用户名: 密码: 验证码:
生物医用纯镁和Mg-Zn合金微弧氧化陶瓷涂层的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯镁及其合金由于具有良好的生物相容性和可降解性而有望成为最有潜力的可降解体内植入材料。但由于纯镁及其合金在水溶液中的耐蚀性较差,尤其在含有Cl-的环境中(如人体内的生理环境)耐蚀性更差,因此当镁基材料植入体内后,在受伤的骨组织尚未完全愈合时,镁基材料已因腐蚀而受到严重破坏。鉴于此,目前纯镁及其合金作为体内可降解植入材料使用时迫切需要解决的问题是延缓植入物在体内的降解速率。
     提高纯镁及其合金在腐蚀介质中耐蚀性的可能途径是成分净化处理、合金化处理或表面涂层改性。本文采用微弧氧化的方法在纯镁和Mg-Zn合金表面制备了一层陶瓷保护层,通过物理屏障将基体金属和腐蚀介质隔离,以延缓基体金属在腐蚀介质中的降解速率。
     为赋予陶瓷涂层良好的生物相容性,选用无毒元素的电解液进行微弧氧化,系统研究了电解液、电流密度、温度和微弧氧化时间等参数对陶瓷涂层耐蚀性的影响。基于优化的NaOH(30 g/L)、Na_2SiO_3·9H_2O(160 g/L)、Na_2B_4O_7·10H_2O(160 g/L)的水溶液电解液,温度20和25℃,电流密度40 mA/cm2,研究了陶瓷涂层的生长过程。
     为提高微弧氧化陶瓷涂层的耐蚀性,向电解液中添加三乙醇胺(TEA)有机添加剂和CaO、CaCO3以及羟基磷灰石(HA)粉末等无机添加剂。结果表明,这些添加剂参与了微弧氧化过程中陶瓷涂层的生成反应,生成厚度约为30~50μm的致密陶瓷层。X-射线衍射结果表明陶瓷层具有非晶态的相结构。陶瓷层经硅酸钠水溶液封孔后,孔隙率和孔隙尺寸明显下降,表面光洁度进一步提高。为检验陶瓷层对基体金属的保护作用,覆盖着陶瓷层的纯镁和Mg4Zn合金在模拟体液(SBF)中进行了电化学极化曲线测量和浸泡测试。实验结果表明,微弧氧化陶瓷层能够有效地将基体金属和腐蚀环境隔离,显著提高了纯镁和Mg-Zn合金在模拟体液中的耐蚀性。
     另外,模拟体液浸泡实验还表明覆盖着陶瓷层的纯镁和Mg4Zn合金能够有效诱导Ca、P沉积,具有良好的生物活性。溶血实验结果表明,覆盖着陶瓷涂层的纯镁和Mg4Zn合金的溶血率均小于5%,符合生物医用材料的溶血要求,具有良好的血液相容性。
Pure magnesium and its alloys have excellent biocompatibility and biodegradation which make them the most potential biodegradable implants. However, the degradation rate of pure magnesium and its alloys is so rapid in aqueous solutions, especially in chloride-containing media such as human physiological environments that the implants can be corroded seriously before the diseased or damaged bone tissue becomes healed. Therefore, the inhibition of high corrosion rate is the most urgent problem to be solved for magnesium and its alloys as degradable implants.
     Current approaches to slow down the degradation rate of magnesium and its alloys include high purity alloys, element alloying and surface coating modification technology. In the present thesis, a protective micro-arc oxidation (MAO) coating has been fabricated on pure magnesium and alloys. The coating can isolate the substrate from corrosive media as a physical shield and inhibit the degradation rate of the metal substrate.
     The MAO process was performed in aqueous solutions without toxic elements to keep good biocompatibility of MAO coatings. The effects of electrolyte composition, current density, electrolyte temperature and MAO time on corrosion resistance of ceramic coating were investigated systematically. The growth characteristics of MAO coating was investigated in the optimized electrolyte of NaOH (30 g/L), Na2SiO3?9H2O (160 g/L) and Na2B4O7?10H2O (160 g/L) at 20 and 25℃under the condition of 40 mA/cm2.
     In order to improve the corrosion resistance of MAO coating, some additives such as triethanolamine, calcium oxide, calcium carbonate and hydroxyapatite were added to the optimized electrolyte during MAO process. The results indicate that the additives participate in the growth reactions of ceramic coating. SEM micrographs show that the thickness of the coatings are about 30~50μm. XRD patterns of the coatings show that the coatings are amorphous. After sealing in Na2SiO3 solution, the surface roughness of MAO coating improved and porosity of MAO coating also decreased. The corrosion resistance of Mg and Mg4Zn alloy covered with anodic coating was tested by potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF). The results show that the MAO coatings can efficiently prevent metal substrate from contacting with corrosive media and the corrosion resistance of the samples was improved remarkably.
     In addition, the immersion tests also show that Mg and Mg4Zn alloy covered with anodic coatings have a good ability for inducing Ca and P deposition.
     Homolysis tests were used to evaluate the blood compatibility of Mg and Mg4Zn alloy covered with MAO coatings. The results confirm that the hemolysis ratio of the samples was less than 5% and the samples have excellent blood compatibility.
引文
[1]李世普.生物医用材料导论.武汉:武汉工业大学出版社,2000.1
    [2]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社,2000.40
    [3]袭迎祥,王迎军,郑岳华.可降解生物医用材料的降解机理.硅酸盐通报,2000,(3):40-44
    [4]付东伟,闫玉华.生物可降解医用材料的研究进展.生物骨科材料与临床研究,2005,2(2):39-42
    [5]郑玉峰,刘彬,顾雪楠.可生物降解医用金属材料的研究进展.材料导报,2009,23(1):1-6
    [6]王建.生物可降解高分子及其应用.四川纺织科技,2003,(3):14-17
    [7]任杰.可降解与吸收材料.北京:化学工业出版社,2003.9
    [8]李浩莹,陈运法,谢裕生.可生物降解的医用高分子矫形材料.材料科学与工程,2000,18(2):120-124
    [9]王周玉,岳松,蒋珍菊,等.可生物降解高分子材料的分类及应用.四川工业学院学报增刊,2003,145-147
    [10]崔福斋.可降解医用介入支架的研发进展.国外塑料,2005,23(11):58-64
    [11]马永富,刘阳.生物可降解支架的研究和应用.军医进修学院学报,2008,29(1):66-68
    [12]任杰.可降解与吸收材料.北京:化学工业出版社,2003.234~236
    [13]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社,2000.48
    [14]顾其胜.天然降解性生物材料在整形外科中的应用.上海生物医学工程,2002,23(2):49-52
    [15]顾其胜,严凯.蛋白胶原在组织工程及临床中的应用.上海生物医学工程,1999,20(3):35-38
    [16]任元元,兰建武.可生物降解医用缝合线的研究进展.合成纤维工业,2007,30(1):47-50
    [17]任杰.可降解与吸收材料.北京:化学工业出版社,2003. 258
    [18]杨记,张佩华.几种常用的可生物降解医用材料.上海纺织科技,2001,29(4):10-11
    [19]阳元娥,罗发兴.壳聚糖及其衍生物在医药中的应用.中国医药工业杂志,2002,33(8):408-411
    [20]王真,陈西广,郎刚华,等.甲壳质及其衍生物生理活性研究进展.海洋科学,2000,24(9):30-32
    [21]陈煜,窦桂芳,罗运军,等.甲壳素和壳聚糖在伤口敷料中的应用.高分子通报,2005,(1):94-99
    [22]赖坤平.甲壳素和壳聚糖在医药领域的应用.今日药学,2009,19(11):14-16
    [23]方敏,曹朝晖,李邦良.甲壳素及其衍生物对糖尿病的作用.胰腺病学,2005,5(4):255-256
    [24]刘文辉,刘晓亚,陈明清,等.壳聚糖基生物医用材料及其应用研究进展.功能高分子学报,2001,14(4):493-498
    [25]车小琼,孙庆申,赵凯.甲壳素和壳聚糖作为天然生物高分子材料的研究进展.高分子通报,2008,(2):45-49
    [26] Di Martino A, Sittinger M, Risbud M V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 2005, 26 (30): 5983–5990
    [27]单程,孙晓丹,战景林.胶原-壳聚糖制备仿生多层结构软骨支架.医用生物力学,2010,25(1):26-31
    [28]杨艾玲.壳聚糖的研究进展.山西化工,2010,30(1):30-34
    [29] Madihally S V, Matthew H W T. Porous chitosan scaffolds for tissue engineering. Biomaterials, 1999, 20 (12 ): 1133-1142
    [30] Gupta K C, Ravi Kumar M N V. Drug release behavior of beads and microgranules of chitosan. Biomaterials, 2000, 21 (11) 1115-1119
    [31]孙秀珍,贾建东,张碧珍,等.壳聚糖药膜及其制备工艺研究.中国海洋药物,2000,(3):40-43
    [32]王学军,许振良.可生物降解高分子材料研究进展.上海化工,2005,30(1):30-32
    [33]高凤玲,许竞跃,贺治国,等.生物合成高分子材料及其应用现状.江苏化工,2007,35(2):1-5
    [34]杨宇,徐爱玲,张燕飞,等.生物合成材料聚β-羟基丁酸(PHB)的研究进展.生命科学研究,2006,10(4):61-67
    [35]苏涛,周河治,梁静娟.微生物合成可降解塑料聚羟基链烷酸(PHA).工业微生物,1997,27(3):37-44
    [36]陈坚,任洪强,堵国成,等.环境生物技术应用与发展.北京:中国轻工业出版社,2001.321
    [37]包崇云,陈治清.聚羟基丁酸酯(PHB)在医学中的应用研究.中国口腔种植学杂志,1999,4(1):43-45
    [38]徐军,贺文楠,张增民.微生物合成聚羟基脂肪酸.现代塑料加工应用,2001,13(1):55-57
    [39]唐明宇.聚β-羟基丁酸酯的微生物合成.文山师范高等专科学校学报,2003,16(3):232-234
    [40]刘宝全,蒋本国.聚β羟基丁酸(PHB)的研究进展.大连民族学院学报,2000,2(4):15-20
    [41]于慧敏,沈忠耀.可生物降解塑料聚-β-羟基丁酸酯(PHB)的研究与发展.精细与专用化学品,2001,(8):11-14
    [42]蔡志江,成国祥.聚羟基丁酸酯在组织工程中的应用.功能高分子学报,2001,14(3):355-359
    [43]任杰,吴志刚,潘可风.可降解高分子材料在骨、软骨组织工程中的应用.同济大学学报(医学版),2002,24(1):62-65
    [44]翟美玉,彭茜.生物可降解高分子材料.化学与黏合,2008,30(5):66-69
    [45]陈永忻,陈秀娟.生物可降解高分子材料在医学领域的应用.中国疗养医学,2003,12(6):434-437
    [46]傅杰,李世谱.生物可降解高分子材料在医学领域的应用(Ⅰ)——生物可降解高分子材料.武汉工业大学学报,1999,21(2):1-4
    [47]田小艳,张敏,张恺,等.化学合成生物降解高分子材料的研究现状.化工新型材料,2010,38(2):1-3
    [48]倪秀元,胡建华,府寿宽.可生物降解的高分子材料.自然杂志,1998,20(6):339-341
    [49]王身国.可生物降解的高分子类型、合成和应用.化学通报,1997,(2):45-48
    [50]林建平,吴札光,岑沛霖.医用可生物降解高分子材料.功能高分子学报,1996,9(4):631-638
    [51] Reed A M, Gilding D K. Biodegradable polymers for use in surgery—poly(glycolic)/poly(Iactic acid) homo and copolymers: 2. In vitro degradation. Polymer, 1981, 22(4): 494-498
    [52]蔡机敏.生物可降解高分子的合成及其应用研究进展.中国科技信息,2008,(2):250-252
    [53]谢德明.药用合成可降解高分子材料研究.材料科学与工程学报,2004,22(4):623-626
    [54]张颂培,王锡臣.生物降解性医用高分子材料——聚乳酸.化工新型材料,1995,(8):9-11
    [55]王九成,梁丹,梁正国.聚乳酸类可生物降解型高分子材料在制备载药微球或微囊中的研究和应用.材料导报,2008,22(10):95-99
    [56]郝国庆.可降解高分子材料聚乳酸综述.重点实验室建设,2006,(10):13-14
    [57]崔秀敏,王彭延.医用合成可降解生物材料的新进展.国外医学生物医学工程分册,1995,18(6):324-329
    [58]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社,2000.55
    [59] Lee S Y, Park J W, Young Yoo T, et al. Hydrolytic degradation behaviour and microstructural changes of poly(ester-co-amide)s. Polymer Degradation and Stability, 2002, 78 (1): 63–71
    [60] Okada M. Chemical syntheses of biodegradable polymers. Progress in polymer science, 2002, 27 (1): 87-133
    [61]张海连,王璐,钱志勇,等.可生物降解脂肪族聚酰胺酯的合成与表征.合成树脂及塑料,2003,20(6):10-12
    [62] Han S, Kim B S, Kang S W, et al. Cellular interactions and degradation of aliphatic poly(ester amide)s derived from glycine and/or 4-amino butyric acid. Biomaterials, 2003, 24 (20): 3453–3462
    [63]张勇,张爱英,冯增国,等.聚乙二醇/聚对苯二甲酸丁二醇酯聚醚酯弹性体的合成与表征——不同硬段长度对材料性能的影响.高分子学报,2002,(2):167-172
    [64] Bezemer J M, Grijpma D W, Dijkstra P J, et al. A controlled release system for proteins based on poly(ether ester) block-copolymers: polymer network characterization. Journal of Controlled Release, 1999, 62 (3): 393–405
    [65]张勇,张爱英,冯增国.聚乙二醇共聚对苯二甲酸丁二醇酯的合成及在生物材料中的应用.化学通报,2002,(5):304-11
    [66] Blitterswijk C A V, Brink J V D, Leenders H, et al. The effect of PEO ratio on degradation, calcification and bone bonding of PEO/PBT copolymer (polyactive?). Cells and Materials, 1993, 3 (1): 23-36
    [67] Radder A M, Davies J E, Sodhi R N S, et al. Post-operative Carbonate-Apatite Formation in PEO/PBT Copolymers (Polyactive?). Cells and Materials, 1995, 5 (1):55-62
    [68] Li P, Bakker D, Blitterswijk C A V. The bone-bonding polymer polyactive? 80/20 induces hydroxycarbonate apatite format ion in vitro. Journal of Biomedical Materials Research, 1997, 34 (1): 79- 86
    [69] Radder A M, Leenders H, Blitterswijk C A V. Interface reactions to PEO/ PBT copolymers (polyactive?) after implantation in cortical bone. Journal of Biomedical Materials Research, 1994 , 28 (2) :141~151
    [70] Radder A M, Davies J E, Leenders H, et al. Interfacial behavior of PEO/ PBT copolymer (polyactive?) in a calvarial system: An in vitro study. Journal of Biomedical Materials Research, 1994 , 28 (2) : 269~277
    [71]张勇,吴春红,冯增国,等.聚(对苯二甲酸丁二醇酯-co-对苯二甲酸环己烷二甲醇酯)-b-聚乙二醇嵌段共聚物的合成与表征.高等学校化学学报,2004,25(2):376-381
    [72]王连才,陈祝琼,刘厚利,等.可降解聚醚酯弹性体PTCG的合成及初步生物学评价.北京理工大学学报,2004,24(5):454-457
    [73]陈祝琼,王连才,周建业,等.聚醚酯材料的生物相容性评价和水解降解实验研究.生命科学仪器,2004,(3):14-18
    [74]刘庆丰,冯胜山,禇衡,等.医用可生物降解聚氨酯材料研究及进展.工程塑料应用,2007,35(8):66-69
    [75]冯亚凯,吴珍珍.可生物降解聚氨酯在医学中的应用.材料导报,2006,20(6):115-118
    [76]李宝强,胡巧玲,方征平,等.组织工程用聚氨酯的研究进展.高分子通报,2003,(2):1-7
    [77]谭红梅,汪建新,张俊良.医用聚氨酯的改性及应用.化学推进剂与高分子材料,2009,7(2):23-26
    [78]李洁华,谢兴益,何成生,等.医用聚氨酯生物相容性研究新进展.生物医学工程杂志,2002,19(2):315-319
    [79]詹红彬,陈红.聚氨酯表面性能对其生物相容性的影响.材料科学与工程学报,2007,25(4):640-643
    [80]杜民慧,李建树,魏阳,等.生物医用脂肪族聚氨酯的合成、表征及血液相容性研究.生物医学工程杂志,2003,20(2):273-276
    [81] Szycher M, Poirier V L, Dempsey D J. Development of an aliphatic biomedical-grade polyurethane elastomer. Journal of elastomers and plastics, 1983, 15 (2): 81-95
    [82]王学敏.医用聚氨酯材料的研究进展及发展方向.热固性树脂,2009,24(4):47-49
    [83] Zhang J Y, Beckman E J, Piesco N P, et al. A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro. Biomaterials, 2000, 21 (12): 1247-1258
    [84]王东贤,亢茂青,王心葵.二氧化碳合成脂肪族聚碳酸酯.化学进展,2002,14(6):462-468
    [85] Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide. Journal of Polymer Science Part B: Polymer letter, 1969, 7 (4): 287~292
    [86]于涛,王笃金,王佛松.脂肪族聚碳酸酯共聚物的研究进展.高分子通报,2007,(5):23-44
    [87]申景强,诸泉,蒋文真.脂肪族聚碳酸酯可降解材料的研究进展.塑料工业,2009,37(8):1-6
    [88]陈立班.脂肪族聚碳酸酯研究现状.高分子材料科学与工程,1991,(1):7-13
    [89]卢凌彬,黄可龙.二氧化碳/环氧丙烷/γ-丁内酯的三元共聚合和表征.高分子学报,2005,(3):384-388
    [90] Kawaguchi T, Nakano M, Juni K, et al. Examination of biodegradability of poly(ethylene carbonate) and poly poly(propylene carbonate) in the peritoneal cavity in rats. Chemical and Pharmaceutical Bulletin, 1983, 31:1400–1403
    [91]卢凌彬,刘素琴,黄可龙,等.二氧化碳/环氧丙烷/γ-丁内酯的三元共聚物微球降解性的研究.高分子学报,2005,(4):621-624
    [92]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社,2000. 62
    [93] Thomson L A M, Duncan R. Poly(amino acid) Copolymers as a Potential Soluble Drug Delivery System. 1. Pinocytic Uptake and Lysosomal Degradation Measured In Vitro. Journal of Bioactive and Compatible Polymers, 1989, 4 (3): 242-251
    [94] Aiba S, Minoura N, Fujiwara Y, et al. Laminates composed of polypeptides and elastomers as a burn wound covering. Physicochemical properties. Biomaterials, 1985, 6 (5): 290-296
    [95] Heeswijk W A R V, Hoes C J T, Stoffer T, et al. The synthesis and characterization of polypeptide-adriamycin conjugates and its complexes with adriamycin. Part I. Journal of Controlled Release, 1985, 1 (4): 301-315
    [96] Eloy R, Brack A, Dorme N, et al. Physical and biological properties of a new synthetic amino acid copolymer used as wound dressing. Journal of Biomedical Materials Research, 1992, 26 (6): 695-835
    [97]汤谷平,陈启琪.聚氨基酸材料中药物控释系统中的应用.生物医学工程学杂志,2001,18(2):169-172
    [98]黄岳山,赵修华,吴效明,等.氨基酸类聚合物材料及其在药物控释系统中的应用.中国医学物理学杂志,2003,20(1):39-42
    [99]姚军燕,杨青芳,范晓东,等.聚(乳酸-氨基酸)共聚物的合成及性能研究进展.材料科学与工程学报,2006,24(2):297-300
    [100]张国林,吴秋华,宋溪明,等.聚氨基酸共聚物合成研究进展.高分子材料科学与工程,2006,22(4):10-14
    [101]黄霞,郑元锁,高积强,等.生物降解氨基酸衍生聚合物的研究进展.化工新型材料,2007,35(1):22-25
    [102]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社,2000. 63-64
    [103]王士斌,翁连进,郑昌琼.新型药物载体——聚/假聚氨基酸.生物医学工程学杂志,1999,(S1):96-97
    [104]黄霞,郑元锁,高积强,等.一种新的可生物降解聚碳酸酯及其加速降解的研究.现代化工,2007,27(7):32-35
    [105]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社,2000. 58
    [106]周志彬,黄开勋,陈泽宪,等.生物可降解高分子材料——聚酸酐.北京生物医学工程,2001,20(1):76-79
    [107]傅杰,卓仁禧,范昌烈.新型生物可降解医用高分子材料——聚酸酐.功能高分子学报,1998,11(2):302-310
    [108]陈德敏.生物陶瓷材料.口腔材料器械杂志,2005,14(3):157-158
    [109]焦永峰,赵磊.生物陶瓷材料的研究进展.江苏陶瓷,2008,41(2):7-10
    [110]谈国强,贺中亮,刘剑.生物陶瓷的应用和研究现状.陶瓷,2008,(9):10-12
    [111]王宙,李智,蔡军.生物陶瓷材料的发展与现状.大连大学学报,22(6):57-62
    [112]秦祥.生物陶瓷的应用和发展.内蒙古石油化工,2009,(1):13-15
    [113]曾绍先.医用生物陶瓷及临床应用.化学进展,1997,9(1):90-98
    [114]刘庆,张洪.惰性生物陶瓷在人工髋关节的应用.中国医疗器械信息,2006,13(2):5-9
    [115]杨晓鸿,王志宏.生物陶瓷种植体研究概述——从致密到多孔.大自然探索,1998,17(65):51-56
    [116]刘齐海,崔磊.生物陶瓷材料中骨组织工程中的应用.组织工程与重建外科杂志,2009,5(2):114-116
    [117]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社,2000.122
    [118]衷鸿宾,侯春林.生物降解吸收型钙磷陶瓷材料.中国矫形外科杂志,1996,3(3):220-222
    [119]黄占杰.磷酸钙陶瓷生物降解研究的进展.功能材料,1997,28(1):1-4
    [120]李小溪,闫玉化.可降解磷酸钙生物陶瓷的研究进展.现代技术陶瓷,2002,(2):24-28
    [121] Klein C P A T, Driessen A A, Groot K D, Relationship between the degradation behaviour of calcium phosphate ceramics and their physical-chemical characteristics and ultrastructural geometry. Biomaterials, 1984, 5 (3): 157-160
    [122]方芳,闫玉化.β-TCP陶瓷的生物降解过程及机理探讨.硅酸盐通报,2003,(4):75-77
    [123]戴红莲,李世普,闫玉华,等.多孔磷酸三钙陶瓷人工骨在体内的新陈代谢过程研究.硅酸盐学报,2003,31(12):1161-1165
    [124] Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clinical orthopaedics and related research, 1981, 157: 259-278
    [125]郑启新,杜靖远,朱通伯,等.多孔磷酸三钙陶瓷人工骨生物降解的实验观察.同济医科大学学报,1996,25(1):37-40
    [126]江昕,方芳,闫玉华.磷酸钙多孔生物陶瓷的降解机理.国外建材科技,2001,22(4):11-15
    [127]夏志道,李世普.从无生命到有生命——可降解钙磷人工骨的生物转化.生命科学,1994,6(4):4-6
    [128]郑启新,杜靖远,夏志道,等.破骨细胞对磷酸三钙陶瓷人工骨生物降解的研究.中华实验外科杂志,1998,15(5):461-463
    [129] Zheng Q X, Du J Y, Xia Z D, et al. Biodegradation of tricalcium phosphate ceramics by osteoclasts. Journal of Tongji Medical University, 1998, 18 (4): 257-261
    [130]郑启新,杜靖远,夏志道.巨噬细胞对磷酸三钙陶瓷人工骨的降解——体外研究.武汉工业大学学报,1995,17(4):124-127
    [131] Mueller P P, May T, Perz A, et al. Control of smooth muscle cell proliferation by ferrous iron. Biomaterials, 2006, 27 (10): 2193–2200
    [132] Peuster M, Hesse C, Schloo T, et al. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials, 2006, 27 (28): 4955–4962
    [133]陆红梅.锌基生物医用可降解材料的组织与性能研究:[硕士学位论文].哈尔滨:哈尔滨工程大学,2008
    [134]段亚利,张治民,薛勇.镁合金的应用及其塑性成形技术.湖南有色金属,2007,23(1):38-41
    [135]任志远,范永革.镁合金的阻尼性能研究进展.热加工工艺,2006,35(18):64-67
    [136]刘静安,李建湘.镁及镁合金材料的应用及其加工技术的发展.四川有色金属,2007,(1):1-8
    [137]宋珂.镁合金在汽车轻量化中的应用发展.机械研究与应用,2007,20(1):14-16
    [138]杨晓飞,林文光,毛广雷.镁合金表面处理的现状及趋势.汽车工艺与材料,2007,(3):10-13
    [139] Staiger M P, Pietak A M, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006, 27 (9): 1728–1734
    [140] Song G L. Control of biodegradation of biocompatible magnesium alloys. Corrosion Science, 2007, 49 (4): 1696–1701
    [141] Nagels J, Stokdijk M, Rozing PM. Stress shielding and bone resorption in shoulder arthroplasty. J ournal of Shoulder and Elbow Surgery, 2003, 12 (1): 35–39.
    [142]刘振东,范清宇.应力遮挡效应寻找丢失的钥匙.中华创伤骨科杂志,2002,4 (1): 62-64
    [143] Vormann J, Magnesium: nutrition and metabolism, Molecular Aspects of Medicine, 2003, 24 (1-3): 27–37
    [144]邵美贞,罗德诚.镁的基础与临床.成都:四川科学技术出版社,1996.194
    [145]邵美贞,罗德诚.镁的基础与临床.成都:四川科学技术出版社,1996.7
    [146] Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26 (17): 3557–3563
    [147] Li Z J, Gu X A, Lou S Q, et al. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008, 29 (10): 1329-1344
    [148]陶海荣,张岩,何耀华,等.镁锌合金在动物体内降解及其相容性.中国组织工程研究与临床康复,2009,13(12):2232-2236
    [149]何耀华,陶海荣,张岩,等.生物镁锌合金体内对心肝肾脾的生物相容性.科学通报,2008,53(16):1981-1986
    [150]赵鸿金,张迎晖,康永林,等.镁合金阻燃元素氧化热力学及氧化物物性分析.特种铸造及有色金属,2006,26(6):340-344
    [151]李龙川,高家诚,王勇.医用镁合金的腐蚀行为与表面改性.材料导报,2003,17(10):29-32
    [152]张汉茹,郝远.AZ91D镁合金在含Cl-溶液中腐蚀机理的研究.铸造设备研究,2007,(3):19-24
    [153]宋光铃.镁合金腐蚀与防护.北京:化学工业出版社,2006.28-29
    [154]高家诚,伍沙,乔丽英,等.镁及镁合金在仿生体液中的腐蚀降解行为.中国组织工程研究与临床康复,2007,11(8):3584-3586.
    [155] Song G L, Atrens A, Stjohn D, et al. The electrochemical corrosion of pure magnesium in 1N NaCl. Corrosion Science, 1997, 39 (5): 855-875
    [156]任伊宾,黄晶晶,杨柯,等.纯镁的生物腐蚀研究.金属学报,2005,41(11):1228-1232
    [157]宋光铃.镁合金腐蚀与防护.北京:化学工业出版社,2006.172-174
    [158]宁聪琴,周玉.医用钛合金的发展及研究现状.材料科学与工艺,2002,10(1):100-106
    [159]阮建明,M.H.Grant,黄伯云.金属毒性研究.中国有色金属学报,2001,11(6):960-965
    [160] Zhang S X, Zhang X N, Zhao C L, et al. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomaterialia, 2010, 6 (2): 626-640
    [161] Zhang E L, Yin D S, Xu L P, et al. Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Materials Science and Engineering C, 2009, 29 (3): 987–993
    [162] Yin D S, Zhang E L, Zeng S Y. Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy. Transactions of Nonferrous Metals Society of China, 2008, 18 (4): 763-768
    [163] Zhang E L, Yang L. Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application. Materials Science and Engineering A, 2008, 497 (1-2): 111–118
    [164] Zhang E L, He W W, Du H, et al. Microstructure, mechanical properties and corrosion properties of Mg–Zn–Y alloys with low Zn content. Materials Science and Engineering A, 2008, 488 (1-2): 102–111
    [165] Wan Y Z, Xiong G Y, Luo H L, et al. Preparation and characterization of a new biomedical magnesium–calcium alloy. Materials and Design, 2008, 29 (10): 2034–2037
    [166] Quach N C, Uggowitzer P J, Schmutz P. Corrosion behaviour of an Mg-Y-RE alloy used in biomedical applications studied by electrochemical techniques. Comptes RendusChimie, 2008, 11 (9): 1043-1054
    [167] Gray J E, Luan B. Protective coatings on magnesium and its alloys—a critical review. Journal of Alloys and Compounds, 2002, 336 (1): 88–113
    [168] Liu C L, Xin Y C, Tang G Y, et al. Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid. Materials Science and Engineering A, 2007, 456 (1-2): 350–357
    [169]赵常利,张绍翔,何慈晖,等.生物医用镁合金表面PLGA涂层研究.功能材料,2008,39(6):987-990
    [170] Zhang E L, Xu L P, Yang K. Formation by ion plating of Ti-coating on pure Mg for biomedical applications. Scripta Materialia, 2005, 53 (5): 523–527
    [171]高家诚,李龙川,王勇.镁表面改性及其在仿生体液中的耐蚀行为.中国有色金属学报,2004,14(9):1508-1513
    [172]高家诚,李龙川,王勇,等.碱热处理镁及其在仿生模拟体液中耐蚀性能.金属热处理,2005,30(4):38-42
    [173] Li L C, Gao J C, Wang Y. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surface & Coatings Technology, 2004, 185 (1): 92– 98
    [174] Gu X N, Zheng W, Cheng Y, et al. A study on alkaline heat treated Mg–Ca alloy for the control of the biocorrosion rate. Acta Biomaterialia, 2009, 5 (7): 2790-2799
    [175] Cui F Z, Yang J X, Jiao Y P, et al. Calcium phosphate coating on magnesium alloy for modification of degradation behabior. Frontiers of Materials Science in China, 2008, 2(2): 143-148
    [176] Merolli A, Moroni A, Faldini C, et al. Histomorphological study of bone response to hydroxyapatite coating on stainless steel. Journal of Materials Science: Materials in Medicine, 2003, 14 (4): 327–333
    [177] Song Y W, Shan D Y, Han E H. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Materials Letters, 2008, 62 (17-18): 3276–3279
    [178] Xu L P, Zhang E L, Yang K. Phosphating treatment and corrosion properties of Mg-Mn-Zn alloy for biomedical application. Journal of Materials Science: Materials in Medicine, 2009, 20 (4): 859-867
    [179]李颂.镁合金微弧氧化膜的制备、表征及其性能研究:[博士学位论文].吉林:吉林大学,2007
    [180]王艳秋.镁基材料微弧氧化涂层的组织性能与生长行为研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2007
    [181] Chen F, Zhou H, Yao B, et al. Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces. Surface and Coatings Technology, 2007, 201 (9-11): 4905–4908.
    [182] Duan H P, Du K Q, Yan C W, et al. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D, Electrochimica Acta, 2006, 51 (14): 2898–2908
    [183] Shang W, Chen B Z, Shi X C, et al. Electrochemical corrosion behavior of composite MAO/sol–gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol–gel technique, Journal of Alloys and Compounds, 2009, 474 (1-2): 541–545
    [184] Hsiao H Y, Tsai W T. Characterization of anodic films formed on AZ91D magnesium alloy. Surface & Coatings Technology, 2005, 190 (2-3): 299– 308
    [185]吉蕾蕾,耿浩然,王瑞等.新型镁合金覆盖剂熔体物性的研究.中国基础科学,2004,(5):14-17
    [186]《电镀标准》编制组.HB5061-77,镁合金化学氧化膜层质量检验.北京:中华人民共和国第三机械工业部,1977
    [187] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials, 2006, 27 (15): 2907–2915
    [188] Takeno T, Yuasa S. Ignition of magnesium and magnesium-aluminum alloy by impinging hot-air stream. Combustion science and technology, 1980, 21 (3-4): 109-121
    [189] Czerwinski F. The oxidation behaviour of an AZ91D magnesium alloy at high temperatures. Acta Materialia, 2002, 50 (10): 2639–2654
    [190]樊建锋,杨根仓,周尧知,等.纯镁的高温氧化特性研究.铸造技术,2006,27(6):605-608
    [191] Song G L, Atrens A, St John D, et al. The anodic dissolution of magnesium in chloride and sulphate solutions, Corrosion Science, 1997, 39 (10-11): 1981-2004
    [192] Liu M, Schmutz P, Zanna S, et al. Electrochemical reactivity, surface composition and corrosion mechanisms of the complex metallic alloy Al3Mg2. Corrosion Science, 2010, 52 (2): 562-578
    [193] Song Y W, Shan D Y, Chen R S, et al. Corrosion characterization of Mg–8Li alloy in NaCl solution, Corrosion Science, 2009, 51 (5): 1087–1094
    [194]宋光铃.镁合金腐蚀与防护.北京:化学工业出版社,2006.32-33
    [195] Zhang Y J, Yan C W, Wang F H, et al. Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution. Corrosion Science, 2005, 47 (11): 2816–2831
    [196] Yabuki A. Anodic films formed on magnesium in organic, silicate-containing electrolytes.Corrosion Science, 2009, 51 (4): 793-798
    [197] Cheng Y L, Wu H L, Chen Z H, et al. Corrosion properties of AZ31 magnesium alloy and protective effects of chemical conversion layers and anodized coatings. Transactions Nonferrous Metals Society of China, 2007, 17 (3): 502-508
    [198] Qian J G, Wang C, Li D, et al. Formation mechanism of pulse current anodized film on AZ91D Mg alloy. Transactions Nonferrous Metals Society of China, 2008, 18 (1): 19-23
    [199] Li W P, Zhu L Q, Li Y H, et al. Growth characterization of anodic film on AZ91D magnesium alloy in an electrolyte of Na2SiO3, and KF. Journal of University of Science and Technology Beijing, 2006, 13 (5): 450-455
    [200] Shi P, Ng W F, Wong M H, et al. Improvement of corrosion resistance of pure magnesium in Hanks’solution by microarc oxidation with sol–gel TiO2 sealing. Journal of Alloys and Compounds, 2009, 469 (1-2): 286–292
    [201]陈显明,罗承萍,刘江文.镁合金微弧氧化中的传质研究.肇庆学院学报,2009,30(5):46-50
    [202]王立世,潘春旭,蔡启舟,等.镁合金表面微弧氧化陶瓷膜的腐蚀失效机理.中国腐蚀与防护学报,2008,28(4):219-224
    [203]李颂,刘耀辉,张继成,等.镁合金微弧氧化膜的相结构研究.航空材料学报,2008,28(6):10-15
    [204]李颂,刘耀辉,刘海峰,等.AZ91压铸镁合金在六偏磷酸盐体系中微弧氧化的工艺.吉林大学学报(工学版),2006,(1):46-51
    [205]吴昌胜,卢政明,蒋伟华.环保型AZ31镁合金微弧阳极氧化工艺的研究.材料保护,2008,41(11):31-34
    [206]李华.热水封孔对镁合金阳极氧化膜耐蚀性能的影响.化学工程师,2008,(7):65-67
    [207]蒋永锋,李均明,蒋百灵,等.铝合金微弧氧化陶瓷层形成因素的分析.表面技术,2001,30(2):37-39
    [208]阎峰云,林华,王胜.AZ91D镁合金在硅酸盐体系下微弧氧化配方的优化.新技术新工艺,2006,(7):68-71
    [209]王燕华.镁合金微弧氧化膜的形成过程及腐蚀行为研究:[博士学位论文].青岛:中国科学院海洋研究所,2005
    [210] Zhang R F, Zhang S F, Formation of micro-arc oxidation coatings on AZ91HP magnesium alloys. Corrosion Science, 2009, 51 (12): 2820-2825
    [211] Shi Z M, Song G L, Atrens A. The corrosion performance of anodized magnesium alloys. Corrosion Science, 2006, 48 (11): 3531–3546
    [212] Fukuda H, Matsumoto Y. Effects of Na2SiO3 on anodization of Mg–Al–Zn alloy in 3 MKOH solution. Corrosion Science, 2004, 46 (9): 2135–2142
    [213] Shi Z M, Song G L, Atrens A. Influence of anodising current on the corrosion resistance of anodised AZ91D magnesium alloy. Corrosion Science, 2006, 48 (8): 1939–1959
    [214] Yahalom J, Zahavi J. Experimental evaluation of some electrolytic breakdown hypotheses. Electrochimica Acta, 1971, 16 (5): 603-607
    [215] Xue W B, Deng Z W, Chen R Y, et al. Growth regularity of ceramic coatings formed by microarc oxidation on Al-Cu-Mg alloy. Thin Solid Films, 2000, 372 (1-2): 114-117
    [216] Song G L, St John D. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ. Journal of Light Metals, 2002, 2 (1): 1–16
    [217] Chang J W, Fu P H, Guo X W, et al. The effects of heat treatment and zirconium on the corrosion behaviour of Mg–3Nd–0.2Zn–0.4Zr (wt.%) alloy. Corrosion Science, 2007, 49 (6): 2612–2627
    [218] Chang J W, Guo X W, Fu P H, et al. Effect of heat treatment on corrosion and electrochemical behavior of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy. Electrochimica Acta, 2007, 52 (9): 3160-3167
    [219]欧爱良,余刚,胡波年,等.三乙醇胺在镁合金阳极氧化中的作用.化工学报,2009,60(8):2118-2123
    [220]丁玉荣,郭兴伍,丁文江,等.三乙醇胺对镁合金氧化膜层性能和微观结构的影响.表面技术,2005,34(1):14-16
    [221]蔡启舟,王栋,骆海贺,等.镁合金微弧氧化膜的SiO2溶胶封孔处理研究.特种铸造及有色合金,2006,26(10):612-615
    [222] Tan A L K, Soutar A M, Annergren I F, et al. Multilayer sol–gel coatings for corrosion protection of magnesium. Surface and Coatings Technology, 2005, 198 (1-3): 478– 482
    [223] SCHMELING, EDITH L, ROSCHENBL ECK, et al. Method of preparing the surfaces of magnesium and magnesium alloys. USA Patent: 4976830, 1990-12-11
    [224] SCHMELING, EDITH L, ROSCHENBL ECK, et al. Method of producing protective coatings that are resistant to corrosion and wear on magnesium and magnesium alloys. USA Patent: 4978432, 1990-12-18
    [225] Weng W J, Baptista J L. Sol-gel derived porous hydroxyapatite coatings. Journal of Materials Science: Materials in Medicine, 1998, 9 (3): 159-163
    [226] Kim I S, Kumta P N. Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder. Materials Science and Engineering B, 2004, 111 (2-3): 232–236
    [227]宋光铃.镁合金腐蚀与防护.北京:化学工业出版社,2006.40-41
    [228] Okido M, Kuroda K, Ishikawa M, et al. Hydroxyapatite coating on titanium by means of thermal substrate method in aqueous solutions. Solid State Ionics, 2002, 151 (1-4): 47–52
    [229] Van T B, Brown S D, Wirtz G P. Mechanism of anodic spark deposition. American Ceramic Society Bulletin, 1997,.56 (6): 563-566
    [230] Krysmann W, Kurze P, Dittrich K H, et al. Process characteristics and parameters of anodic oxidation by spark discharge. Crystal Research and Technology, 1984, 19 (7): 973-979
    [231] Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering. Surface and Coatings Technology, 1999, 122 (2-3): 73–93
    [232]戚玉敏.原位生成钛酸钾/钛合金梯度生物材料的制备及生物学评价:[博士学位论文].天津:河北工业大学,2008
    [233]刘亚萍,段良辉,马淑仙,等.Al2O3粉末对镁合金微弧氧化陶瓷膜的显微结构及其耐蚀性的影响.中国腐蚀与防护学报,2007,27(4):202-205
    [234] Lee Y C, Dahle A K, St John D H. The role of solute in grain refinement of magnesium. Metallurgical and materials transactions A, Physical metallurgy and materials science, 2000, 31 (11): 2895-2906
    [235]宋光铃.镁合金腐蚀与防护.北京:化学工业出版社,2006.162-163
    [236] Song G L, Atrens A. Corrosion mechanisms of magnesium alloys. Advanced engineering materials, 2000, 1 (1): 11-33
    [237] Zhang S X, Li J A, Song Y, et al. In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy. Materials Science and Engineering C , 2009, 29 (6): 1907–1912
    [238]东青.微弧氧化陶瓷涂层的微观结构及生物活性研究:[硕士学位论文].济南:山东大学,2007
    [239]赵晖.镁合金的微弧氧化及真空高能束流处理研究:[博士学位论文].洛阳:洛阳工业大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700