用户名: 密码: 验证码:
安徽常绿阔叶林—落叶阔叶林交错带的森林植被特征及其成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常绿阔叶林—落叶阔叶林交错带(以下简称交错带)地处我国亚热带向暖温带过渡区,对气候变化敏感,长期受人为活动影响,少量自然植被残存于偏远山区。此交错带在我国东部森林带划分中一直存有争议。缺乏对交错带植被特征和成因的了解是争议起因。安徽由南至北逐渐由常绿阔叶林向落叶阔叶林过渡,一直是交错带研究的热点区域。本研究以安徽交错带为对象,通过植被调查和生境、生物性状测定,阐明不同地形上森林群落由南至北的替代格局,揭示环境因子-性状特征-物种组成内在联系,探讨交错带森林植被特征及其成因,提出处理此交错带在我国东部森林植被带划分中的方案和建议。主要结论如下:
     安徽低山丘陵森林群落由南至北的替代格局在不同地形上存在差异。与下部坡面相比,上部坡面的常绿阔叶林在较低的纬度上被落叶阔叶林替代。这种地形上不对称的替代格局,决定交错带具有一定宽度。在群落水平上,随纬度增加,常绿阔叶物种丰富度降低速率较落叶阔叶物种丰富度增加速率快,因此总物种丰富度逐渐下降。
     气候因子,尤其表征低温胁迫和干旱胁迫的气候因子与群落的纬向替代格局相关性最大。按相关性大小依次为:最小月均潜在蒸散量、最冷季均温、寒冷指数、年实际蒸散量、最旱季降水。坡度、坡向和土壤总磷含量(SoilP)与其气候因子正交,表明它们与群落的地形分异有关。
     叶氮磷含量(Nmass/Pmass)、叶面积(LA)、叶灰分含量(LAC)和叶寿命(LL)与各类环境因子相关;木材密度(WD)和0℃处理下的叶相对电导率(ELO)仅与表征能量的气候因子相关。比叶面积(SLA)和叶干物质含量(LDMC)与环境因子无相关性。除LL外,性状指标与表征低温胁迫的因子相关性最高;LL与坡度和SoilP相关性最高。总体上,纬度越高,气温越低,Nmass、Pmass、LA、LAC、WD越大,LL和ELO越小。分布较北或海拔较高的常绿乔木,如青冈、苦槠、柯、灰柯、小叶青冈,Nmasss、LDMC偏大,LL、ELO偏小。
     常绿阔叶林和落叶阔叶林斑块镶嵌式混交是交错带的植被特征,是交错带植被在纬度、海拔、地形各纬度上常绿阔叶林—落叶阔叶林层级过渡格局的体现。纬度和海拔越低、越靠近坡面下部,常绿阔叶成分优势地位越大;反之,落叶阔叶成分优势地位越大。在水热条件较好的地段形成以苦槠、青冈为优势种的常绿阔叶林,在水热条件较差的地段形成以栓皮栎为优势种的落叶阔叶林,在两者过渡区域形成以栓皮栎和青冈为优势种的混交林。
     栓皮栎、青冈为优势种的混交林,是层级交错格局的产物。其混交模式为垂直混交,落叶成分在上层空间占优势,常绿成分在下层空间占优势。该群落可长期稳定存在,原因有两点:栓皮栎的最大高度和高生长速度远超青冈;栓皮栎和青冈分别以幼苗库和萌枝库持续更新。该群落轻度破坏后形成以化香、黄檀和马尾松为优势种的群落,随恢复进程栓皮栎和青冈分别成为乔木上层和乔木下层的优势种。
     综合上述结果,以常绿阔叶林和落叶阔叶林斑块镶嵌式混交格局存在与否作为交错带界划的依据,提出:交错带南界应为甜槠林等中生常绿阔叶林在基带上的分布北界,交错带北界应为青冈林等沟谷常绿阔叶林在基带上的分布北界。由此所划分的交错带在气候、区系和农林生产方式等方面接近亚热带常绿阔叶林区,因而建议在我国东部森林植被带划分中将其作为常绿阔叶林带的亚带处理。
Evergreen-deciduous broadleaved forest ecotone (EDFE) locates in the transition area from subtropics to warm temperate zone, eastern China, and was sensitive to climate change. Under long-time anthropical disturbance, natural vegetation survived in mountain areas with small remnant area. The controversy about which bioclimatic zone EDFE should belongs to has been existed for a long time, due to little know about its vegetation characteristic and formation mechanism. Evergreen broadleaved forest (EBF) gradually transits to deciduous broadleaved forest (DBF) from south to north, in Anhui province, which has been the hot spot for EDFE studying. In this research, we conducted a vegetation survey from south to north in Anhui, with collecting habitat data and plant traits data at the same time. The following researching questions were addressed:1) How do forest communities transit across EDFE at different landforms?2) What kinds of environment factors drive forests transition and how plant traits responded to those environment factors at community level?3) How do communities distribute in EDFE and why there are mixed evergreen-deciduous broadleaved forests?4) How to determine the boundary of EDFE and which bioclimatic zone should EDFE belongs to?
     There were different vegetation transition patterns for low elevation forests from south to north among landforms in Anhui. Comparing to forests on the upper slope, EBFs were replaced by DBFs at lower latitude on lower slope. This asymmetric transition patterns among landforms caused a wide range of EDFE. At plot level, richness decreasing rate of evergreen broadleaved woody plants were greater than increasing rate of deciduous ones with increasing latitude, which causing total species richness decreased from south to north.
     Climate factors, especially those relating to the cold stress or drought stress, were most correlated with community transition along latitude gradient. According to correlation, minimum monthly potential evapotranspiration (PETmin) has the strongest explanation, followed by mean temperature of the coldest quarter (MTCQ)、coldness index (CI)、annual actual evapotranspiration (AET) and precipitation of driest quarter (PDQ). Slope, aspect and total soil phosphorus content (SoilP) were orthogonal to climate factors, suggesting them relating to the distribution pattern along landform gradient.
     According to RLQ analysis, leaf nitrogen and phosphorus per unit leaf mass (Nmass、Pmass), leaf area (LA), leaf ash content (LAC) and leaf life-span (LL) were correlated with all kinds of environment factors. Wood density (WD) and leaf relative electrolyte leakage at0℃(ELO) were just correlated with environmental energy factors. Specific leaf area (SLA) and leaf dry matter content (LDMC) had no significant relationship with environment factors. All traits except LL were most correlated with climate factors relating to the cold stress. LL was most correlated with SoilP. In general, with increasing latitude, Nmass, Pmass, LA, LAC, WD increased and LL, LDMC decreased due to temperature dropping. Evergreen broadleaved trees such as Cyclobalanopsis glauca, Castanopsis sclerophylla, Lithocarpus glaber, Lithocarpus henryi, Cyclobalanopsis myrsinifolia, which can distribute in higher latitude or higher altitude, possessed higher Nmass, LDMC and lower LL, ELO.
     EDFE showed a mosaic transition pattern intermixed by EBF and DBF patches, which caused by hierarchy EBF-DBF transition at latitude, altitude and landform levels. Evergreen broadleaved species dominated on the lower slope at lower latitude and lower altitude. In contrast, deciduous broadleaved species dominated on the upper slope at higher latitude and higher altitude. Generally, EBF dominated by evergreen species such as Cyclobalanopsis glauca and Castanopsis sclerophylla, occurred at sites with greater water-energy condition. DBF dominated by deciduous species such as Quercus variabilis, occurred at sites with weak water-energy condition. Mixed forest dominated by Quercus variabilis and Cyclobalanopsis glauca occurred at transition area between EBF and DBF.
     The mixed forest dominated by Quercus variabilis and Cyclobalanopsis glauca was an outcome of hierarchy EBF-DBF transition at muti-levels. Deciduous broadleaved tree species dominated at the upper tree layer and evergreen broadleaved tree species dominated at the lower tree layer, which raised a vertical evergreen-deciduous mixing pattern. Because Quercus variabilis had greater height growth rate and maximum height than Cyclobalanopsis glauca and both of them could maintain population by seedlings and resprouting, respectively, the mixed forest could persist for hundreds of years without disturbances. When being destroyed, it would degrade to a forest dominated by Platycarya strobilacea, Dalbergia hupeana and Pinus massoniana.
     According to all the above results, the mosaic pattern intermixed by EBF and DBF patches was proposed as the criterion to determine boundary of EDFE. Following this criterion, the northern boundary of EDFE was the northern distribution limit of mesophytic EBFs such as Castanopsis eyrei forest, and the southern boundary of EDFE was the northern distribution limit of valley EBFs, such as Cyclobalanopsis glauca forest. Because climate, floristic composition and agriculture-forestry management strategies in EDFE were similar with those in subtropical EBF zone, EDFE could be considered as a sub region of EBF zone in eastern China.
引文
Abramoff MD, Magalhaes PJ, Ram SJ.2004. Image processing with ImageJ. Biophotonics International, 11:36-42.
    Agnew ADQ, Wilson JB, Sykes MT.1993. A vegetation switch as the cause of a forest/mire ecotone in New Zealand. Journal of Vegetation Science,4:273-278.
    Anis LL, Eogleson PS.1994. A water use model for locating the boreal/deciduous ecotone in North America. Vegetation,82:55-58.
    Balvanera P, Quijas S, Perez-Jimenez A.2011. Distribution patterns of tropical dry forest trees along a mesoscale water availability gradient. Biotropica,43:414-422.
    Broil G, Holtmeier FK, Anschlag K, Brauckmann HJ, Wald S, Drees B.2007. Landscape mosaic in the treeline ecotone on Mt Rodjanoaivi, subarctic Finland. Fennia,185:89-105.
    Brown JH, Gillooly JF, Allen AP, Savage VM, West GB.2004. Toward a metabolic theory of ecology. Ecology,85:1771-1789.
    Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE.2009. Towards a worldwide wood economics spectrum. Ecology Letters,12:351-366.
    Chen L, Mi X, Comita LS, Zhang L, Ren H, Ma K.2010. Community-level consequences of density dependence and habitat association in a subtropical broad-leaved forest. Ecology Letters,13:695-704.
    Cornelissen JHC, Lavorel S, Gamier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H.2003.A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany,51:335-380.
    Cornwell WK, Ackerly DD.2009. Community assembly and shifts in the distribution of functional trait values across an environmental gradient in coastal California. Ecological Monographs,79:109-126.
    Crimmins SM, Dobrowski SZ, Greenberg JA, Abatzoglou JT, Mynsberge AR.2011. Changes in climatic water balance drive downhill shifts in plant species' optimum elevations. Science,331:324-327.
    Da LJ, Kang MM, Song K, Shang KK, Yang YC, Xia AM, Qi YF.2009. Altitudinal zonation of human-disturbed vegetation on Mt. Tianmu, Eastern China. Ecological Research,24:1287-1299.
    Doledec S, Chessel D, terBraak CJF, Champely S.1996. Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics,3:143-166.
    Dray S, Dufour AB.2007. The ade4 package:Implementing the duality diagram for ecologists. Journal of Statistical Software,22:1-20.
    Dray S, Legendre P.2008. Testing the species traits-environment relationships:the fourth-corner problem revisited. Ecology,89:3400-3412.
    Fang JY, Yoda K.1990. Climate and vegetation in China (Ⅲ), Water balance and distribution of vegetation. Ecological Research,5:9-23.
    Fortin MJ.2000. Issue related to the detection of boundaries. Landscape Ecology,15:453-476.
    Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL.2001. Effects of size and temperature on metabolic rate. Science,293:2248-2251.
    Givnish TJ.2002. Adaptive significance of evergreen vs. deciduous leaves:solving the triple paradox. Silva Fennica,36:703-743.
    Goldberg DE.1982. The distribution of evergreen and deciduous trees relative to soil type:an example from the Sierra Madre, Mexico, and a general model. Ecology,63:942-951.
    Goldblum D, Rigg LS.2010. The deciduous forest-boreal forest ecotone. Geography compass,417: 701-717.
    Gosz JR.1993. Econtone hierarchies. Ecological Applicaion,3:369-376.
    Grime JP.1979. Plant Strategies and Vegetation Processes. John Wiley & Sons, New York.
    Grover HD, Musick HB.1990. Shrubland encroachment in southern New Merico, USA:an analysis of desertification processes in the American Southwest. Climate change,16:165-190.
    Hallik L, Niinemets U, Wright IJ.2009. Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? New Phytologist, 184:257-274.
    Han W, Chen Y, Zhao FJ, Tang L, Jiang R, Zhang F.2012. Floral, climatic and soil pH controls on leaf ash content in China's terrestrial plants. Global Ecology and Biogeography,21:376-382.
    Han W, Fang J, Guo D, Zhang Y.2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist,168:377-385.
    Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A.2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology,25:1965-1978.
    Holdridge LR.1947. Determination of world plant formations from simple climate data. Science,105: 367-368.
    Hubbell SP.2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton and Oxford.
    Keddy PA.1992. Assembly and response rules:two goals for predictive community ecology. Journal of Vegetation Science,3:157-164.
    Kent M, Gill WJ, Weaver RE, Annitage RP.1997. Landscape and plant community boundaries in biogeography. Progress in Physical Geography,21:315-353.
    Kira T.1945. A new classification of climate in eastern Asia as the basis for agricultural geography. Horticultural Institute, Kyoto University, Kyoto. (In Japanese)
    Kira T.1991. Forest ecosystems of East and Southeast Asia in global perspective. Ecological research,6: 185-200.
    Kraft NJB, Valencia R, Ackerly DD.2008. Functional traits and niche-based tree community assembly in an Amazonian forest. Science,322:580-582.
    Lai JS, Mi XC, Ren HB, Ma KP.2009. Species-habitat associations change in a subtropical forest of China. Journal of Vegetation Science,20:415-423.
    Lamb EG, Mallik AU.2003. Plant species traits across a riparian-zone/forest ecotone. Journal of Vegetation Science,14:853-858.
    Lavorel S, Gamier E.2002. Predicting changes in community composition and ecosystem functioning from plant traits:revisiting the Holy Grail. Functional Ecology,16:545-556.
    Legendre P, Galzin R, HarmelinVivien ML.1997. Relating behavior to habitat:solutions to the fourth-comer problem. Ecology,78:547-562.
    Lloyd KM, McQueen AAM, Lee BJ, Wilson RCB, Walker S, Wilson JB.2000. Evidence on ecotone concepts from switch, environmental and anthropogenic ecotones. Journal of Vegetation Science,11: 903-910
    Loehle C.2000. Forest ecotone response to climate change:sensitivity to temperature response factional forms. Canandian Journal of Forest Research,30:1632-1645
    MacArthur R, Levins R.1967. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist,101:377-385.
    Martinez-Cabrera HI, Jones CS, Espino S, Schenk HJ.2009. Wood anatomy and wood density in shrubs: responses to varying aridity along transcontinental transects. American Journal of Botany,96:1388-1398.
    Nanami S, Kawaguchi H, Tateno R, Li C, Katagiri S.2004. Sprouting traits and population structure of co-occurring Castanopsis species in an evergreen broad-leaved forest in southern China. Ecological Research,19:341-348.
    Neilson RP.1991. Climatic constraints and issues of scale controlling regional biomes. In:Holland MM, Naiman RJ& Risser PG (eds), Ecotones:Role of landscape boundaries in the management and restoration of changing environments, Chapman and Hall, New York, pp.31-51.
    Neilson RP.1993. Transient ecotone response to climate change:some conceptual and modeling approaches. Ecological Application,3:385-395.
    Niinemets U.2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology,82:453-469.
    Ohsawa M.1991. Structural comparison of tropical montane rain forests along latitudinal and altitudinal gradients in south and east Asia. Vegetatio,97:1-10.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PP, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H.2011. vegan:Community Ecology Package. R package version 2.0-2. http://CRAN.R-project. org/package=vegan.
    Ordonez JC, Van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R.2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography,18:137-149.
    Patino S, Lloyd J, Paiva R, Baker TR, Quesada CA, Mercado LM, Schmerler J, Schwarz M, Santos AJB, Aguilar A, Czimczik CI, Gallo J, Horna V, Hoyos EJ, Jimenez EM, Palomino W, Peacock J, Pena-Craz A, Sarmiento C, Sota A, Turriago JD, Villanueva B, Vitzthum P, Alvarez E, Arroyo L, Baraloto C, Bonal D, Chave J, Costa ACL, Herrera R, Higuchi N, Killeen T, Leal E, Luizao F, Meir P, Monteagudo A, Neil D, Nunez-Vargas P, Penuela MC, Pitman N, Priante Filho N, Prieto A, Panfil SN, Rudas A, Salomao R, Silva N, Silveira M, Soares de Almeida S, Torres-Lezama A, Vasquez-Martinez R, Vieira I, Malhi Y, Phillips OL. 2009. Branch xylem density variations across the Amazon Basin. Biogeosciences,6:545-568.
    Pavoine S, Vela E, Gachet S, de Belair G, Bonsall MB.2011. Linking patterns in phylogeny, traits, abiotic variables and space:a novel approach to linking environmental filtering and plant community assembly. Journal of Ecology,99:165-175.
    Petts GE.1990. The role of ecotones in aquatic landscape management. In:Naiman RJ & Decamps H (eds), The ecology an management of aquatic-terrestrial ecotones, UNESCO, Paris, pp.103-140.
    Poorter L, Bongers F.2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology,87:1733-1743.
    Risser PG.1995. The status of the science examining ectones. Bioscience,45:318-325.
    Roche P, Diaz-Burlinson N, Gachet S; 2004. Congruency analysis of species ranking based on leaf traits: which traits are more reliable? Plant Ecology,174:37-48.
    Shen ZH, Tang YY, Lu N, Zhao J, Li DX, Wang GF.2007. Community dynamics of seed rain in mixed evergreen broad-leaved and deciduous forests in a subtropical mountain of central China. Journal of Integrative Plant Biology,49:1294-1303.
    Shipley B.2010. From plant traits to vegetation structure. Chance and selection in the assembly of ecological communities. Cambridge University Press, Cambridge UK.
    Silvertown J.2004. Plant coexistence and the niche. Trends in Ecology and Evolution,19:605-611.
    Song K, Yu Q, Shang KK, Yang TH, Da LJ.2011.The spatio-temporal pattern of historical disturbances of an evergreen broadleaved forest in East China:A dendroecological analysis. Plant Ecology,212: 1313-1325.
    Stacklies W, Redestig H, Scholz M, Walther D, Selbig J.2007. pcaMethods-a Bioconductor package providing PCA methods for incomplete data. Bioinformatics,23:1164-1167.
    Stephenson N.1998. Actual evapotranspiration and deficit:biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography,25:855-870.
    Stephenson NL.1990. Climatic control of vegetation distribution:The role of the water balance. The American Naturalist,135:649-670.
    Takashima T, Hikosaka K, Hirose T.2004. Photosynthesis or persistence:nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell & Environment,27:1047-1054.
    Thornthwaite CW.1948. An approach toward a rational classification of climate. Geographical Review,38: 55-94.
    Van der Maarel E.1990. Ecotones and ecolines are different. Journal of vegetation science,1:135-138.
    Walker S, Wilson JB, Steel JB, Rapson G, Smith B, King WM, Cottam YH.2003. Properties of ecotones: Evidence from five ecotones objectively determined from a coastal vegetation gradient. Journal of Vegetation Science,14:579-590.
    Wang ZH, Brown J, Tang ZY, Fang JY.2009. Temperature Dependence, Spatial Scale, and Tree Species Diversity in Eastern Asia and North America. Proceedings of the National Academy of Sciences of the United States of America,106:13388-13392.
    Wang ZH, Fang JY, Tang ZY, Lin X.2011. Patterns, determinants and models of woody plant diversity in China. Proceedings of the Royal Society B-Biological Sciences,278:2122-2132.
    Webb CO, Ackerly DD, McPeek MA, Donoghue MJ.2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics,33:475-505.
    Wesuls D, Oldeland J, Dray S.2012.Disentangling plant trait responses to livestock grazing from spatio-temporal variation:the partial RLQ approach. Journal of Vegetation Science,23:98-113.
    Wiemann MC, Williamson GB.2002. Geographical variation in wood specific gravity:effects of latitude, temperature, and precipitation. Wood and Fiber Science,34:96-107.
    Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, Gamier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R.2004.The world-wide leaf economics spectrum. Nature,428:821-827.
    Wu X, Liu H, Ren J, He S, Zhang Y.2009. Water-dominated vegetation activity across biomes in mid-latitudinal eastern China. Geophysical Research Letters,36, L04402, doi:10.1029/2008GL036940.
    Yarrow MM, Marin VH.2007. Toward conceptual cohesiveness:a historical analysis of the theory and utility of ecological boundaries and transition zones. Ecosystem,10:462-476.
    Zhang L, Luo T, Zhu H, Daly C, Deng K.2010. Leaf life span as a simple predictor of evergreen forest zonation in China. Journal of Biogeography,37:27-36.
    Zhang SB, Slik JWF, Zhang JL, Cao KF.2011a.Spatial patterns of wood traits in China are controlled by phylogeny and the environment. Global Ecology and Biogeography,20:241-250.
    Zhang SB, Zhang JL, Slik JWF Cao KF.2011b. Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Global Ecology and Biogeography. doi: 10.1111/j.1466-8238.2011.00729.x.
    Zolyomi B.1987. Coenotone, ecotone and their role in preserving relic species. Acta Botanica Hungarica, 33:3-18.
    安徽植被协作组.1981*.安徽植被.合肥:安徽科学技术出版社.
    安树青,张久海,谈健康,朱学雷,赵儒林.1998.中国北亚热带次生森林植被研究述评.武汉植物学研究,16(3):268-272.
    安树青,赵儒林.1990.紫金山次生森林植被特征分析.植物生态学与地植物学学报,14(1):13-22.
    宝乐,刘艳红.2009.东灵山地区不同森林群落叶功能性状比较.生态学报,29(7):3692-3703.
    蔡蔚祺,邓懋彬,蔡守坤.1981.中亚热带常绿阔叶林植被地带在江苏境内界线的意见.地理学报,36(4):450-453.
    陈文豪,舒舍,沈能祥.2005.牯牛降国家级自然保护区被子植物新记录.现代农业科技,(8):68.
    达良俊,杨永川,宋永昌.2004.浙江天童国家森林公园常绿阔叶林主要组成种的种群结构及更新类型.植物生态学报,28(3):376-384.
    单人骅,刘肪勋.1964*.安徽省大别山区的植被及其地理分布纪要.植物生态学与地植物学丛刊, 2(1):93-101.
    单人骅,刘防勋.1963.浙江省植被分区草案.植物生态学与地植物学丛刊,1(1~2):160.
    邓懋彬,魏宏图,姚淦.1983*.皖西霍山县白马尖植物区系和植被.植物生态学报,7(2):113-121.
    邓懋彬,魏宏图,姚淦.1985*.大别山区霍山、金寨两县的常绿植物与常绿阔叶林.植物生态学报,9(2):142-149.
    丁佳,吴茜,闫慧,张守仁.2011.地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响.生物多样性,19(2):158-167.
    方精云.1991.我国森林植被带的生态气候学分析.生态学报,11(4):377-397.
    方精云.2001.也论我国东部植被带的划分.植物学报,43(5):522-533.
    冯秋红.2008.南北样带温带区栎属树种功能性状及其与环境因子的关系.北京:中国林业科学研究院硕士论文.
    高吉喜,吕世海,刘军会,乔青,王艳萍,田美荣.2009.中国生态交错带.北京:中国环境科学出版社.
    高沛之.1958.杭州的落叶常绿阔叶混交林.植物生态学报,1(1):36-65.
    高三平,李俊祥,徐明策,陈熙,戴洁.2007.天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征.生态学报,27(3):947-952.
    韩也良.1981a.安徽省境内亚热带常绿阔叶林的北界问题.植物生态学与地植物学丛刊,5(1):54-57.
    韩也良.1981b*.对安徽大别山南坡植被垂直带谱基带的讨论.安徽师范大学学报(自然科学版),(2):110-125.
    韩也良主编.1990*.牯牛降科学考察集.北京:中国展望出版社.
    洪必恭,金济民.1984.划分江苏植被带界线的新尝试.南京大学学报,20(2):314-320.
    洪必恭,李绍珠.1981.江苏主要常绿阔叶树种的分布与热最关系的初步研究.生态学报,1(2):105-111.
    洪必恭,赵儒林,高兆杉.1983.江苏南部各自然保护区主要植被类型的特点与北亚热带植被的南界.南京大学学报,(1):113-118.
    侯学煜.1988.中国自然地理—植物地理(下)中国植被地理.北京:科学出版社.
    候学煜.1960.中国的植被.北京:北京人民教育出版社.
    候学煜.1964.论中国植被分区的原则、依据和系统单位.植物生态学与地植物学丛刊,2(2):153-179.
    黄建军,王希华.2003.浙江天童32种常绿阔叶树叶片的营养及结构特征.华东师范大学学报(自然科学版),(1):92-97.
    黄永梅,刘鸿雁,崔海亭.2001.内蒙古高原东南缘森林草原过渡带景观的若干特征.植物生态学报, 25(3):257-264.
    江胜中.2011.牯牛降新发现9种野生动植物及其形态和习性初探.安徽林业科技,37(4):37-40.
    李新荣.1999.俄罗斯平原针—阔林过渡带森林群落组成结构与物种多样性的研究.生物多样性,7(4):291-296.
    刘宾.1991.安徽省大别山陀尖山区植物区系的研究.武汉植物学研究,9(3):239-246
    刘宾.1992.中国常绿落叶阔叶混交林的研究.上海:华东师范大学博士论文.
    刘肪勋,邓愁杉.1964.论江苏省三个植被带的特征及其分界问题植物.生态学与地植物学丛刊,2(2):256-261.
    刘肪勋,黄致远.1987.再论江苏省中亚热常绿阔叶林地带的北界问题.植物生态学与地植物学学报,6(1):77-80.
    刘肪勋.1982.江苏省地带性植被的基本特点与分布规律.植物生态学与地植物学丛刊,6(3):236-246.
    刘洪来,王艺萌,窦潇,徐敏云,王垄.2009.农牧交错带研究进展.生态学报,29(8):44204425.
    刘鹏,吴国芳.1993*.马鬃岭自然保护区植被的研究.浙江师大学报(自然科学版),16(2):75-80.
    刘鹏.1993.大别山植物区系及南坡和北坡相关性研究.广西植物研究,13(3):225-233,.
    马莉薇,张文辉,薛瑶芹,马闯,周建云.2010.秦岭北坡不同生境栓皮栎实生苗生长及其影响因素.生态学报,30(23):6512-6520.
    倪健.1998.植被—气候分类指标及其应用.生态学杂志,17(2):33-44.
    倪健.1995.中国亚热带常绿阔叶林优势种及常见种分布与气候的相关分析.上海:华东师范大学博士论文.
    钱崇澍,吴征镒,陈昌笃.1956.中国植被区划草案.中国自然区划草案:85-142.
    钱宏.1988*.安徽大别山北坡森林植被及其合理经营.安徽农学院学报,(3):35-42.
    钱宏.1989.安徽大别山北坡植物区系与邻近地区植物区系关系探讨.武汉植物学研究,7(1):39-48.
    商侃侃.2011.中国东部亚热带微地形上孑遗落叶阔叶树种分异格局及其成因与维持机制.上海:华东师范大学博士论文.
    沈显生.1986.安徽大别山天堂寨山区植物区系的研究.植物学报,28(6):657-663.
    沈显生.1989*.安徽大别山天堂寨山区植被研究.武汉植物学研究,7(8):131-139.
    沈显生.1999.从地带性植物群落生活型谱讨论安徽植被带的划分.安徽大学学报(自然科学版),23(3):103-108.
    沈泽昊,胡志伟,赵俊,王会.2007*.安徽牯牛降的植物多样性垂直分布特征—兼论山顶效应的影响.山地学报,25(2):16-168.
    宋永昌.1999.中国东部森林植被带划分之我见.植物学报,41(5):541-552.
    宋永昌.2001.植被生态学.上海:华东师范大学出版社.
    宋永昌.2011.对中国植被分类系统的认知和建议.植物生态学报,35(8):882-892.
    田玉鹏,蔡永立,王宏伟,刘志国,丘云兴,陈兆凤.2007.福建梅花山51种常绿阔叶植物叶片寿命特征及其影响因素.亚热带植物科学,36(2):4-8.
    万贤崇,孟平.2007.植物体内水分长距离运输的生理生态学机制.植物生态学报,31(5):804-813.
    王庆锁,冯宗炜,罗菊春.1997a.生态交错带与生态流.生态学杂志,16(6):52-58.
    王庆锁,王襄平,罗菊春,冯宗炜,李经天,马玉华,苏玉华.1997b.生态交错带与生物多样性.生物多样性,5(2):126-131.
    王希华,张婕,张正祥.2000.浙江天童国家森林公园主要常绿阔叶树种叶子寿命的研究.植物生态学报,24(5):625-629.
    王映明.1985.湖北植被区划(上).武汉植物学研究,3(1):61-73.
    王志恒,唐志尧,方精云.2009.生态学代谢理论:基于个体新陈代谢过程解释物种多样性的地理格局.生物多样性,17(6):625-634.
    吴诚和.1982.安徽植物区系的探讨.植物学报,24(5):468-476.
    吴丽丽,康宏樟,庄红蕾,刘春江.2010.区域尺度上栓皮栎叶性状变异及其与气候因子的关系.生态学杂志,29(12):2309-2316.
    吴敏,张文辉,周建云,马闯,马莉薇.2011.秦岭北坡不同生境栓皮栎种子雨和土壤种子库动态.应用生态学报,22(11):2807-2814.
    吴明作,刘玉萃,姜志林.2001.栓皮栎种群生殖生态与稳定性机制研究.生态学报,21(2):225-230
    吴征镒.1980.中国植被.北京:科学出版社.
    夏爱梅,聂乐群.2004.安徽植被带的划分.武汉植物学研究,22(6):523-528.
    谢中稳,蔡永立,周良骆,张福林.1995.安徽皇藏峪自然保护区的植物区系和森林植被.武汉植物学研究,13(4):310-316.
    谢中稳,蔡永立.1994*.安徽省鹞落坪自然保护区植物区系基本特征的研究.安徽农业大学学报,21(4):507-512.
    谢中稳,吴国芳.1993.安徽大别山多枝尖山区植物区系的研究.华东师范大学学报(自然科学版),(1):102-110.
    薛瑶芹,张文辉,周建云,杨保林,周民建.2011.秦岭南坡不同生境条件下栓皮栎伐桩萌芽特性.林业科学,47(7):57-64.
    阎传海,张绅,宋永昌.1995.南京地区森林植被性质的初步研究.植物生态学报,19(3):280-285.
    阎恩荣,王希华,郭明,仲强,周武.2010.浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征.植物生态学报,34(1):48-57.
    杨永川.2005.中国中亚热带东部低山丘陵地形梯度上植被的分异及其形成和维持机制.上海:华东师范大学博士论文.
    张金泉.1980.河南省植被区划.河南师范大学学报,(2):16-42.
    张奇平.2011.天目山主要树种叶性状在海拔梯度和微地形上的分异格局.上海:华东师范大学硕士论文.
    张绅.1989.关于上海境内中亚热带常绿阔叶林北界的一点意见.植物生态学与地植物学学,13(1):93-95.
    张文辉,卢志军,李景侠,刘国彬.2003.秦岭北坡栓皮栎种群动态的研究.应用生态学报,14(9):1427-1432.
    张文辉,卢志军.2002.栓皮栎种群的生物学生态学特性和地理分布研究.西北植物学报,22(5):1093-1101.
    张新时,杨奠安,倪文革.1993.植被的PE(可能蒸散)指标与植被气候分类(三).植物生态学报,17(2):97-109.
    仲强,康蒙,郭明,王希华,王良衍,阎恩荣.2011.浙江天童常绿木本植物的叶片相对电导率及抗寒性.华东师范大学学报(自然科学版),(4):45-52.
    周光裕.1965.淮河流域植被的过渡性特点及南北分界线的探讨.植物生态学与地植物学丛刊,3(1):131-137.
    周光裕.1981.试论中国暖温带落叶阔叶林区域的边界.植物生态学与地植物学丛刊,5(4):302-307.
    周光裕.1996.中国的落叶阔叶林—兼论常绿落叶阔叶混交林的归属问题.宁波大学学报,9(3):93-102.
    周秀佳.1984.上海的主要植被类型及其分布.植物生态学与地植物学丛刊,8(3):188-198.
    周自宗,袁莉,王震洪.2008.贵阳市常绿树种叶子寿命的研究.生态科学,27(3):148-153.
    朱芬萌,安树青,关保华,刘玉虹,周长芳,王中生.2007.生态交错带及其研究进展.生态学报,27(7):3032-3042.
    朱旭斌,孙书存.2006.南京地区落叶栎林木本植物叶物候研究.植物生态学报,30(1):25-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700