用户名: 密码: 验证码:
预应力锚杆柔性支护方法的数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力锚杆柔性支护方法作为支护深基坑的一种新型支护形式,与其它支护方法相比,该方法由于其经济、可靠、施工便捷、变形小、支护深度大等显著优点,在我国岩土工程领域中已得到广泛的应用。本文使用非线性有限元方法对预应力锚杆支护进行数值分析研究,以期该技术得到更广泛的应用提供较为科学的依据。
     首先,采用有限元方法,对预应力锚杆柔性支护进行数值模拟。通过研究基坑的变形,锚杆的受力状态和轴力的分布规律,来分析预应力锚杆柔性支护的力学性能。其次,通过与土钉支护进行数值分析比较,对基坑的控制变形的影响以及本身的受力情况的分析,进一步了解预应力锚杆柔性支护的作用机理。第三,通过对预应力锚杆柔性支护进行结构变参数分析,研究了锚杆长度、锚杆支护倾角、锚杆布置间距、锚杆长度布置方式以及面层厚度的变化对基坑变形和锚杆轴力的影响。最后,对工程实例进行有限元数值分析,与实测结果进行比较。主要研究结论如下:
     (1) 预应力锚杆支护下基坑的水平位移和地表沉降均呈曲线分布,与土钉支护相似。水平位移最大值发生在基坑顶面,随深度的增加逐渐减小;地表沉降最大值发生在坑壁处,随离坑壁距离的增大而减小。
     (2) 锚杆在自由段范围内轴力相同,随开挖深度加深,自由段轴力增加;锚杆锚固段的轴力与自由段相连处轴力最大,其后轴力逐渐减小,末端为零。
     (3) 锚杆所施加的预应力大小对基坑位移影响很大。随着锚杆预应力的增加,基坑位移大幅度减小,但当预应力施加到一定大值之后,对基坑位移的影响幅度较小。
     (4) 在相同条件下,即使土钉间距变小,土钉支护下的基坑位移比预应力锚杆支护下的位移都大,可见对于变形要求严格的基坑,预应力锚杆支护由于施加了预应力比土钉支护能更有效控制基坑位移。
     (5) 通过对预应力锚杆支护的结构参数进行变化研究,建议锚杆的布置方式将上下各排锚杆取成等长,或将顶部锚杆做的长些等一些定性规律。
     (6) 通过对工程实例的计算分析,验证了模型建立的合理性以及采用预应力锚杆支护深基坑的可行性。
The prestressed anchor flexible retaining method is a new kind of excavation support technology. It has been widely applied in the practical engineering of China because of their advantages, such as less investment, safety, convenient in construction, small displacement and applicable to super-deep excavation compared with other retaining methods. In this paper, the prestressed anchor flexible retaining method is numerically analyzed using nonlinear finite element to provide some scientific basis for its broad application.
    At first, a finite element method is used for the numerically analysis of prestressed anchor flexible retaining. The mechanics of its performance are studied by researching the deformation of excavation, the force of anchor and the distribution of axial force. Secondly, the effects of deformation of excavation and the internal force are analyzed through the comparison with soil nailing, which indicates the mechanics of the support more deeply. Thirdly, by studying the effects of the structural parameter of the prestressed anchor flexible retaining, attentions are paid to the problems, such as different anchor length, anchor space, shoring obliquity and surface thickness. The effects of these factors on the deflection of excavation and internal force of anchor are considered. Finally, the project is studied by the finite element analysis method and the calculated results are compared with the measured results. Some significant conclusions are remarked as follows:
    (l)The horizontal displacement and vertical displacement of excavation show curve distribution under retaining of the system, which is conform to the soil nailing. The maximum horizontal displacement occurs on the top of excavation and horizontal displacement decreases along the depth. The maximum vertical displacement occurs in the side of excavation and vertical displacement decreases with departing the side of excavation.
    (2)The axial forces of anchor are same in the free part. The axial force of the free part in anchor is increased with the along depth. The maximum anchor axial force occurs in coterminous with the free part and at fixed part of anchor. Then, the axial force is gradually decreases and the end becomes zero.
    (3)The anchor prestress influences displacement of excavation greatly. The displacement of excavation decreases with the increasing of anchor prestress. However, when the anchor prestress reach a big value, its influences is small.
    (4)At the same condition, even if the space of soil nailing decreases, the displacement is bigger than the anchor retaining. So the prestressed anchor flexible retaining method can control deformation more effectively at the strict deformation requisition.
    
    
    (5)By studying the effects of the structural parameters of the prestressed anchor flexible retaining, it is proposed that the anchor should be the same length, or in the upper should be longer.
    (6)By calculating and analyzing the engineering project, the correctness of model and the feasibility of retaining method using the prestressed anchor in the depth excavation are verified.
引文
[1] 余志成,施文华.深基坑支护设计与施工[M].北京,中国建筑工业出版社,1997.
    [2] 崔江余,梁仁旺.建筑基坑工程设计计算与施工[M].北京:中国建筑工业出版社,1999.
    [3] 龚晓南,高有潮.深基坑工程设计施工手册[M].北京,中国建筑工业出版社,1998.
    [4] 李钟.深基坑支护技术现状及发展趋势(一)、(二),岩土工程界[J].2001,4(1)、(2):42-47、 1-3.
    [5] 赵志缙,赵帆.深基坑工程技术的进展与展望,建筑技术[J].2003,34(2):88-93.
    [6] 郭志昆,张武刚,陈妙峰,李水泉.对当前基坑工程中儿个主要问题的讨论,岩土工程界[J].2001,4(5):40-43.
    [7] 龚晓南.21世纪岩土工程发展展望[J].岩土工程学报,2000,22(2):238-242.
    [8] 陈仲颐,叶书麟.基础工程学[M].北京,中国建筑工业出版社,1990.
    [9] 黄运飞.深基坑工程实用技术[M].北京,兵器工业出版社,1996.
    [10] 史佩栋.深基坑工程技术(上,下).建筑施工[J],1998,3,4.
    [11] 秦四清,王建党.土钉支护机理与优化设计[M].北京:地质出版社,1999.
    [12] 曹双寅.整体式支护结构考虑空间共同工作的简化分析[J],1996,26(6B):97-102.
    [13] 徐扬青.深基坑支护结构的优化设计计算.岩士力学[J],1997,18(2):57-61.
    [14] 孙更生,郑大同.软土地基与地下工程[M].北京,中国建筑工业出版社,1997.
    [15] 殷宗泽,朱泓,许国华.土与结构材料接触面的变形及其数学模拟.岩土工程学报[J],1994,16(3):14-22.
    [16] 高俊合,赵维炳,李兴文.深基坑有限元分析中释放荷载模拟一三种常用方法比较及改进的Mana法.南京:河海大学学报,1999,27(1):47-52.
    [17] 李斯海,张玉军.深基坑开挖与支护过程的平面有限元模拟[J].岩土力学与工程学报.1999,18(3):342-345.
    [18] Goodman R F, Taylor R L and Brake T L. A Model for the Mechanics of Jointed Rock[J]. Journal of Soil Mechanics and Foundation Division, ASCE, 1968, 94(SM3): 637-660.
    [19] Chang C Y, Duncan J M. Analysis of soil movements around a deep excavation[J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 1970, 97(SM5): 1629-1653.
    [20] 俞建霖,赵荣欣,龚晓南.软土地基基坑开挖的三维性状分析.浙江大学学报(自然科学版),1998,32(1)95-101.
    [21] 贾金青.预应力锚杆柔性支护法研究[D].北京:清华大学博士后研究工作报告,2003.
    [22] 程良奎,张作嵋,杨志银.岩土加固实用技术[M].北京,地震出版社,1994.
    [23] 杨亚洲.深基坑弹塑性有限元数值分析及支护优化设计方法研究[D].大连:大连理工大学硕士学位论文,2001.
    [24] 张明聚.土钉支护工作性能研究[D].北京:清华大学博士学位论文,2000。
    [25] 朱百里,沈珠江.计算土力学[M].上海,上海科学技术出版社,1990:46-49.
    [26] Shen, C. K., and Herrman, L. R. Ground movement analysis of earth support system. J. Geotech. Eng. Division, ASCE, 1981, 107(12): 1609~1623.
    
    
    [27] 姜弘道,衬和群.有限元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [28] Tabrizi, S. K. 3-D finite element modeling of soil-nailed walls (a doctoral dissertation). The State University of New Jersey, New Brunswick, New Jersey, 1996.
    [29] 濮家骝,李广信.土的本构关系及其验证与应用[J].岩土工程学报.1996,8(1):47-82.
    [30] Duncan, J M. and Chang, C Y. Non-linear analysis of stress and strain in soils. Proc. ASCE, J. Soil Mechanics and Foundation division, 1970, 96(5): 1629-1653.
    [31] 黄文熙.土的工程性质[M].北京:水利电力出版社,1983:1-47.
    [32] 张学言.岩土塑性力学[M].北京:人民交通出版社,1993,60-84.
    [33] 钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996,44-106.
    [34] 冯紫良.地下洞室应力分析中荷载计算与初始地应力场.岩土工程学报,1999,21(3):366-369.
    [35] 钱家欢,殷宗泽.土工数值分析.北京:中国铁道出版社,1991,214-218.
    [36] Ghaboussi J P, Pecknold D A. Incremental finite analysis of geometrically altered structures[J]. Int. J. for Numer. Methods in Engineering, 1984, 20: 2051-2064.
    [37] 应宏伟,谢康和,潘秋元等.软粘土深基坑开挖时间效应的有限元分析.计算力学学报,2000,17(3):349-354.
    [38] 郑宏,葛修润,谷先荣等.关于岩土工程有限元分析中的几个问题.岩土力学,1995,16(3):7-12.
    [39] 邱月,宋二祥.深基坑锚杆—土钉复合支护的三维非线性有限元分析[J].工程勘探,2001(6):1~3.
    [40] 宋二祥,邱月.基坑复合土钉支护的有限元分析[J].岩土力学,2001(3):241~245.
    [41] 陈肇元,崔京浩.土钉支护在基坑工程中应用(第二版)[M].北京:中国建筑工业出版社,2000.
    [42] 叶书麟,韩杰,叶关宝.地基处理与托换技术(第二版)[M].北京:中国建筑工业出版社,1994:484-514.
    [43] 曾宪明,曾荣生.岩土深基坑喷锚网支护法原理—设计施工指南[M].上海:同济大学出版社,1997,95-105.
    [44] 宋二祥.基坑支护技术进展—基坑工程学术讨论会论文集[J].建筑技术,1998,增刊.
    [45] 董庆武.喷网锚支护技术的设计原则及应用实例[J].建筑技术,1998,29(2):90-91.
    [46] 陈叶青,李保国.土钉支护在复杂地质条件基坑支护中的应用[J].施工技术,1999,28(1):24-25.
    [47] 张峰,杨生贵,杜建东.土钉支护技术在深基坑支护中的应用[J].建筑科学,1999,15(2):29-31.
    [48] 连镇营.基坑工程三维有限元数值分析中的若干问题研究[D].大连:大连理工大学博士学位论文.2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700