用户名: 密码: 验证码:
1980-2010年三江平原土壤有机碳储量动态变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤碳储量的微小变化就能使生态系统发生碳―汇-源‖或―源-汇‖的转变,对全球生物地球化学循环产生重要影响。准确估算土壤有机碳储量、揭示其分布格局及动态将有助于预测陆地生态系统对气候变化的反馈关系。三江平原是我国最大的淡水沼泽湿地分布区,也是近50年来湿地开发最严重的地区,土地利用变化剧烈打破了三江平原生态平衡,影响了三江平原土壤有机碳总储量的变化和分布,本文运用遥感和GIS技术,结合统计学和地统计学方法,估算三江平原1980s年和2010年土壤有机碳储量,确定土壤有机碳密度的控制因素,并且分析其动态变化规律和影响因素。这有助于我们对三江平原土壤有机碳的碳源/碳汇的认识,从而对三江平原湿地保护、政府宏观决策和我国重要农业区的土壤有机碳循环研究具有重要的意义。主要结论如下:
     1.三江平原土壤有机碳密度及其控制因子。三江平原1980s年和2010年中不同植被类型(0-30cm,0-60cm,0-100cm)土壤有机碳密度的平均值从高到低的顺序均为:沼泽湿地>林地>草地>水田>旱地。1980-2010年三江平原(0-30cm,0-60cm,0-100cm)沼泽湿地土壤有机碳密度平均值均有所降低。土壤质地是影响三江平原土壤有机碳密度空间分布特征的重要环境因素,其中土壤黏粒对其影响最大。年均气温和年均累积降雨量也对土壤有机碳密度有一定的影响。
     2.三江平原土壤有机碳的垂直分布特征及其影响因素。三江平原1980s年和2010年不同类型的土壤有机碳含量与密度垂直分布特征为自上向下逐渐降低的趋势。土壤有机碳密度和含量更多地集中于表层。1980-2010年间表层土壤有机碳占1m深度总量的比例呈现显著下降趋势。1980s年旱地表层(0-30)土壤有机碳占1m深度总量的比例(54%)显著大于水田表层(0-30)土壤有机碳占1m深度总量的比例(53%),2010年沼泽湿地表层(0-30cm)和中层(30-60cm)土壤有机碳所占1m深度总量的比例相对1980s年均有所下降。三江平原土壤有机碳密度随着土壤深度的增加,其与环境变量的相关性在减弱。表层两期土壤有机碳密度均与年累积降雨量、土壤黏粒、土壤粉粒呈现显著正相关(P <0.01),但与年均温度和土壤砂粒显著负相关(P <0.01)。1980s年和2010年表层土壤有机碳密度占比例与土壤粉粒含量呈显著正相关。
     3.三江平原土壤有机碳储量时空动态。1980-2010年三江平原土壤有机碳储量均呈现逐渐减少的趋势。三江平原表层土壤有机碳库三十年减少了19.84%。1980s年三江平原1m土壤有机碳库为2930.46TgC,2010年三江平原土壤有机碳库为2324.34Tg C,三十年间减少的土壤有机碳储量为606.11Tg C。两期表层土壤有机碳库约占其当年1m土壤有机碳库的50%。1980s年三江平原不同土地覆被类型中林地的土壤有机碳储量最大,草地最低。经过三十年三江平原土地利用等变化的影响,到2010年林地的土壤有机碳储量虽然最高,但是与旱地土壤有机碳总储量相近。从空间上看,三江平原两期不同深度土壤有机碳密度空间差异明显。三江平原1m土壤有机碳密度研究区约有60%以上的象元中土壤有机碳密度都在减少,东南地区高于西部地区,减少最多值在40kg/m2以上,而三江平原东北地区呈现增加的趋势,增加最多值在10kg/m2以上。
     4.三江平原土壤有机碳储量动态变化的成因分析。三江平原过去三十年土地利用变化较为剧烈,主要发生在农田和其它土地利用类型之间。三江平原东北部农田增加的面积较大。沼泽湿地开垦、林地开垦和草地开垦三种农田开垦是影响三江平原土壤有机碳储量减少的主要原因,并且研究表明开垦对土壤有机碳的降低主要体现在表层。三江平原由于湿地开垦导致损失的土壤有机碳1m储量为86.84TgC,这也是三江平原东北部地区不同深度土壤有机碳减少的主要原因之一。林地和草地的开垦导致损失的土壤有机碳储量为24.78Tg C和2.01Tg C。退耕还湿和退耕还林均可能增加三江平原土壤有机碳储量。1980-2010年三江平原农田转化成沼泽湿地导致土壤有机碳储量增加19.02TgC。退旱地改沼泽湿地和退旱地改林地均更有助于表层土壤有机碳的增加。化肥施用、水田占农田比重和灌溉方式三种农田管理方式也是影响三江平原土壤有机碳的重要因素。
Small changes of soil carbon stock could make the sinks-source "or" source-sink"conversion in ecosystem carbon, it plays a major impact on global biogeochemicalcycles. Accurate estimatting of soil organic carbon and revealing the distributionpattern of soil carbon stock and its dynamics will help us to predict a feedbackrelationship of terrestrial ecosystems to climate change. Sanjiang Plain is the largestfreshwater wetland distribution in China and one of the most development area in thepast50years. The ecological balance of the Sanjiang Plain has been broken, as aresult, the change and the distribution of the total reserves of the soil organic carbonin the Sanjiang Plain are being affected. So we use the remote sensing and GIStechnology, combined with statistical and geostatistical methods to estimate theSanjiang Plain soil organic carbon reserves in1980s and2010. We determined thecontrolling factors of soil organic carbon density, and analyzed the dynamic variationand influencing factors. That helps us understand the carbon source of the SanjiangPlain. It is important for us to protect Wetlands in Sanjiang Plain, help the governmentmacro making decision and research agricultural area of the soil organic carbon cycleresearch. The main conclusions are as follows:
     1.The density of soil organic carbon and controllable factors in Sanjiang Plain. Theaverage of the different vegetation types (0-30,0-60,0-100cm) soil organic carbondensity in descending order are as follow: wetlands> woodland> grassland> paddy>upland of Sanjiang Plain in1980s and2010. The average marsh soil organic carbondensity in Sanjiang Plain (0-30,0-60,0-100cm) from1980s to2010are reduced. Soiltexture is an important environmental factor that affect the spatial distributioncharacteristics of soil organic carbon density in the Sanjiang Plain, soil clay had thegreatest impact. The average annual temperature and average annual cumulativerainfall impact on soil organic carbon density.
     2. The vertical distribution characteristics of the Sanjiang Plain soil organic carbonand its influencing factors. The trend of different types of soil organic carbon contentand density of the vertical distribution of characteristics in1980s and2010from thetop to down were decrease. Soil organic carbon density and content were moreconcentrated on the surface. The ratio of surface soil organic carbon accounted for1m depth from1980-2010showed a significant downward trend. Dry farmland (0-30cm)accounted1m depth total soil organic carbon (54%) was significantly greater than inthe paddy field topsoil (0-30) organic carbon accounting the1m depth proportion ofthe total (53%) in1980s. The ratio of marsh in0-30cm and30-60cm accounted1mdepth were decreased in2010, which were50%and28%respectively. Soil organiccarbon density in Sanjiang Plain increased by the soil depth, and its correlation withenvironmental variables was on the wane. It is significant positive correlation (P<0.01) for the topsoil organic carbon density and annual cumulative rainfall, soil claysoil silt, but it is a significant negative correlation (P <0.01) with the average annualtemperature and soil sand. The total proportion of soil silt content of soil organiccarbon density was a significant positive correlation in1980s and2010.
     3. The space-time dynamic of soil organic carbon storage in the Sanjiang Plain. Itshowed a decreasing trend from1980s to2010. The topsoil organic carbon pool of theSanjiang Plain had decreased19.84%during the three decades. The1m soil organiccarbon pool in1980s in Sanjiang Plain was2930.46Tg C. And it was2324.34Tg Cin2010. It had reduced606.11Tg C of soil organic carbon reserves during the threedecades. Topsoil organic carbon pool accounts for about50%of its1m soil organiccarbon pool in1980s and2010. Woodland was the largest and grass was the minimumin different land cover types of soil organic carbon reserves in1980s. But in2010thesoil organic carbon of woodland was the highest, the value was near dry farmland.Judging from space, it is obvious for the difference between soil organic carbon fortwo periods of time. There are more than60%pixels in the1m soil organic carbondensity of Sanjiang Plain in the study area are reduced, These in the south-east werehigher than the western region, more than40kg/m2. The most increasing area was inin Northeast of Sanjiang Plain and in a maximum of more than10kg/m2.
     4.Factors of dynamic changes in soil organic carbon of the Sanjiang Plain. Land usewas large changing from1980s to2010which is more dramatic occurs mainlybetween farmland and other land use types. The area of dry farmland in northeastincreased most. The reclamation of marsh、woodland and grassland are the majorreason of the decrease of soil organic carbon stocks. Our studies have shown that thereclamation of soil organic carbon reduction is mainly reflected in the topsoil.1mSanjiang Plain marsh reclamation led to the loss of soil organic carbon reserves of86.84Tg C, it is also one of the main reasons for northeastern in different depth ofsoil organic carbon reduction. The reclamation of woodland and grassland led to the loss of soil organic carbon reserves of24.78Tg C and2.01Tg C. Dry farmland tomarsh and returning farmland to forests may increase the Sanjiang Plain soil organiccarbon stocks. From1980s to2010, dry farmland into wetlands led to the increase by19.02Tg C in soil organic carbon reserves. Dry farmland to marsh and to woodlandare more conducive to the increase of the topsoil organic carbon. Chemical fertilizer,the proportion of paddy in land and irrigation methods affect the Sanjiang Plain soilorganic carbon is also an important factor in three kinds of farmland management.
引文
Arrouays D., Pelissier P. M odeling carbon storage profiles in temperate forest humic loamy soils of France [J].Soil Science,1994,157:185-192.
    Batjes N. H. Total carbon and nitrogen in the soils of the world [J], European Journal of soil Science,1996,47:151-163.
    Batjes, N. H., and J. A. Dijkshoorn. Carbon and nitrogen stocks in the soils of the Amazon Region [J]. Geoderma,1999,89:273-286.
    Batjes, N. H. Carbon and nitrogen stocks in the soils of Central and Eastern Europe [J], Soil Use and M anagement,2002,18:324-329.
    Batjes, N. H. M appingsoil carbon stocks of Central Africa using SOTER, Geoderma,2008,146:58-65.
    Bellamy P.H., Loveland P.J., Bradley R.I., et al. Carbon losses from all soils across England and Wales1978-2003[J], Nature,2005,437:245-248.
    Bemoux M., Concencao S.C., Volkoff B., et al. Brazil's soil carbon stock [J], Soil Science of American Journal,2002,66:888-896.
    Bolin B. Change of land biota and their importance for the carbon cycle [J], Science,1977,196:613-315.
    Bohn H.L. Estimate of organic carbon in world soils, Soil Science of Society of America Journal,1976,40:468-470.
    Bottner, P., Couteaux, M.M., Vallejo, V.R. Soil organic matter in M editerranean-type ecosystems and globalclimatechanges: a case study—the soils of the M editerranean Basin.In: M oreno, J.M., Oechel, W.C.(Eds.),Global Change and M editerranean Type Ecosystems. Springer-Verlag, New York,1995,306-325.
    Brahim N., M. Bernoux, D. Blavet et al. Tunisian soil organic carbon stocks [J], International Journal of soilscience,2010,5(1):34-40.
    Breiman L. Random forests. M ach Learn,1984,45:5–32.
    Breiman L., Friedman J. H., Olshen R. A., Stone C. J. Classification and regression trees. Chapman and Hall, NewYork,2001.
    Burgess, T.M., Webster, R. Optimal interpolation and isarithmic mapping of soil properties: II. Block Kriging.Journal of Soil Science,1980s.31,333–341.
    Burke, I. C., Yonker, C. M., Parton, W. J., et al. Texture, climate, and cultivation effects on soil organic mattercontent in U.S. grassland soils [J]. Soil Science Society of America Journal,1989,53:800-805.
    Callesen I., Liski J., Raulund-rassmussen K et al. Soil carbon stores in Nordic well-drained forestsoils-relationships with climate and texture class [J]. Global Change Biology,2003,9:358-370.
    Chhabra, A., Palria, S., Dadhwal, V.K. Soil organic carbon pool in Indian forests [J]. Forest Ecology andM anagement,2003,173:187-199.
    David M cGrath and Chaosheng Zhang. Spatial distribution of soil organic carbon concentrations in grassland ofIreland [J]. Applied geochemistry,2003,18:1629-1639.
    Davidson EA, Trumbore SE, Amundson R. Soil warming and organic carbon content [J]. Nature,2000,408:789-790.
    Davidson, E.A., Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climatechange [J]. Nature,2006,440:165-173.
    DeFries R, Hansen M, Townshend J. Global discrimination of land cover types from metrics derived fromAVHRR pathfinder data [J]. Remote Sensing of Environment,1995,54:209-222.
    Dersch G, Bohm K. Effects of agronomic practices on the soil carb on storage potential in arable farming inAustria [J]. Nut rient Cyclin g in Agroecosystems,2001,60:49-55.
    Epstein, H.E., Burke, I.C. and Lauenroth, W.K. Regional patterns of decomposition and primary production ratesin the U.S.[J]. Great Plains. Ecology,2002,83:320-327.
    Esteban. Jobbagy, and Robert B. Jackson. The vertical distribution of soil organic carbon and its relation to climateand vegetation [J], Ecological Applications,2000,10(2):423-436.
    Eswaran H., Van Den Berg E., Reich P. Organic carbon in soils of the world [J]. Soil Sci Soc Am J,1993,57:192-194.
    Fang J.Y., Liu G.H., Xu S.L. Soil carbon pool in China and its global significance [J]. Journal of EnvironmentalSciences,1996,8:249-254.
    Fang, C., Smith, P., M oncrieff, J. B., et al. Similar response of labile and resistant soil organic matter pools tochanges in temperature [J]. Nature,2005,433,57-59.
    Fontaine S., Barot S., Barre P. et al. Stability of organic carbon in deep soil layers controlled by fresh carbonsupply [J]. Nature,2007,450:277-280.
    Franzmeier D.P., Lemme G.D., M iles RJ. Organic carbon in35Sims ZR, Nielsen GA.1986. Organic carbon inM ontana soils as soils of North Central United States [J]. Soil Sci Soc Am J,1985,49:702-708.
    Frogbrook, Z.L., Oliver, M.A. Comparing the spatial predictions of soil organic matter determined by twolaboratory methods [J]. Soil Use M anage,2001.17:235-244.
    Fu B. J.,Guo X.D., Chen L. D., et al. Soil nutrient changes due to land use changes in Northern China: a case studyin Zunhua County, Hebei Province [J]. Soil use and M anagement,2001,17:294-296
    Galloway J. N., Cowling E. B. Reactive nitrogen and the world:200years of change [J]. Ambio,2002,31:67-71.
    Galloway J. N., Dentener F. J., Capone D G, et al. Nitrogen cycles: Past, present, and future [J]. Biogeochemistry,2004,70(2):153-226.
    Garnett M.H., Ineson P., Stevenson A.C. et al. Terrestrial organic carbon storage in a British moorland [J]. GlobalChange Biology,2001,7:375-388.
    Giardina C.P., Ryan M.G. Evidence that decomposition rates of organic carbon in mineral soil do not vary withtemperature [J]. Nature,2000,404:858-861.
    Gislason P.O., Benediktsson J.A., Sveinsson J.R. Random Forests for land cover classification [J]. PatternRecognit Lett,2006,27:294–300.
    Grunwald S. M ulti-criteria characterization of recent digital soil mapping and modeling approaches [J]. Geoderma,2009,152:195–207.
    Guo L.B, Gifford R.M. Soil carbon stocks and land use change: a meta-analysis [J]. Global Change Biology,2002,8:345-360.
    Hector A, Schmid B, Beierkuhnlein C et al. Plant diversity and productivity experiments in European grasslands[J]. Science,1999,286:1123-1127.
    Hook, P.B. and Burke, I.C. Biogeochemistry in a shortgrass landscape: Control by topography, soil texture, andmicroclimate [J]. Ecology,2000,81(10):2686-2703.
    Holland E A, Guenther A B, Bertman S B, et al. U.S. Nitrogen Science Plan Focuses Collaborative Efforts. Eos,Transactions [J], American Geophysical Union,2005,86(27):253-256.
    Homan PS, Kapchinske JS, Boyce A. Relations of mineral-soil C and N to climate and texture: regionaldifferences within the conterminous USA [J]. Biogeochemistry,2007.85:303-316.
    Holmes KW, Chadwick OA, Kyriakidis PC et al. Large-area spatially explicit estimates of tropical soil carbonstocks and response to land-cover change [J]. Global Biogeochemical Cycles,2006,20, GB3004.
    Hu K.L., Li H., B., Li B.G., et al. Spatial and temporal patterns of soil organic matter in the urban–rural transitionzone of Beijing [J]. Geoderma,2007,141:302–310.
    Jenkinson D.S., Adams D.E., Wild A. M odel estimatesof CO2emissionsfrom soil in response to global warming[J]. Nature,1991,351:304-306.
    Jiang, Y., Zhang, Y.G., Liang, W.J. et al. Profile distribution and strorage of soil organic carbon in an aquic brownsoil as affected by land use [J]. Agrcultrual Sciences in China,2005,4:199-206.
    Jobbagy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications,2000,10:423-436.
    Kern. Spatial patterns of soil organic carbon in the contiguous United States[J]. Soil Science Society of AmericaJournal,1994,59:1134-1141.
    Knorr W., Prentice I.C., House JI et al. Long-term sensitivity of soil carbon turnover to warming[J]. Nature,2005,433:298-301.
    Krige, D.G.,1951. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journalof the Chemical, M etallurgical and M ining Society of South Africa52(6),119–139.
    Lal R. Soilorganic dynamicsin cropland and rangeland[J]. Environ Pollute,2002,116:353-362.
    Lars K., Anette N., M artin H., et al. Preliminary estimates of contemporary soil organic carbon stocks in Denmarkusing multiple datasets and four scaling-up methods[J]. Agriculture, Ecosystems and Environment,2003,96:19-28.
    Lettens S., Van Orshoven J., Van Wesemael B., et al. Soil organic carbon changes in landscape units of Belgiumbetween1960and2000with reference to1990[J]. Global Change Biology,2005,11:2128-2140.
    Levesque, J., and D. J. King. Airborne digital camera image semivariance for evaluation of forest structuraldamage at an acid mine site [J]. Remote Sensing of Environment,1999.68:112–124.
    Li, Z., and Zhao Q. Organic carbon content and distribution in soils under different land uses in tropical andsubtropical China[J]. Plant and Soil,2001,231:175-185.
    Liao, Q.L., Zhang, X.H., Li, Z.P. Increase in soil organic carbon stock over the last two decades in China’s JiangsuProvince [J]. Global Change Biology,2009.15:861–875.
    Liu D. W., Wang Z M, Zhang B et al, Spatial distribution of soil organic carbon and analysis of related fact ors incroplands of the black soil region[J], Northeast China Agriculture, Ecosystems and Environment.2006.113:73-81.
    Luo Y. Q., Wan S. Q., Hui D. F., et al. Acclimatization of soil respiration to warming in a tall grass prairie[J].Nature,2001,413:622-625.
    M atheron, G. Principles of geostatistics. Econ[J]. Geol,1963,58,1246-1266.
    Martin W., Frauke B., Benjamin B., Ingrid K. Digital mapping of soil organic matter stocks using RandomForest modeling in a semi-arid steppe ecosystem[J]. Plant Soil,2011,340:7–24.
    M cBratney A. B., Odeh I., O.A., Bishop T. F., A., et al. An overview of pedometric techniques for use in soilsurvey[J]. Geoderma,2000,97:293–327.
    M eersmans, J., van Wesemael, B., De Ridder, F., et al. Changes in organic carbon distribution with depth inagricultural soils in Northern Belgium,1960-2006[J], Global Change Biol.,2009,15,2739-2750.
    M elillo J.M., Steudler P.A., Aber J.D., et al. Soil warming and carbon-cycle feedbacks to the climate system[J].Science,2002,298:2173-2176.
    M ensah, F., Schoenau, J.J. and M alhi, S.S. Soil carbon changes in cultivated and excavated converted to grasses ineast-central Sas kachewan[J]. Biogeochemisty,2003,63:85-92.
    M ichelle G.S., Effect of changing land-use on soil carbon storage, Boston College,2003.
    Nelson, D. W., Sommers L.E. Total carbon, organic carbon, orgainc matter, in: M ethods of Soil Analysis[J],American Society of Agronomy, M adison,1982:539-579.
    Ni J. Carbon storage in terrestrial ecosystems of China: estmiates at different spat ial resolutions and theirresponses to climate change[J]. Climatic Change,2001,49(3):339-358.
    Oades, J.M. The retention of organic matter in soils[J]. Biogeochemistry,1988,5:35-70.
    Pan G, Li L, Wu L, Zhang X.Storage and sequestration potential of topsoil organic carbon in China’s paddy soils[J].Global Change Biology,2004,10,79–92.
    Pan G, Zhao Q.Study on evolution of organic carbon stock in agricultural soils of China: facing the challenge ofglobal change and food security[J]. Advances in Earth Science,2005,20,384–393(in Chinese).
    Pan, G.X., Xu, X.W., Smith, P., et al. An increase in topsoil SOC stock of China’s croplands between1985and2006revealed by soil monitoring[J]. Agriculture, Ecosystems and Environment,2010,136:133-138.
    Pannatier, Y. VARIOWIN: Software for Spatial Data Analysis in2D.1996. Springer-Verlag, New York
    Parton, W.J., Cole, C.V., Stewart, J.W.B., et al. Analysis of factors controlling soil organic matter levels in GreatPlains grassland [J]. Soil Science Society of America Journal,1987,51:1173-1179.
    Parshotam, A., Sagsar, S., Searle, P.L., et al. Carbonresidence times obtained from labeled ryegrass decompositionin soils under contrasting environmental conditions[J]. Soil biology&biochemistry,2000,32:75-83.
    Peters J., Verhoest N.E.C., Samson R., Boeckx P., De Baets B. Wetland vegetation distribution modelling for theidentification of constraining environmental variables[J]. Landsc Ecol,2008,23:1049–1065
    Piao SL, Fang J Y, Zhou LM et al.,2006. Variations in satellite-derived phenology in Chinas temperatevegetation[J]. Global Change Biology,12:672-685.
    Piao, S.L., Fang, J.Y., Ciais, P., et al. The carbon balance of terrestrial ecosystems in China[J]. Nature,2009,458:1009-1013.
    Post W. M., Pastor J., Zinke P.J., Stangenberger AG. Global patterns of soil nitrogen storage[J]. Nature,1985,317:613-616.
    Post W.M., Peng T.H., Emanuel W.R., et al. The global carbon cycle[J]. American Scientist,1990,78:310-326.
    Post W.M., Emanuel W.R., Zike P.J., et al. Soil carbon pools and world life zones[J]. Nature,1982,298:156-159.
    Prasad A.M., Iverson L.R., Liaw A. Newer classification and regression tree techniques: bagging and randomforests for ecological prediction. Ecosystems[J],2006,9:181–199.
    R Development Core Team,. R: a language and environment for statistical computing. R Foundation for StatisticalComputing, Vienna.2005.
    Rex A., Omonode, Tony John Vyn. Vertical distribution of soil organic carbon and nitrogen under warm-seasonnative grasses relative to croplands in west-central Indiana, USA[J], Agriculture, Ecosystems andEnvironment,2006,117:159-170.
    Robles, M.D., Burke, I.C. Soil organic matter recovery on conservation reserve program fields in southeasternWyoming[J]. Soil Science Society of America Journal,1998,62:725-730.
    Rozhkov, V. A. et al. Soil carbon estimates and soil carbon map for Russia[J]. Working paper of I2IASA,Laxenburg, Austria,1996.
    Schimel D.S., Braswell B.H., Holland E.A., et al. Climatic, edaphic, and biotic controls over storage and turnoverof carbon in soils[J]. Global Biogeochemical Cycles,1994,8:279-293.
    Schenk HJ, Jackson RB,2002. The global biogeography of roots[J]. Ecological M onographs,72:311-328.
    Schmid B. Design and Analysis of Ecological Experiments,2005.
    Schlesinger, W.H. Biogeochemistry: An Analysis of Global Change[J]. Academic Press, San Diego,1997,442-480.
    Schwartz, D., Namri, M. M apping the total organic carbon in the soils of the Congo[J]. Global and PlanetaryChange,2002,33:77–93.
    Sombroek W.G., Nachtergaele F.O., Hebel A. Amounts, dynamics and sequestrations of carbon in tropical andsubtropical soils[J]. AM BIO,1993,22(7):417-426.
    Stevenson F.J., Cole M.A. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, M icronutrients,2nded., Wiley,New York, USA,1999.
    Stoorvogel J. J., Kempen B., Heuvelink G. B. M., de Bruin S., Implementation and evaluation of existingknowledge for digital soil mapping in Senegal[J]. Geoderma,2009,149:161–170
    Tan Z.X., Lal R. Carbon sequestration potential estimates with changes in land use and tillage practice in Ohio,USA[J]. Agriculture, Ecosystems and Environment,2005,111:140-152.
    Tan, L.L. Tieszen, E. Tachie-Obeng, S. Liu, A.M. Dieye. Historical and simulated ecosystem carbon dynamics inGhana: land use, management, and climate[J]. Biogeosciences,2009,6:45–58.
    Van M eirvenne, M., Pannier, J., Hofman, G., Louwagie, G.,[J]. Regional characterization of the long-term changein soil organic carbon under intensive agriculture. Soil Use and M anagement,199612,86–94.
    Vincent chaplot, Bounthong bouahom, Christian Valentin. Soil organic carbon stocks in Laos: spatial variationsand controlling factors[J]. Global Change Biology,2010,16:1380–1393
    Wang D.D., Shi X.Z., Wang H. J., David C. W., Yu D.S., Sun W. X., Ren H. Y., Zhao Y.C., Scale effect of climateon soil organic carbon in the Uplands of Northeast China[J]. Journal of soils and sediments,2009,10(6):1007-1017.
    Wang L.L., Song C.C., Song Y.Y., Guo Y.D., Wang X.W., Sun X.X., Effects of reclamation of natural wetlands toa rice paddy on dissolved carbon dynamics in the Sanjiang Plain, Northeastern China[J], EcologicalEngineering,36:1417-1423.
    Wang, S.Q., Zhou, C.H., Liu, J.Y., et al. Carbon storage in northeast China as estimated from vegetation and soilinventories[J]. Environmental Pollution,2002,116(S):157–165.
    Wang, S. Q., Shao X. M., M ickler, R. Vertical distribution of soil organic carbon in China[J], EnvironmentalM anagement,2004,33:200-209.
    Wang SQ, Tian HQ, Liu J Y et al.,2003. Pattern and change of soil organic carbon storage in China:1960s-1980ss[J]. Tellus (Ser. B),55:416-427.
    Waston R.T., Noble I.R., Bolin B., et al. Land Use, Land Use Change and Foresty.A special report of theintergovernmental panel on climate change[J]. Cambridge: Cambridge University Press,2000,377.
    Webster, R., Oliver, M. Geostatistics for Environmental Scientists[J]. John Wiley&Sons, Chichester,2001.
    Wu, J.G. and Li, H.B. Concepts of scale and Scaling. In: J.G. Wu, K.B. Jones, H.B. Li and O.L. Loucks (Editors),Scaling and Uncertainty Analysis in Ecology: M ethods and Applications[J]. Dordrecht: Springer,2006. pp.3-16.
    Wynn, J.G., Bird, M.I., Vallen, L., et al. Continental-scale measurement of the foil organic carbon pool withclimatic, edaphic, and biotic controls[J]. Global Biogeochemical Cycles,2006,20(1):576-588
    Xie Z.B., Zhu J.G., Liu G., et al. Soil organic carbon stocks in China and changes from1980ss to2000s[J]. GlobalChange Biology,2007,13,1989-2007.
    Xu X., Liu W., Zhang C. Estimation of soil organic carbon stock and its spatial distribution in the Republic ofIreland Soil[J], Use and M anagement,2011,27:156-162.
    Yang, Y.H., Fang, J.Y., Tang, Y.H., et al. Storage, patterns and controls of soil organic carbon in the Tibetangrasslands[J]. Global Change Biology,2008,14,1592-159.
    Yang, Y.H., Fang J.Y., Smith, P., et al. Changes in topsoil carbon stock in the Tibetan grasslands between the1980ss and2004[J]. Global Change Biology,2009,15:2723-2729.
    Yang Y.H., Fang J.Y., M a W.H., et al.2010a. Soil carbon stock and its changes in northern China’s grasslandsfrom1980ss to2000s[J]. Global Change Biology,16:3036-3047.
    Yang Y.H., Fang J. Y., Guo D. L., et al. Vertical patterns of soil carbon, nitrogen and carbon: nitrogenstoichiometry in Tibetan grasslands[J], Global Change Biology,2010b,7:1-24.
    Zhang, C.S., Selinus, O., Schedin, J.,1998. Statistical analyses on heavy metal contents in till and root samples inan area of southeastern Sweden[J]. The Science of the Total Environment,212,217–232
    Zhang, C.S., Selinus, O., Wong, P. Spatial structures of cobalt, lead, and zinc contents in tills in southeasternSweden GFF [J]. Trans. Geol. Soc. Stockholm,2000.122,213–217.
    Zhang, Y.G., Jiang, Y. and Liang, W.J. Vertical variation and storage of nitrogen in an aquic brown soil underdifferent land use[J]. Journal of Forestry Research,2004,15:192-196.
    安尼瓦尔·买买提,杨元合,郭兆迪等.新疆天山中段巴音布鲁克高山草地碳含量及其垂直分布[J].植物生态学报,2006,30:545-552.。
    白军红,邓伟,朱颜明等,湿地土壤有机质和全氮含量分.分布特征对比研究——以向海与科尔沁自然保护区为例[J],地理科学,2002,22(2):232-237
    鲍士旦主编,2000.土壤农化分析.北京:中国农业出版社.
    陈芳,盖艾鸿,李纯斌.甘肃省土壤有机碳储量及空间分布[J],2009,11:176-181
    陈彦.绿洲农田土壤养分时空变异及精确分区管理研究[J].石河子大学,2008.
    迟光宇,王俊,陈欣.三江平原不同土地利用方式下土壤有机碳的动态变化[J],土壤,2006,38(6):755-761
    方华军,杨学明,张晓平.东北黑土有机碳储量及其对大气CO2的贡献.水土保持学报[J],2007,17(3):9–12.
    郭胜利,吴金水,党廷辉.作和施肥对半干旱区作物地上部生物量与土壤有机碳的影响[J],中国农业科学,2008,41(3):744-751
    韩冰,王效科,欧阳志云.中国农田生态系统土壤碳库的饱和水平及其固碳潜力[J].农村生态环境,2005,21(4):6-11.
    黑龙江省统计局.黑龙江统计年鉴2008.中国统计出版社,2009.
    黑龙江省统计局.黑龙江统计年鉴1986-2010.中国统计出版社,2011.
    金峰,杨浩,蔡祖聪,等.土壤有机碳密度及储量的统计研究[J].土壤学报,2001,38(4):522-528
    李克让,王绍强,曹明奎,中国植被和土壤碳贮量[J].中国科学,2003,33(1):72-80.
    李凌浩,陈佐忠.草地生态系统碳循环及其对全球变化的响应I.碳循环的分室模型、碳输入与贮量[J].植物学通报,1998,15:14-22.
    李忠,孙波,林心雄,2001.我国东部土壤有机碳的密度及转化的控制因素[J].地理科学,21:301-307.
    林忠辉,莫兴国,李宏轩等.中国陆地区域气象要素的空间插值[J],地理学报,2002,1:47-56
    雷国良,张虎才,张文翔等,2006. Mastersizer2000型激光粒度仪分析数据可靠性检验及意义-以洛川剖面S4层古土壤为例[J].沉积学报,24:531-539.
    梁二,蔡典雄,张丁辰,等.中国陆地土壤有机碳储量估算及其不确定性分析[J],2010,6:75-79
    林忠辉,莫兴国,李宏轩等.中国陆地区域气象要素的空间插值[J],地理学报,2002,01:47-56
    刘国华,傅伯杰,吴钢等.环渤海地区土壤有机碳库及其空间分布格局的研究[J].应用生态学报,2003,14(9):1489–1493.
    刘吉平,吕宪国,杨青等.三江平原环型湿地土壤养分的空间分布规律[J].土壤学报,2006,43(2):247-255
    刘纪远,王绍强,陈镜明,刘明亮,庄大方,1990-2000年中国土壤碳氮蓄积量与土地利用变化[J].地理学报,2004,59(4):483-496.
    刘景双,杨继松,于君宝等.三江平原沼泽湿地土壤有机碳的垂直分布特征研究[J].水土保持学报,2003,17(3):5-7.
    刘丽,周连仁,苗淑杰.长期施肥对黑土水溶性碳含量和碳矿化的影响[J].水土保持研究,2009,16(1):59-62.
    刘兴土,马学慧.三江平原自然环境变化与生态保育[J],2002,北京.科学出版社
    刘兴土,马学慧.三江平原大面积开荒对自然环境影响及区域生态环境保护[J].地理科学,2000,20(1):14-19
    吕国红,周莉,赵先丽,贾庆宇,谢艳兵,周广胜.芦苇湿地土壤有机碳和全氮含量的垂直分布特征[J].2006,17(3):384-389.
    马成泽,周勤,何方.不同肥料配合施用土壤有机碳盈亏分布[J].土壤学报,1994,31(1):34-41
    潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展,2003,18(4):609-6181.
    朴世龙,方精云,贺金生等.中国草地植被生物量及其空间分布格局[J].植物生态学报,2004,28:491-498.
    邱建军,王立刚,唐华俊,李红, Changsheng Li,东北三省耕地土壤有机碳储量变化的模拟研究[J],中国农业科学,2004,37(8):1166-1171.
    沈宏,曹志洪.长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响[J].热带亚热带土壤科学,1998,7(1):1-5.
    史利江,郑丽波,梅雪英,等.上海市不同土地利用方式下的土壤碳氮特征[J].应用生态学报,2010,21(9):2279-2287
    宋长春,王毅勇,阎百兴,等.沼泽湿地开垦后土壤水热条件变化与碳、氮动态[J].环境科学,2004,25(3):150-154.
    苏永中,赵哈林.土壤有机碳储量、影响因素及其生态环境效应的研究进展[J].中国沙漠,2002,22:220-228.
    汤洁,毛子龙,韩维峥等.土地利用/覆被变化对土地生态系统有机碳库的影响[J].生态环境,2008,17(5):2008-2013.
    田玉强,欧阳华,徐兴良.青藏高原土壤有机碳储量与密度分布[J].土壤学报,2008,45(5):933–942.
    解宪丽,孙波,周慧珍,李忠佩,李安波[J].中国土壤有机碳密度和储量的估算和空间分布分析.土壤学报,2004,41(1):35-43
    许信旺.不同尺度区域农田土壤有机碳分布与变化[D].南京农业大学,2008.
    于建军,杨锋,吴克宁.河南省土壤有机碳储量及空间分布[J].应用生态学报,2008,19(5):1058–1063.
    于东升,史学正,孙维侠,等.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报,2005,16(12):2279-2283.
    杨元合,青藏高原高寒草地生态系统碳氮储量,北京大学博士论文,2008
    王丹丹.东北地区旱地土壤碳氮空间变异及其影响因子的幅度效应[J].中国科学院南京土壤研究所,2009
    王金达,刘景双,刘淑霞等.松嫩平原黑土土壤有机碳库的估算及其影响因素[J].农业环境科学学报,2004,23(4):687–690.
    王丽丽,宋长春,葛瑞娟等.三江平原湿地不同土地利用方式下土壤有机碳储量研究[J],中国环境科学,2009,29(6):656~660
    王丽丽,土地利用变化对三江平原土壤有机碳储量及碳输出的影响[J].中国科学院,2011
    王绍强,周成虎,李克让,朱松丽,黄方红,2000.中国土壤有机碳库及空间分布特征分析[J].55(5):533-544
    王绍强,周成虎.中国陆地土壤有机碳估算[J].地理研究,1999,18:349-356
    王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析[J].应用生态学报,2003,14(5):797-802.
    王书伟,颜晓元,林静慧.不同土地利用方式三江平原东北部土壤有机碳和全氮分布规律[J].土壤,2010,42(2):190~199
    王襄平,2006.东北地区森林群落与气候的关系-分布、结构、多样性和生产力.北京大学博士研究生学位论文.
    王莹.围湖造田不同土地利用方式对土壤有机碳库的影响[D].南京林业大学.2010
    王政权.地统计学及其在生态学中的应用.北京:科学出版社,1999.
    文启孝.土壤有机质研究方法[J].农业出版社,北京,1984.243
    阎业超,张树文,岳书平等.东北川岗地形区SRTM数据质量评价[J],中国科学院研究生院学报,2008,(01)
    杨元合,青藏高原高寒草地生态系统碳氮储量.北京大学博士研究生学位论文,2008.
    张保华,张金萍,刘子亭等,山东省土壤有机碳密度和储量估算[J].土壤通报,2008,39(5):1030–1033.
    张春华,王宗明,任春颖等.松嫩平原玉米带土壤碳氮储量的空间特征[J].应用生态学报,2010,21(3):631–639.
    张鹏,张涛.陈年来祁连山北麓山体垂直带土壤碳氮分布特征及影响因素[J].应用生态学报,2009,20(3):518-524.
    张勇,史学正,赵永存,等.滇黔桂地区土壤有机碳储量与影响因素研究[J].环境科学,2008,29(8):5131–5136.
    周广胜,王玉辉,蒋延玲,等.陆地生态系统类型转变与碳循环[J].植物生态学报,2002,26(2):250–254.
    朱咏莉,韩建刚,吴金水.农业管理措施对土壤有机碳动态变化的影响[J].土壤通报,2004,35(5):648-651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700