太赫兹波段的光学常数,补充了液态水的测量数据,为进一步的理论和实验研究提供了参考。
Water is a kind of ubiquitous liquid on earth, which has some peculiar characteristics in physics and thermodynamics, though H2O molecule is very simple. A many-body system is formed by the interaction between water molecule and hydrogen-bond. Terahertz wave would be greatly absorbed by this system, so it will help us study the characteristics of water to measure the spectrum of water in terahertz (THz) domain. THz time-domain spectroscopy (THz-TDS) has been playing a more and more important role in many research areas due to its particular advantages such as broadband detection, high signal-to-noise ratio, high time resolution and phase coherent detection. We obtain the absorption coefficient and refraction index of water using THz-TDS technology, and the result will be valuable to study on the structural and thermodynamic properties of water.
     The most popular method of terahertz generation and detection is summarized, and THz time-domain spectroscopy system is described detailedly as well as our experiment scheme. Besides, we obtain the spectrum of water in terahertz domain at different temperatures. We propose a method to measure the thickness of water membrane using the terahertz transmission wave form through ice, which solves the difficult problem in the transmission spectroscopy. The result, which is in good agreement with references, shows that terahertz wave is absorbed in all THz range, and has no resonant absorption peak except the one nearby 60 cm-1. Besides, we obtain the terahertz spectrum of ice and mixture of water and ice.
引文
[1] P. YHan and M.Tani et al, A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy [J]. Journal of Applied Physics, 2001, 89 ,2357
    [2] R. Huber, F. Tauser, A. Brodschelm et al, How many-particle interactions develop after ultrafast excitation of an electron-hole plasma[J]. nature, 2001, 414, 286
    [3] Michael Schall, Peter Uhd Jepsen, Photoexcited GaAs surfaces studied by transient terahertz time-domain spectroscopy[J]. Opti. Lett., 2000, 25, 13
    [4] P. Uhd Jepsen, W. Schairer, I. H. Libon et al, Ultrafast carrier trapping in microcrystalline silicon observed in optical pump terahertz probe measurements[J]. Appl. Phys. Lett., 2001, 79, 1291
    [5] M. Schall, H. Helm, S. R. Keiding, Far-infrared properties of electro-optic crystals measured by THz time-domains pectroscopy[J]. Int. J. of Infrared and Millimeter wave, 1999, 20, 595
    [6] G. Gallot, Jiangquan Zhang, R. W. McGowan et al, Measurements of the THz Absorption and Dispersion of ZnTe and their Relevance to the Electro-optic Detection of THz Radiation[J]. App. Phys. Let., 1999, 74, 3450
    [7] R. H. Jacobsen, D. M. Mittleman, M. C. Nuss, Chemical recognition of gases and gas mixtures using terahertz radiation[J]. Opti. Lett., 1996, 21, 2011
    [8] D. M. Mittleman, R. H. Jacobsen, R. Neelamani et al, Gas sensing using Terahertz time-domains pectroscopy[J]. Appl. Phys. B, 1998, 67, 379,
    [9] S. W. Smye, J. M. Chamberlain et al, The interaction between Terahertz radiation biological tissue[J]. Phys. Med. Biol., 2001, 46, R101,
    [10] G. Markelz, A. Roitberg et al, Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz[J]. Chem. Phys. Lett., 2000, 320,42
    [11] Toshihiko Kiwa, Masayoshi Tonouchi, High frequency properties of YBCO thin films diagnosed by time-domain terahertz spectroscopy[J]. Physca C, 2001, 362, 314
    [12] S. D. Brosron, R. Buhleier, I. E. Trotimov et al. Electrodynamics of High-temperature superconductors investigated with coherent terahertz pulse spectroscopy[J]. 1996, J. Opt. Soc. Am. B, 13,1979
    [13] Moreti, A. Bertolini, G. Carelli et al, The vinyl bromide optically pumped far infrared laser: new large offset emissions [J]. IEEE Journal of Quantum Electronics, 2001, 37(4): 489-493
    [14] P. U. Jepsen, R. H. Jacobsen, S. R. Keiding, Generation and detection ofterahertz pulses from biased semiconductor antennas [J]. Journal of the Optical Society of America B, 1996, 13(11): 2424~2436
    [15] S. L. Chuang, S. Schmitt-Rink, B. I. Greene et al, Optical rectification at semiconductor surfaces [J]. Physical Review Letters, 1992, 68(1): 102~105
    [16] W. Shi, Y. J. Ding, N. Fernelius, et al, Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal [J]. Optics Letters, 2002, 27(16): 1454~1456
    [17] K. Imai, K. Kawase, J. Shikata, Injection-seeded terahertz-wave parametric oscillator [J]. Applied Physics Letters, 2001, 78(8): 1026~1028
    [18] M. Theuer, G. Torosyan, C. Rau et al, Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler [J]. Applied Physic Letters, 2006, 88: 071122
    [19] K.–L. Yeh, M. C. Hoffmann, J. Hebling et al, Generation of 10μJ ultrashort terahertz pulses by optical rectification [J]. Applied Physics Letters, 2007, 90: 171121
    [20] W. Shi, Y. J. Ding, Tunable Coherent Radiation from Terahertz to Microwave by Mixing two Infrared Frequencies in a 47-mm-long GaSe Crystal [J]. International Journal of High Speed Electronics and Systems, 2006, 16(2): 589~595
    [21] S. Y. Tochitsky, J. E. Ralph, C. Sung et al, High-power terahertz radiation source based on difference frequency mixing of CO2 laser lines[J], CLEO, 2005, CMW3
    [22] S. Y. Tochitsky, J. E. Ralph, C. Sung et al, Generation of megawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs [J], Journal of Applied Physics, 2005, 98: 026101
    [23] S. Y. Tochitsky, C. Sung, S. E. Trubnick et al, High-power tunable, 0.5–3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines [J]. Journal of the Optical Society of America B, 2007, 24(9), 2509~2516
    [24] Y. Cai, I. Brener et al, Coherent terahertz radiation detection :Direct comparison between free-space electro-optic sampling and antenna detection[J]. Appl. Phys. Lett., 1998, 73,444
    [25] Uhd. Jepsen, C. Winnewisser, M .Schall et al, Detection of THz pulses by phase retardation in lithium tantalate[J]. Phys. Rev. E, 1996, 53, 3052
    [26] Wu, X.-C. Zhang, Electro-optic sampling of freely propagating THz field[J]. Optics & Quantum Electronics, 1996, 28, 945
    [27] Nahata, D. H. Auston, T. F. Heinz et al, Coherentd etection of freely propa gating terahertz radiation by electro-optic sampling[J]. Appl. Phys. Lett., 1996, 68, 150
    [28] Grischkowsky, M. B. Ketchen, C-C. Chi et al. Capacitance Free Generation and Detection of Sub-Picosecond Electrical Pulses on Coplanar TransmissionLines[J]. IEEE J. Quantum Electronics,1988, 24, 221
    [29] P. Uhd Jepsen, S. R. Keiding, Radiation patterns from lens-coupled terahertz antennas[J]. Opti. Lett., 1995, 20, 807
    [30] J. V. Rudd, J. Johnson , D. M. Mittleman, Quadrupole radiation from terahertz dipole antennas[J]. Opti. Lett. 2000,25, 1556
    [31] Walther M, Fischer B M, Uhd J P. Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared[J]. Chemical Physics, 2003, 288(2-3): 261-268
    [32] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Opt. Lett., 1995, 20(16): 1716-1718
    [33] Wu Q, Hewitt T D, Zhang X C. Two-dimensional electro-optic imaging of THz beams[J]. Appl. Phys. Lett., 1996, 69(8): 1026-1028
    [34] Ferguson B. Three dimensional T-ray inspection systems. Ph.D. thesis, Adelaide University, 2004.
    [35] Adam A J, van der Valk N, Planken P C. Measurement and calculation of the near field of a terahertz apertureless scanning optical microscope[J]. J. Opt. Soc. Am. B, 2007, 24(5): 1080-1090
    [36]刘盛纲,太赫兹科学技术的新发展,第270次香山科学会议
    [37]王桂梅,刘初玉,鲁向阳,庄杰佳,赵夔,陈佳洱.北京大学高功率相干Terahertz光源设计[J].高能物理与核物理, 2007, 31(9):823-825
    [38]张同意,王屹山,范文慧,朱少岚,赵卫.腔内型光电导太赫兹辐射产生器设计[J].光子学报, 2008, 37(2): 219-224
    [39]刘明利,张同意, et. al.大孔径光电导天线产生高功率窄带宽THz辐射特性分析[J].光子学报, 2007, 36(10): 1793-1798
    [40]施卫,张显斌,贾婉丽,李孟霞,徐景周,张希成.用飞秒激光触发GaAs光电导体产生THz电磁波的研究[J].半导体学报, 2004, 12: 1735-1738
    [41]贾婉丽,施卫,纪卫莉,马德明.光电导开关产生太赫兹电磁波双极特性分析[J].物理学报, 2007, 56(7): 3845-3850
    [42] Don-gwen Zhang, Zhi-hui Lv, Lin Sun, Zheng-zheng Shao, and Jian-min Yuan. Terahertz Spectra of GaSe: Fundamental and two-order phonon processes. 2008 Joint 33nd International Conference on Infrared and Millimeter Waves and the 16th International Conference on Terahertz Electronics, 2008
    [43] Dong-wen Zhang, Zhi-hui Lv, Lin Sun, Jian-min Yuan. Dielectric properties of GaSe crystal measured by Terahertz time-domain spectroscopy. 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, 2007 Sept., p239
    [44]张永俊.差频产生太赫兹的数值计算与模拟. 2006,国防科学技术大学,硕士学位论文
    [45] Dongwen Zhang, Zhihui Lv, Lin Sun, Zhengzheng Shao, Jianmin Yuan. Tunable T-ray generation in GaSe crystals. Proceedings of SPIE, 2008
    [46] Bour Petr. A cluster model of liquid water and its IR spectroscopic response[J]. Chem. Phys. Lett. 2002, 365: 82-88
    [47] Ptasinska Sylwia, Dabek J, Michalak L. Formation of water dimmers in expanding air flows[J]. Vacuum, 2003, 70:403-409
    [48] Burda Kvetoslava, Bader K P, Schmid G H J. An estimation of the size of the water cluster present at the cleavage site of the water splitting [J]. FEBS Letters, 2001, 491:81-84
    [49] Chaplin M F. A proposal for the structuring of water[J]. Bio. Chem. 1999, 83:211-221
    [50] Zhao Lin. Study on formation mechanism of prethermodenaturation new peak of protein[J]. ACTA Biophysica Sinica, 1999, 15:627-630
    [51] Zhao Lin, Tan Xin. Study on hexcirclic structure of water and its effect on thermodenaturatione[J]. Journal of Tianjin University, 2000, 33: 14-16
    [52] Martin van Exter, Ch. Fattinger, and Grischkowsky. Terahertz time-domain spectroscopy of water vapor[J]. Optics Letters. 1989, 14:1128-1130
    [53] R. Alan Cheville and D. Grischkowsky. Observation of pure rotation absorption spectra in the v2 band of hot H2O in flames[J]. Optics Letters. 1998, 23:531-533
    [54] Wei Shi and Yujie J. Ding. Direct measurement of resonant frequencies for H2O in the range of 0.2-4.2 THz by frequency-tuning monochromatic THz source[J]. CLEO. 2004
    [55] Takashi Arikawa, Kumiko Yamashita, Hikdeki Hirori, Masaya Nagai, and Koichiro Tanaka. Complex dielectric constant of amino-acid solution revealed by THz time-domain attenuated total-reflection technique[J]. OTST. 2005
    [56]张栋文,GaSe的太赫兹时域谱及差频产生太赫兹源研究,国防科技大学博士学位论文,2008
    [57]石顺祥,陈国夫,赵卫,刘继芳.非线性光学.西安电子科大出版社,2003
    [58] Zhang X-C, Hu B, Darrow J, Auston D H. Generation of femtosecond electromagnetic pulses from semiconductor surfaces[J]. Appl. Phys. Lett., 1990, 56: 1011-1013
    [59] X.-C. Zhang, J.Darrow, B. Hu,D. Auston, M. Schmidt, P. Tham, E. Yang, Optically induced electromagnetic radiation from semiconductor surfaces[J]. Appl. Phys. Lett. 1990, 56, 2228
    [60] X.-C. Zhang, B. Hu, S.Xin, D. Auston, Optically induced femtosecond electromagnetic pulses from GaSb/AISb. Appl. Phys. Lett. 1990, 57,753
    [61] Zhang X-C, Auston D H. Optoelectronic measurement of semiconductor surfacesand interfaces with femtosecond optics[J]. J. Appl. Phys., 1992, 71: 326-338
    [62] X.-C. Zhang, Y. Jin, K. Yang, L. Schowalter, Resonant nonlinear susceptibility near the GaAs band gap[J]. Phys. Rev. Lett. 1992, 69, 2303
    [63] M. Li, F. Sun, G. Wagoner, M. Alexander, X.-C Zhang, measurement and analysis of terahertz radiation from bulk semiconducterors[J]. Appl. Phys. Lett. 1995, 67, 25
    [64] J.Perdersen, I. Ballev, J. Hvam, S. Keiding, Temperaturedependence of femtosecond electromagnetic radiation from semiconductor surfaces[J]Appl. Phys Lett. 1990, 57, 2629
    [65] Hu B B, Zhang X C, Auston D H. Temperature dependence of femtosecond electromagnetic radiation from semiconductor surfaces[J]. Appl. Phys. Lett., 1990, 57, 2629-2631
    [66] Y. Jin, X. Ma, G. Wagoner, M. Alexander, X.-C. Zhang, Anomalous optically rectification from metal/GaAs interface. Appl. Phys. Lett. 1994, 65, 682
    [67] Dekorsy T, Auer H, Waschke C, Bakker H J, et al. Emission of submillimeter electromagnetic waves by coherent phonons[J]. Phys Rev Lett, 1995, 74(5): 738-741
    [68] Chuang S L, Schmitt-Rink S, Greene B I, Saeta P N, et al. Optical rectification at semiconductor surfaces[J]. Phys Rev Lett, 1992, 68(1): 102-105
    [69] Greene B I, Saeta P N, Dykaar D R, Schmitt-Rink S, et al. Far-infrared light generation at semiconductor surfaces and its spectroscopic applications[J]. IEEE Journal of Quantum Electronics, 1992, 28(10): 2302-2312
    [70] Howells S C, Schlie L A. Temperature dependence of terahertz pulses produced by difference- frequency mixing in InSb[J]. Appl. Phys. Lett., 1995, 67(25): 3688-3690
    [71] Zhang X-C, Jin Y, Hewitt T D, Sangsiri T, et al. Magnetic switching of THz beams[J]. Appl. Phys. Lett., 1993, 62(17): 2003-2005
    [72] Kono S, Gu P, Tani M, Sakai K. Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces[J]. Appl. Phys. B: Lasers and Optics, 2000, 71(6): 901-904
    [73] Zhao G, Schouten R N, van der valk N, Wenckebach W T, et al. Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter[J]. Review of scientific instruments, 2002, 73(4): 1715-1719
    [74] You D, Jones R R, Bucksbaum P H, Dykaar D R. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses[J]. Opt. Lett., 1993, 18(4): 290.
    [75] R Kohler, A Tredicucci, F Beltmm, et a1., Terahertz semiconductorhetero structure laser[J]. Nature, 2002, 417:156-159.
    [76] Liu H C, Wachter M, Ban D, Wasilewski Z. R, Buchanan M, Aers G. C, Cao J.C, Feng S. L, Williams B. S, Hu Q, Effect of doping concentration on theperformance of terahertz quantum-cascade lasers[J]. Appl.Phys.Lett.2005, 87(14):1102-1104.
    [77] Kono S, Tani M, Sakai K. Coherent detection of. mid-infrared radiation up to 60 THz with an LT-GaAs[J]. IEEE Proc. Optoelectron, 2002, 149: 105-109
    [78] Gu P, Tani M, Sakai K, Yang T-R. Detection of terahertz radiation from longitudinal optical phonon plasmon coupling modes in InSb film using an ultrabroadband photoconductive antenna[J]. Appl. Phys. Lett., 2000, 77(12): 1798-1800
    [79] Ralph S E, Grischkowsky D. THz spectroscopy and source characterization by optoelectronic interferometry[J]. Appl. Phys. Lett., 1992, 60(9): 1070-1072
    [80] Auston D H, Cheung K P, Valdmanis J A. Cherenkov Radiation from femtosecongd optical pulses in Electro-optic media[J]. Phys Rev Lett, 1984, 53:1555
    [81] Fattinger Ch, Grischkowsky D. Point source terahertz optics [J]Appl Phys Lett. 1988, 53:1480
    [82] Lionel Duvillaret, Frederic Garet, Jean-Louis Coutaz. A Reliable Method for Extraction of Material Parameters in Terahertz Time-Domain Spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Elecronics, 1996, 2
    [83] Jing Xu, Kevin W. Plaxco, S. James Allen. Absorption spectra of liquid water and aqueous buffers between 0.3 and.3.72 THz[J]. Chem. Phys. Lett 2006, 124, 036101
    [84] Wei Shi and Yujie J. Ding, Direct measurement of resonant frequencies for H2O in the range of 0.2-4.2 THz by frequency-tuning monochromatic THz source [J]. 2004 OSA/CLEO.
    [85] J. T. Kindt and C. A. Schmuttenmaer, Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy[J]. J. Phys. Chem. 1996, 100, 10373
    [86] K. N. Woods, H. Wiedemann, The relationship between dynamics and structure in the far infrared absorption spectrum of liquid water[J]. Chemical Physics Letters. 2004, 393, 159-165
    [87] Shinji Saito, Iwao Ohmine, Translational and orientational dynamics of a water cluster (H2O)108 and liquid water: Analysis of neutron scattering and depolarized light scattering[J]. J Chem Phys. 1995, 102, 3566-3579
    [88] H. R. Zelsmann, Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region[J]. J. Mol. Structure. 1995, 350, 95-114
    [89] Wayne B. Bosma, Laurence E. Fried, Shaul Mukame, Simulation of the intermolecular vibrational spectra of liquid water and water clusters[J]. Chem. Phys. 1993, (6), 15:4413-4421
    [90] Xuying Xin, Inter/intra Molecular Dynamics in Gases and Liquids Studied by Terahertz Time-domain Spectroscopy , Ph.D. Thesis, The City University of New York, 2007
    [91] Bruni F, Ricci M A, Soper A K, Unpredicted density dependence of hydrogen bonding in water found by neutron diffraction[J].Phys Rev B. 1996, 54: 11876-11879
    [92] Joan Angel Padro, Jordi Marti, An interpretation of the low-frequency spectrum of liquid water[J]. J. Chem. Phys., 2003, 118: 452-453

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700