用户名: 密码: 验证码:
CO_2跨临界循环滚动活塞膨胀机和涡旋压缩机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
臭氧层破坏和温室效应的加剧,使得自然工质CO2的应用研究重新成为国际上的研究热点,开发高效的CO2跨临界循环设备,提高CO2跨临界循环系统的运行效率,是促进该技术走向实用化的关键。本文通过理论分析、计算机模拟和实验相结合,重点对CO2滚动活塞膨胀机和涡旋压缩机进行了研究。
     本文对CO2滚动活塞膨胀机的主要运动部件进行了动力学分析,依据质量守恒和能量守恒定律,以吸气腔和排气腔作为控制容积,建立了较为系统和完善的滚动活塞膨胀机工作过程热力学模型,包括摩擦损失、泄漏损失、流动损失和膨胀机效率方程。采用EULER数值方法对方程离散求解,得出在不同转角时膨胀机各个泄漏通道的泄漏量和工作腔内相应的热力参数变化规律,为膨胀机的性能改进和优化设计提供理论依据。
     利用弹性力学理论和有限元方法,对CO2滚动活塞膨胀机运动部件在压差最大工况时的变形进行了有限元分析,计算了滑板、滚动活塞和偏心轴的压差变形,为膨胀机的设计和理论分析提供了依据。
     在带膨胀机的CO2跨临界循环水-水热泵系统及其数据采集系统的基础上,建立了膨胀机示功图测试系统,实现了较精确的膨胀机内部压力测量。通过对系统主要运行参数的调节,对膨胀机在不同转速下的运行特性和示功图进行了测试和分析,验证了膨胀机内部可能产生的三种膨胀过程并给以合理解释,指出膨胀机在实际运行工况下的膨胀比是产生三种膨胀过程的内在原因。对带膨胀机的CO2跨临界循环系统特性进行了分析,当膨胀机在设计转速附近运行时,膨胀机的效率、回收功和系统COP最佳。
     参照国标的相关规定并结合CO2跨临界循环的特点,设计了CO2涡旋压缩机,其涡圈始端型线进行了对称圆弧修正,计算了动涡盘的切向气体力、径向气体力和轴向气体力,并对十字滑环、动涡盘和主轴进行了详细的动力学计算和分析。考虑泄漏、摩擦、流动和传热等不可逆因素,建立了CO2涡旋压缩机工作过程的数学模型并对该模型进行了求解和分析,计算和分析结果可用于指导CO2涡旋压缩机的优化设计,为今后进一步研究涡旋压缩机打下基础。
For the deterioration of ozone depletion and greenhouse effect, research on the application of natural working fluid CO2 has been became hotspot all over the world. Developing high efficiency equipments and improving the cycle performance become the key problem to promote the CO2 transcritical cycle into practice. In the dissertation, the investigation has been done with focus on CO2 rolling piston expander and scroll compressor by combining with theoretical analysis, computer simulation and experimental research.
     Dynamic analysis on the main moving parts of CO2 rolling piston expander is given in this dissertation. According to the mass and energy conservation principles, reasonable thermodynamics model for the rolling piston expander working process is established with suction chamber and exhaust chamber as control volume, which includes equations of friction loss, leakage loss, flow loss and expander’s efficiency. With the help of EULER numerical method, the equations are solved discretely, which brings out the leakage rates through all leaking passages at different rotational angles and the rules of the thermodynamics parameters inside chambers, which can provide theoretical basis for the performance improvement and optimal design of the expander.
     Application of elastic mechanics theory and finite element method, finite element analysis on distortion of moving parts in the CO2 rolling piston expander under the condition of the largest pressure difference is carried out. The distortion values for the sliding vane, rolling piston and eccentric shaft under pressure difference are gained, which can provide references for the design and theoretical analysis of expander.
     Based on the CO2 transcritical cycle water-water heat pump system with expander and the data acquisition system, the P-V diagram test system for the expander has been set up and attained more accurate inside pressure of the expander. By adjusting the main working parameters of the system, the operating characteristic and P-V diagram of the expander are obtained and analyzed at different rotational speed. And the three kinds of probable expansion processes inside the expander are verified. At the same time, the reasonable explanation is presented that the expansion ratio at the practical operating condition is the intrinsic reason to result in the three kinds of expansion process inside of the expander. It is shown from the system performance analysis of CO2 transcritical cycle with expander that the efficiency, recovery work and coefficient of performance of the system are optimal when the expander is running near the designed rotational speed.
     According to related Chinese Standard and the characteristics of CO2 transcritical cycle, CO2 scroll compressor is designed and the top wrap is modified by prefect meshing profile. The tangential, radial and axial gas forces at any rotational angle of orbiting scroll are calculated and the detailed dynamic calculation and analysis for the Oldham-coupling ring, orbiting scroll and crankshaft are also presented. Considering the inreversible factors of leakage, friction, flow and heat transfer, the mathematical model for the working process of the compressor is established. The solution and analysis results for the model can instruct optimal design and provide for the future research work of CO2 scroll compressor.
引文
[1] F.S.Rowland, M.J.Molina. Stratospheric Sink for Chlorofluoromethanes: Chlorine Atome Catalyzed Destruction of Ozone. Nature, 1974, 249: 810-812.
    [2] Lorentzen G. The use of natural refrigerants: a complete solution to the CFC/HCFC predicament. International Journal of Refrigeration,1995,18(3):190- 197.
    [3] Lorentzen G. Transcritical vapor compression cycle device. International Patent Publication WO 90/07683, 1990.
    [4] http://www.appliancemagazine.com/editorial.php?article=1098&zone=207&first=1.2006,11.
    [5] J.Manzione, S.Collier,S.Memory, P.Hrnjak. An improved CO2 cooling system for the up-armorede HMMWV. 7th IIR Gustav Lorentzen conference on natural working fluids,Trondheim, Norway,2006:53-56.
    [6] A.Jakobsen, G. Skaugen, T. Skiple, P. Neks?. Development of CO2 vending machine for heating and cooling beverage. 7th IIR Gustav Lorentzen conference on natural working fluids,Trondheim, Norway,2006:251-255.
    [7] A.Zoughaib,C.Borlein, D.Clodic. Measurement of performances of low tempera-ture CO2 systems in hypermarkets. 7th IIR Gustav Lorentzen conference on natu-ral working fluids,Trondheim, Norway,2006:260-263.
    [8] L.Reinholdt. Freezing equipment with CO2 as refrigerant. 7th IIR Gustav Lor-entzen conference on natural working fluids,Trondheim, Norway,2006:437-440.
    [9] P. Hrnjak. Natural working fluids: Development and future propspectives with emphasis on carbon dioxide issuses. 7th IIR Gustav Lorentzen conference on natural working flids,Trondheim,Norway, 2006:7-10.
    [10] 陈江平,简晓文等.二氧化碳汽车空调系统应用研究进展(二)——部件设计改进.流体机械,2000,28(5):53-57.
    [11] http://www.danfoss.com/Spain/NewsAndEvents/News/EventsAndShows/Danfoss+Join+Forces.htm
    [12] http://www.obrist.at/productsandservices/index.html
    [13] Petter Neksa, Filippo Dorin,et al. Development of two-stage semi-hermeticCO2-compressor. 4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA. 2000:355-362.
    [14] http://www.luk.de/content.luk.de/en/products/pumps/co2_sv/CO2compressors.jsp
    [15] http://www.energy.kth.se/annex27/Projects_Switzerland.html
    [16] Jurgen Sub,Horst Kruse. Efficiency of the indicated process of CO2-compressor. International Journal of Refrigeration, 1998, 21(3):194-201.
    [17] B.Hubacher, E.A.Groll. Measurement of performance of carbon dioxide com-pressors (Project 611-10070). http://www.arti-21cr.org/research/completed/
    [18] Mitsuhiro Fukuta, R.Radermacher. Performance of a vane compressor for CO2 cycle. 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue University, USA, 2000: 339-346.
    [19] Jeffery J.Nieter,Yu Chen. Modeling and experimental study of a carbon dioxide reciprocating piston compressor. Preliminary proceedings of the 5th IIR-Gustav Lorentzen conference on natural working fluids at Guangzhou. Guangzhou, China, 2002.279-287.
    [20] Tadashi Yanagisawa, Mitsuhiro Fukuta et al, Basic operating characteristics of reciprocating compressor for CO2 cycle. 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, 2000: 331-338.
    [21] Tadano M, Ebara T, Oda A, et al. Development of the CO2 hermetic compressor. 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, 2000:323-330.
    [22] http://www.sanyo.co.jp/R_and_D/e/profile/field/power_electronics_e.html
    [23] Ohkawa T, Kumakura E,et a1. Development of the hermetic swing compressor for CO2 refrigerants. The proceedings of the 16th international compressor engi-neering conference, Purdue,2002:841-852.
    [24] http://www.jsme.or.jp/English/awardsn26.html
    [25] Hiroshi Hasegawa, Mitsuhiro Ikoma, et al. Experimental and theoretical study of hermetic CO2 scroll compressor. 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, 2000: 347-353.
    [26] Development of Accumulator-less High-efficiency CO2 Scroll Compressor for Heat-pump Water Heater. http://www.jsme.or.jp/English/awardsn.
    [27] K.Endoh, T.Kouno,et al. Instant hot-water supply heat-pump water heater using 110CO2 refrigerant in a transcritical cycle. 7th IIR Gustav Lorentzen conference on natural working flids, Trondheim, Norway, 2006:27-30.
    [28] T.Hirao, H.Mizukami,et al. Development of air conditioning system using CO2 for automobile. 4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA. 2000:193-200.
    [29] http://www.mycomj.co.jp
    [30] 陈江平,穆景阳,刘军朴等.二氧化碳跨临界汽车空调系统开发.制冷学报, 2002,3:14-17.
    [31] http://www.ssb.com.cn/docc/6_11.htm.
    [32] Hwang Yunho. Comprehensive Investigation on Carbon Dioxide Refrigeration Cycle. USA: University of Maryland, 1997.
    [33] http://www.eurocooling.com/articledorin.doc
    [34] Man-Hoe Kim, Jostein Pettersen, Clark W. Bullard. Fundamental process and system design issues in CO2 vapor compression systems. Progress in Energy and Combustion Science, 2004, 30:119-174.
    [35] Torahide Takahashi. Development of Carbon Dioxide (CO2) Applied Refrigera-tion System. http://www.sae.org/altrefrigerant/presentations/calsonic.pdf.
    [36] G Lorentzen. Revival of carbon dioxide as a refrigerant, International Journal of Refrigeration, 1994,17(5):290-310.
    [37] Maurer T., Zinn T. Experimentelle Untersuchung von Entspannungsmaschinen mit mechanischer Leistungsauskopploung fuer die transkritische CO2-Kaeltemaschine. DKV Tagungsbericht Berlin, 1999,26(1):304-318.
    [38] Tondell E.Impulse expander for CO2. 7th IIR Gustav Lorentzen conference on natural working fluids, Trondheim, Norway, 2006:107-110.
    [39] D.M.Robinson, E.A.Groll. Efficiencies of transcritical CO2 cycles with and without an expansion turbine, International Journal of Refrigeration,1998, 21(7): 577-589.
    [40] Bjφrn F. Feasibility study of using centrifugal compressor and expander in a car conditioner working with carbon dioxide as refrigerant. ACRC CR-23. http://acrc.me.uiuc.edu/publications.asp?type=contract&page=2
    [41] H.J.Huff, R.Radermacher, M.Preissner. Experimental investigation of a scroll expander in carbon dioxide air-conditioning system. International Congress ofRefrigeration, Washington, D.C. USA, 2003: ICR0485.
    [42] 马一太,王侃宏,杨昭.带膨胀机的CO2跨(超)临界逆循环的热力学分析.工程热物理学报, 1999,20(6): 661-665.
    [43] Zha Shitong, Ma Yitai. The development of CO2 expander technology in CO2 transcritical cycles. International Journal of Global Energy Issues, 2003, 20(3):233-244.
    [44] Li Minxia, Ma Yitai,Zha Shitong,et al.. Feasibility analysis of screw expander in CO2 refrigeration system. Proceedings of the 2003 International Conference on Cryogenics and Refrigeration, 2003:359-362.
    [45] 李敏霞.二氧化碳跨临界循环转子式膨胀机的分析与实验研究[博士学位论文].天津:天津大学, 2003.
    [46] 李敏霞,马一太,苏维诚,管海清.跨临界二氧化碳压缩膨胀机的研究.机械工程学报, 2005,41(10):153-158.
    [47] Haiqing Guan,Yitai, Ma; Minxia Li. Some design features of CO2 swing piston expander. Applied Thermal Engineering, 2006, 26(2-3):237-243.
    [48] Bingchun, Y, Bei, G, Zhilong, H, Xueyuan, P, Ziwen, X.. Development of rotary vane expander for CO2 Trans-critical refrigeration cycle. 7th IIR Gustav Lorentzen conference on natural working flids,Trondheim,Norway, 2006:99-102.
    [49] Bo,Z, Xueyuan, P, Bei, G, Ziwen, X, Pengcheng, S.. Development and experi-mental validation of the slider-based free piston expander for transcritical CO2 refrigeration cycle. 7th IIR Gustav Lorentzen conference on natural working flids,Trondheim,Norway, 2006:103-106.
    [50] Bo Zhang, Xueyuan Peng, Bei Guo, et al. Design and Validation of the Free Piston Expander For Transcritical CO2 Refrigeration Cycle. The 5th international conference on compressor and refrigeration, Dalian,China, 2005: 230-240.
    [51] Y.Chen, J. Gu.Non-adiabatic capillary tube flow of carbon dioxide in a novel refrigeration cycle. Applied Thermal Engineering, 2005, 25:1670-1683.
    [52] K.B.Madsen, C.S.Poulsen, M.Wiesenfarth. Study of capillary tubes in a tran-scritical CO2 refrigeration system. International Journal of Refrigeration, 2005, 28:1212-1218.
    [53] D.Li, J.S.Baek, E.A.Groll, et al.Thermodynamic analysis of vortex tube and work output expansion devices for the transcritical carbon dioxide cycle. 4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA.2000:433-440.
    [54] Daqing Li, E.A.Groll. Transcritical CO2 refrigeration cycle with ejec-tor-expansion device. International Journal of Refrigeration, 2005, 28:766-773.
    [55] Daqing Li, E.A.Groll. Analysis of an ejector expansion device in a transcritical CO2 air conditioning system. 7th IIR Gustav Lorentzen conference on natural working flids, Trondheim, Norway, 2006:167-171.
    [56] S.Elbel, P.Hrnjak. Experimentta validation and design study of a trans-critical CO2 prototype ejector system. 7th IIR Gustav Lorentzen conference on natural working flids,Trondheim,Norway, 2006:172-175.
    [57] Denso Corporation, Japan. Development of multi-function CO2 heat pump water heater. http://www.annex28.net/publications.htm.
    [58] Heyl P, Quack H. Free piston expander-compressor for CO2 design, applications and results. http://www.tu-dresden.de/mw/iem/kkt/mitarbeiter/lib. 2003,5.
    [59] Nickl J, Will G, Kraus W E, Quack H. Design considerations for a second generation CO2-expander[C].5th IIR-Gustav Lorentzen conference on natural working fluids at Guangzhou. Guangzhou, China, 2002:189-196.
    [60] Nickl J, Will G, Kraus W E, Quack H. Third Generation CO2 Expander. Pro-ceedings of the 21th International Congress of Refrigeration Washington, Sep-tember, 2003:17-22.
    [61] J. Nickl, G. Will, H. Quack, W.E. Kraus. Integration of a three-stage expander into a CO2 refrigeration system. International Journal of Refrigeration, 2005(28):1219-1224.
    [62] J.Riha, J.Nichl, H.Quack. Integration of the expander/compressor into the supermarket CO2 cooling system. 7th IIR Gustav Lorentzen conference on natural working flids,Trondheim,Norway, 2006:255-259.
    [63] Ronald W. Applications for the hinge-vane positive displacement compres-sor-expander. http://www.egi.kth.se/users/thermo/samer/, 2003.
    [64] Stosic N, Smith IK, Kovacevic A. Twin screw combined compressors and expanders for CO2 refrigeration systems.The proceeding of the sixteenth interna-tional compressor engineering conference at purdue,USA,2002.
    [65] J.S. Baek, E.A. Groll, P.B. Lawless.Piston-cylinder work producing expansion device in a transcritical carbon dioxide cycle. Part I: experimental investiga-tion.International Journal of Refrigeration, 2005, 28:141-151.
    [66] J.S. Baek, E.A. Groll, P.B. Lawless.Piston-cylinder work producing expansion device in a transcritical carbon dioxide cycle.Part II: theoretical model Interna-tional Journal of Refrigeration, 2005,28:152-164.
    [67] Fukuta M, Yanagisawa T. Cycle performance of CO2 cycle with vane compres-sor-expander combination[C]. City university, London,UK: International confer-ence on compressors and their systems.2001. 315-324.
    [68] M.Fukuta,T.Yanagisawa,et al. Performance and characteristics of compres-sor/expander combination for CO2 cycle. 7th IIR Gustav Lorentzen conference on natural working fluids,Trondheim,Norway, 2006:95-98.
    [69] Pettersen J, Hafner A, Skaugen G. Development of compact heat exchangers for CO2 air-conditioning systems. International Journal of Refrigeration,1998, 21(3): 180-193.
    [70] Yin Jian Min, Bullard CW, Hrnjak P S. R-744 gas cooler development and validation. International Journal of Refrigeration, 2001,24: 692-701.
    [71] Yin Jian Min, Bullard CW, Hrnjak P S. Design strategies for R-744 gas cooler. Preliminary Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, 2000, 315-322.
    [72] Kim Man-Hoe, Pettersen J, Bullard C W. Fundamental process and system design issues in CO2 vapor compression systems. Progress in Energy and Com-bustion Science, 2004, 30:119-174.
    [73] 杨俊兰. CO2跨临界循环系统及换热理论分析与实验研究[博士学位论文].天津:天津大学.2005.
    [74] 查世彤.二氧化碳跨临界循环膨胀机的研究与开发[博士学位论文].天津:天津大学,2002.
    [75] 马国远,李红旗.旋转压缩机.北京:机械工业出版社, 2001.
    [76] 马利蓉.CO2跨临界水-水热泵系统的模拟和实验研究[硕士学位论文].天津:天津大学,2006.
    [77] 高德平.机械工程中的有限元方法.西安:西北工业大学出版社,1993.
    [78] 丁皓江,何福保,谢贻权.弹性和塑性力学中的有限单元法.北京:机械工业出版社,1989.
    [79] 王国强.实用工程数值模拟技术及其在 ANSYS 上的实践.西安:西北大学出版社,1999.
    [80] 刘涛,杨风鹏等.精通 ANSYS.北京:清华大学出版社,2002,9.
    [81] 龚曙光.ANSYS 应用实例解析.北京:机械工业出版社,2003.
    [82] 顾兆林,郁永章,冯诗愚.涡旋压缩机及其它涡旋机械.西安:陕西科学技术出版社,1998.
    [83] 汪波,王迪生.WXA-0.17/7 卧式涡旋空气压缩机的研制.流体机械,1997,12:16- 18.
    [84] 司玉宝,屈宗长,樊灵等.新型特种涡旋式空压机的研制.压缩机技术,1999,3:3 -5.
    [85] 李连生.涡旋压缩机.北京:北京机械工业出版社,1998.
    [86] 樊灵,屈宗长,靳春梅等.涡旋压缩机通用型线设计的现状与进展.流体机械20008(1):27-30.
    [87] 高秀峰,郁永章.涡旋齿端圆弧类型线修正概述.流体机械,2001,29(1):25-29.
    [88] 中华人民共和国国家质量监督检验检疫总局,GB/T18429-2001,中华人民共和国国家标准,北京:中国标准出版社,2002-04-01.
    [89] Ishii N, Fukushima M. et al. Dynamic behavior of a scroll compressor. JSME International Journal,Ser 3:Vibration,Control Engineering, Engineering for Indus-try,1988,31(1):58~67.
    [90] 蔡春源,蒋尊贤,李自治.机械设计手册.辽宁科技出版社,1990.
    [91] 柏杰,李连生,郁永章.涡旋式压缩机动力特性分析.西安交通大学学报, 1994,28(8):83-89.
    [92] 谢青松.涡旋制冷压缩机主轴轴承系统特性研究[硕士学位论文].西安:西安交通大学,1995.
    [93] 司玉宝.涡旋式空气压缩机动力特性及涡盘变形的研究[博士学位论文].西安:西安交通大学,2002.
    [94] 靳林芳.涡旋式汽车空调压缩机的型线修正及性能研究[硕士学位论文].西安:西安交通大学,2000.
    [95] 苏长荪.高等工程热力学. 北京:高等教育出版社,1987.
    [96] 刘志刚,刘咸定,赵冠春.工质热物性计算程序的编制及应用.北京:科学出版社1992.
    [97] R.Span,W.Wagner. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data, 1996, 25(6), 1509-1596.
    [98] S.A.Klein. Engineering Equation Solver. Academic Professional V7.694. (07/07/06).
    [99] 张立群,罗友平,刘永波.涡旋压缩机工作特性的研究.流体机械, 2003, 31(3):1-5.
    [100] 赵远扬,李连生,束鹏程. 喷水涡旋空气压缩机工作特性的研究.西安交通大学学报,2004,38(9):887-890.
    [101] Kim Y C,Seo K J,Park H H. Modeling on the performance of an inverter driven scroll compressor. Proceedings of international compressor engineering conference at Purdue. West Lafayett, USA,1998,755-760.
    [102] Hayano M, Sakata H, Nagatomo S, et al. An analysis of losses in scroll compressor. Proceedings of the International Compressor Engineering Conference at Purdue 1988:189–97.
    [103] 江波,畅云峰,朱杰等.涡旋压缩机内部泄漏的流态分析.压缩机技术, 1998,2:21-23.
    [104] 杨骅,屈宗长.涡旋压缩机泄漏研究综述.流体机械,2003,31(11):23-26.
    [105] 高秀峰.圆弧类涡旋修正齿型泄漏线的计算.流体机械,2004,32(2):17-19.
    [106] 王宝龙,石文星,李先庭.制冷空调用涡旋压缩机数学模型.清华大学学报(自然科学版),2005,45(6):726-729.
    [107] Baolong Wang, Xianting Li, Wenxing Shi. A general geometrical model of scroll compressors based on discretional initial angles of involute. International Journal of Refrigeration, 2005 (28): 958-966.
    [108] 刘振全,吴伟东.全封闭涡旋压缩机动态数学模型.甘肃工业大学学报, 2000,26(3):59-64.
    [109] Chen Y, Halm N P, Groll E A, et a1. Mathematical modeling of scroll compressor- Part I: Compression process modeling. International Journal of Re-frigeration, 2002,25(6):731-750.
    [110] 顾兆林.涡旋压缩机工作过程的分析和模拟[硕士学位论文].西安:西安交通大学,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700