用户名: 密码: 验证码:
针刺与帕罗西汀对抑郁状态神经元保护机制的差异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抑郁症是现代社会中发病率剧增的高危害性、高致残率的精神疾患。显著而持久的心境低落是抑郁症的主要特征,临床表现有情绪低落、兴趣减少、精神运动迟滞、言语减少、且常伴有自责自罪感,严重会导致自杀。随着来自社会环境中应激因素的不断加剧,抑郁症的发病率逐年上升。全球大型流行病学调查发现,抑郁症在世界致残性疾病中排名第四,终身患病率在3%-5%之间,预计到2020年其排名将仅次于缺血性心脏病,而跃至第二。抑郁症所致伤残居多数疾病之前,严重危害人类身心健康,给社会造成巨大负担。
     目前抑郁症主要采用的是药物治疗。由于抑郁症的发病机制复杂,单靶点的治疗虽获肯定疗效,但仍无法摆脱毒副作用和患者依从性差等问题。针刺对机体具有整体的调节作用。抑郁症是针刺治疗的优势病种之一,临床疗效确切,获得广泛关注和认同。其在改善抑郁症患者躯体化症候群、认知障碍症候群和生活质量等方面,表现出疗效持续、全面且无副作用的特点。近年来,对针刺抗抑郁治疗的机制研究不断深入,发现针刺治疗是多靶点、多方面的整体治疗,在维持脑神经元细胞生存方面有一定的保护作用。
     因此,本实验研究选取与细胞生存与凋亡关系最为密切的细胞内Ras-MEK-ERK及Ras-MKK-JNK信号转导通路,意在分子生物学水平上,探索针刺对神经元细胞生存质量的影响作用。选择孤养结合慢性应激抑郁模型大鼠为实验对象,模拟人类抑郁发病过程;采用手针、电针“百会”、“印堂”、“内关”穴、帕罗西汀灌胃三种干预措施治疗;观察抑郁模型大鼠行为学、单胺类神经递质表达的变化,以确定模型的成立;研究针刺在生理状态与病理状态下对细胞内ERK及JNK信号转导通路影响异同,针刺和药物治疗对影响细胞生存与凋亡的细胞内ERK及JNK信号转导通路影响异同;探索针刺抗抑郁治疗的作用机制,补充针刺抗抑郁机制的研究内容。
     研究方法与结果:
     1.建立孤养结合慢性应激抑郁大鼠模型,进行体重、旷场、糖水实验评价模型大鼠行为学改变情况。实验前各组大鼠行为表现均无统计学差异。实验结束后,模型组大鼠体重、糖水消耗量减少,均与空白组大鼠有显著性差异(P<0.01);而旷场实验水平穿越格数与竖立次数显著低于空白组大鼠(P<0.05)。手针、电针、帕罗西汀组大鼠体重均高于模型组,差异显著(P<0.01);手针、电针、帕罗西汀组大鼠糖水摄入量均高于模型组,其中帕罗西汀组与模型组相比差异显著(P<0.05);手针、电针治疗组大鼠旷场实验水平穿越格数增加,与模型组相比,手针组差异显著(P<0.01);手针、电针、帕罗西汀组大鼠旷场实验竖立次数较模型组均有增加,与模型组相比,手针、电针组差异显著(P<0.01),帕罗西汀组差异显著(P<0.05)。空白+手针组大鼠行为学表现与空白组大鼠无统计学差异。
     2.采用酶联免疫吸附法(ELISA)方法检测大鼠血清中单胺类神经递质(5-HT\NE\DA)含量,检测孤养结合慢性应激抑郁模型大鼠单胺类神经递质改变情况以及干预方式对其的治疗作用。结果如下:①大鼠血清5-HT含量,与空白组相比,模型组、模型+手针组、模型+电针组及模型+帕罗西汀组均下降,差异显著(P<0.05);与模型组相比,模型+手针组、模型+电针组及模型+帕罗西汀组均上升,差异显著(P<0.05);三组治疗组之间差别无统计学意义。②大鼠血清DA含量,与空白组相比,模型组大鼠下降,差异显著(P<0.05);与模型组相比,模型+手针组、模型+电针组及模型+帕罗西汀组含量均增加,差异显著(P<0.05);三组治疗组之间差别无统计学意义。③大鼠血清NE含量:与空白组相比,模型组、模型+手针组、模型+电针组及模型+帕罗西汀组大鼠血清NE含量减少,差异显著(P<0.05);与模型组相比,模型+手针组、模型+电针组及模型+帕罗西汀组均增加,差异显著(P<0.05);三组治疗组之间差异无统计学意义。空白+手针组大鼠血清单胺类神经递质含量与空白组大鼠无统计学差异。
     3.研究ERK信号转导通路关键指标ERK1/2及其磷酸化水平与抑郁症发病及针刺抗抑郁治疗作用机制的关系。采用免疫印迹法(Western blot)检测,海马及前额叶皮层相关蛋白表达量及其磷酸化水平。结果如下:①抑郁模型大鼠海马及前额叶皮层ERK1表达水平与空白组无统计学差异;海马ERK2表达增加与空白组有显著性差异(P<0.01),前额叶皮层ERK2表达水平与空白组无统计学差异。②与空白组相比,抑郁模型大鼠海马及前额叶皮层p-ERK1表达显著减少(P<0.01)。与模型组比较,三组治疗组大鼠海马区p-ERK1表达量均上调,模型+手针组、模型+电针组差异显著(P<0.01),模型+帕罗西汀差异显著(P<0.05);模型+手针组与模型+帕罗西汀组相比差异显著(P<0.01),模型+电针组与模型+帕罗西汀组相比差异显著(P<0.05)。与模型组比较,模型+手针组、模型+电针组大鼠前额叶皮层p-ERK1表达显著增加,差异显著(P<0.01);与模型+帕罗西汀组相比,模型+手针组、模型+电针组前额叶皮层p-ERK1表达有显著差异(P<0.01)。③与空白组相比,抑郁模型大鼠海马及前额叶皮层P-ERK2表达显著减少(P<0.01)。与模型组比较,模型+手针组、模型+电针组及模型+帕罗西汀组大鼠海马区p-ERK2表达上调,差异显著(P<0.01);三组治疗组织间无差异。与模型组比较,模型+手针组、模型+电针组及模型+帕罗西汀组大鼠前额叶皮层p-ERK2表达均上调,模型+手针组、模型+电针组上调差异显著(P<0.01),模型+帕罗西汀组上调差异显著(P<0.05);与模型+帕罗西汀组,模型+手针组、模型+电针组差异显著(P<0.01)。空白十手针组与空白组大鼠海马及前额叶皮层ERK1/2磷酸化水平无统计学差异。
     4.对细胞内信号转导通路交汇点CREB (cAMP反应元件结合蛋白)的研究。采用免疫印迹法(Western blot)检测,海马及前额叶皮层CREB蛋白表达量及其磷酸化水平。结果如下:①模型组大鼠海马区CREB表达比空白组减少,差异显著(P<0.05),皮层CREB表达与空白组无统计学差异。②模型组大鼠海马区及前额叶皮层p-CREB表达减少,与空白组比较差异极显著(P<0.01);海马区,三组治疗组p-CREB表达较模型组上升,差异极显著(P<0.01),且模型+电针组、模型+帕罗西汀组显著高于模型+手针组(P<0.05,P<0.01)。空白+手针组与空白组大鼠海马及前额叶皮层CREB表达及其磷酸化水平方面无统计学差异。
     5.对ERK信号转导通路下游BDNF(脑源性神经营养因子)的研究。采用免疫印迹法(Western blot)检测,海马及前额叶皮层BDNF蛋白表达量。结果如下:与空白组相比,抑郁模型大鼠海马及前额叶皮层BDNF表达显著减少(P<0.01)。大鼠海马区BDNF蛋白表达显示:与模型组比较,模型+手针组、模型+电针组差异显著(P<0.01),模型+帕罗西汀组差异显著(P<0.05)。模型+手针组与模型+帕罗西汀组差异显著(P<0.01),模型+手针组与模型+电针组相比差异显著(P<0.01),模型+电针组与模型+帕罗西汀组相比差异显著(P<0.05)。大鼠前额叶皮层BDNF蛋白表达显示:与模型组比较,模型+手针组、模型+电针组及模型+帕罗西汀组差异显著(P<0.01);模型+手针组与模型+帕罗西汀组差异显著(P<0.01),模型+手针组与模型+电针组差异显著(P<0.01),模型+电针组与模型+帕罗西汀组之间无统计学差异。空白+手针组与空白组大鼠海马及前额叶皮层BDNF蛋白表达无统计学差异。
     6.抑郁模型大鼠海马及前额叶皮层神经元凋亡因子存在情况及干预措施对其改变情况。采用免疫印迹法(Western blot)检测,海马及前额叶皮层促凋亡因子BAD与抗凋亡因子Bcl-2蛋白表达量,并计算其比值,探讨细胞死亡与存活程度。结果发现,①大鼠海马区BAD/Bcl-2比值:与空白组相比,模型组大鼠海马区BAD/Bcl-2比值显著增加(P<0.05);与模型组比较,模型+手针组、模型+电针组及模型+帕罗西汀组大鼠海马区BAD/Bcl-2比值显著下降(P<0.05);三组治疗组之间无统计学差异。②大鼠前额叶皮层BAD/Bcl-2比值:与空白组相比,模型组大鼠前额叶皮层BAD/Bcl-2比值极显著增加(P<0.01);与模型组比较,模型+手针组、模型+电针组及模型+帕罗西汀组大鼠前额叶皮层BAD/Bcl-2比值下降,其中模型+手针组及模型+帕罗西汀组与模型组比较差异极显著(P<0.01);三组治疗组之间无统计学差异。空白+手针组与空白组大鼠在海马及前额叶皮层BAD/Bcl-2比值上没有统计学差异。
     7.研究JNK信号转导通路相关指标NK、p-JNK、c-Jun、Caspase-3)与抑郁症发病及针刺抗抑郁治疗作用机制的关系。采用免疫印迹法(Western blot)检测,海马区蛋白表达量及磷酸化水平。结果如下:①抑郁模型大鼠海马区JNK蛋白表达水平与空白组无统计学差异。②抑郁模型大鼠海马区p-JNK蛋白表达水平与空白组差异显著(P<0.01);与模型组相比,模型+手针组大鼠海马p-JNK蛋白含量下降,差异显著(P<0.05)。③抑郁模型大鼠海马c-Jun蛋白表达量增加,与空白组差异显著(P<0.01);各治疗组与模型组无统计学差异。④抑郁模型大鼠海马Caspase-3蛋白表达显著增加(P<0.01);三种治疗方式均能下调海马Caspase-3蛋白表达水平,与模型组相比差异显著(P<0.01),且两组针刺治疗组效果好于帕罗西汀组,差异显著(P<0.01)。空白+手针组与空白组大鼠,海马区JNK、p-JNK、c-Jun表达无统计学差异。空白+手针组与空白组大鼠,海马区Caspase-3蛋白表达水平,差异显著(P<0.05);空白+手针组与模型组相比海马区Caspase-3蛋白表达水平,差异显著(P<0.01)。
     结论
     1.孤养结合慢性应激刺激大鼠模型,能够模拟人类抑郁症状。造模成功后,模型大鼠体重下降、兴趣减低、探究行为减少,血清单胺类神经递质(5-HT\NE\DA)降低,Ras-MAPK/ERK通路多环节受到抑制,Ras-MKK-JNK通路被激活,神经元细胞内BAD/Bcl-2 (?)(?)值升高,神经元凋亡超过正常水平。
     2.研究结果显示,生理状态下,针刺对抑郁模型大鼠行为学、血清单胺类神经递质、ERK及JNK磷酸化水平均无影响。推测,正常机体状态下,针刺可能不会产生导致其正常状态发生改变的作用。
     3三种干预方式均能改善抑郁模型大鼠的行为学表现,且研究结果显示,针刺对探究行为的改善作用优于帕罗西汀,帕罗西汀对中枢奖赏机制的改善作用优于针刺。
     4.三种干预方式均可以逆转模型大鼠血清单胺耗竭状态,三者之间无统计学差异。
     5.与帕罗西汀相比,针刺能显著改善ERK1/2蛋白激酶磷酸化水平,激发Ras-MAPK/ERK通路,扩大BDNF蛋白表达,从而发挥神经元保护作用。
     6.与帕罗西汀相比,针刺能显著调整JNK蛋白激酶磷酸化水平,抑制Ras-MKK-JNK通路,减少caspase-3蛋白表达,发挥抗神经元凋亡作用。
     7.针刺与帕罗西汀均可改善模型大鼠神经元细胞内BAD/Bcl-2比值,达到神经元保护作用。
     8.研究结果显示,病理状态下,针刺与帕罗西汀对MAPK信号通路磷酸化水平(p-ERK1/2、p-JNK)的调节作用有显著差异,导致细胞最终效应蛋白(BDNF、caspase-3)扩大作用有显著差距。
     9.推测,针刺抗抑郁治疗,临床表现出起效时间早、减毒增效作用强、改善患者整体状态显著,可能与上述信号转导机制的差异性呈正相关。
In modern society, depression is a mental illness with high prevalence, harmfulness, and high morbidity. Significant lasting low mood is the main features of depression, and clinical manifestations are depressed mood, reduced interest, spiritual movement hysteresis, few words, accompanied by self-accusation, etc. When it goes serious it can lead to suicide. The world large epidemiological survey found that depression was the fourth disabling disease and lifelong rate of depression is between 3% ans 5%. It estimated that by 2020, depression will be the second disabling disease just behind ischemic heart disease, which is seriously harmful to humanbeings. It is a huge burden of the society.
     At present, treatment of depression is mainly dependent on drugs. Treatment of single target is obtain sure curative effect, but it still can't get rid of side effects and lower patient compliance. Acupuncture has curative effect of depression, and it can regulate the whole body. It can improve patient's depression syndromes, cognitive disorders, and life quality. The effect is continuous, comprehensive, effective but without side effects. In recent years, inceasingly researches on antidepression treatment mechanism of acupuncture found that it is an overall treatment, and can maintain existence of brain neurons to protect the brain neurons.
     Therefore, we choose Ras-MEK-ERK and Ras-MKK-JNK signaling pathways related with existence and apoptosis of neurons to observe the changes. Choose a solitary rat model with chronic stress for experiment to simulate depression process of humans. Use hand needle, EA to puncture into "Baihui-yintang", "Neiguan", and paroxitine as intervention to the model rats. Observe movements,sucrose intake,weight and expression changes of monoamine neural transmitter of rats to evaluate the establishment of the model. Research on the treatment mechinism of acupuncture antidepression in physiological and pathological state and differences between acupuncture and drug treatment, between hand needle and EA,in order to explore the antidepression treatment mechanism of acupuncture.
     Methods and results
     1.Establish a solitary rat model with chronic stress,then use weight,sucrose intake and open-field tests to evaluate the model.Before the experiment,there is no diffence among these groups. At the end of the experiment, there are different. Compared with control group rats, body weight and sucrose intake of model group obviousely decreased (P<0.01), and crossing numbers, rearing times of of model group decreased (P<0.05). Compared with model group, needle group,EA group,paroxitine group can increase the rats'weight (P<0.01); and paroxitine group can increase the rats'sucrose intake (P<0.05); needle group can increase the rats'crossing number (P<0.01), needle group,EA group,paroxitine group can increase the rats' rear number (P<0.01,P<0.01,P<0.05). Compared with control group, rats in control+needle group showed no significant change in behavior tests.
     2. Use ELISA test to detect monoamine neural transmitter (5-HT\NE\DA) levels in serum of solitary depression model rats with chronic stress, and see the changes after the intervention treatments. Results:①5-HT:Compared with control group,5-HT in model group,hand needle group,EA group and paroxitine group decreased (P<.05); compared with model group, hand needle group,EA group and paroxitine group increased (P<.05); there was no difference among hand needle group,EA group and paroxitine group.②DA: compared with control group, DA in model group decreased (P<.05); compared with model group, hand needle group,EA group and paroxitine group increased (P<0.05); there was no difference among hand needle group,EA group and paroxitine group.③NE:Compared with control group, NE in model group,hand needle group,EA group and paroxitine group decreased(P<0.05); compared with model group, hand needle group,EA group and paroxitine group increased (P<0.05); there was no difference among hand needle group,EA group and paroxitine group. Compared with control group, rats in control+needle group showed no significant change of 5-HT, NE and DA.
     3. Western blot test Ras-MEK-ERK signal passway (ERK1/2, p-ERK1/2) in hippocampus and prefrontal cortex. Results:①Compared with control group, ERK1 in hippocampus and prefrontal cortex of model group has no change; ERK2 in hippocampus decreased (P<0.01).③ompared with control group, p-ERK1 in hippocampus and prefrontal cortex of model group obviously decreased (P<0.01). Compared with model group in hippocampus, hand needle group,EA group obviously increased (P<0.01),and paroxitine group increased (P<0.05); EA group was obviously better than paroxitine group (P<0.01), hand needle group was better than paroxitine group (P<0.05). Compared with model group in prefrontal cortex, hand needle group,EA group obviously increased (P<0.01); compared with paroxitine group, hand needle group,EA group obviously increased (P<0.01).③Compared with control group, p-ERK2 in hippocampus and prefrontal cortex of model group obviously decreased (P<0.01). Compared with model group in hippocampus, hand needle group,EA group and paroxitine group obviously increased (P<0.01),no difference among them. Compared with model group in prefrontal cortex, hand needle group,EA group obviously increased (P<0.01),and paroxitine group increased (P<0.05); compared with paroxitine group, hand needle group,EA group obviously increased (P<0.01). Compared with control group, rats in control+needle group showed no significant change of p-ERK1/2.
     4. Western blot test CREB in hippocampus and prefrontal cortex. Results:①Compared with control group, CREB in hippocampus of model group obviously decreased(P<0.05), and in prefrontal cortex no changes.②Compared with control group, p-CREB in hippocampus and prefrontal cortex of model group obviously decreased (P<0.01). Compared with model group in hippocampus, hand needle group,EA group and paroxitine group obviously increased (P<0.01);and compared with hand needle group, EA group,paroxitine group obviously increased (P<0.05, P<0.01). Compared with control group, rats in control+needle group showed no significant change of p-CREB.
     5. Western blot test BDNF in hippocampus and prefrontal cortex. Results:Compared with control group, BDNF in hippocampus and prefrontal cortex of model group obviously decreased (P<0.01). In hippocampus:compared with model group, hand needle group,EA group obviously increased (P<0.01),and paroxitine group increased(P<0.05); compared with hand needle group, EA group and proxitine group not have enough advantages (P<0.01),and EA group is better than paroxitine group (P<0.05). In prefrontal cortex: compared with model group, hand needle group,EA group and paroxitine group obviously increased (P<0.01); compared with hand needle group, EA group and proxitine group not have enough advantages (P<0.01). Compared with control group, rats in control+needle group showed no significant change of BDNF.
     6. Western blot test BAD/Bcl-2 tatio in hippocampus and prefrontal cortex. Results:①In hippocampus:compared with control group, number in model group increased (P<0.05) compared with model group, number in hand needle group,EA group and paroxitine group decreased (P<0.05),and no difference among the three treatment groups.②In prefrontal cortex:compared with control group, number in model group increased (P<0.01); compared with model group, hand needle group and paroxitine group decreased (P<0.01),and no difference among them. Compared with control group, rats in control+needle group showed no significant change of BAD/Bcl-2 tatio.
     7. Western blot test Ras-MKK-JNK signal passway (JNK, p-JNK, c-Jun, Caspase-3) in hippocampus. Results:①There is no difference between model group and control group about expression of JNK in hippocampus.②Compared with control group, p-JNK in model group increased (P<0.01); compared with model group, p-JNK in hand needle group decreased (P<0.05).③Compared with control group, c-Jun in model group increased (P<0.01).④Compared with control group,Caspase-3 in model group increased (P<0.01); compared with model group,hand needle group,EA group and paroxitine group decreased (P<0.01), while hand needle group and EA group are better than paroxitine group (P<0.01).Compared with control group, rats in control+needle group showed no significant change of JNK,p-JNK,c-Jun protein in statistics.Compared with control group, rats in control+needle group showed significant change of Caspase-3 (P<0.05);but compared with model group, rats in control+needle group showed significant change of Caspase-3 protein (P<0.01).
     Conclusions
     1.Chronic stress induced rat model, can mimic humans'depressive symptoms.Chronic stress could cause the rats to move less, suppress body weight gain of rats, decreasing of sucrose intake and expression of 5-HT\NE\DA in serum, inhibite Ras-MKK-JNK signaling pathway, active Ras-MKK-JNK signaling pathway, increase the ratio of BAD/Bcl-2 to inncrease neuron apoptosis.
     2. The results showed that Acupuncture in physiological condition, there were no significant changes about ethology, amine neurotransmitter in serum, phosphorylation of ERK and JNK. So we can infer that acupuncture maybe hasn't the function to change the normal balance of body.
     3. All three interventions can improve behavior performance. Acupuncture is better than paroxetine in detective behavior, but paroxetine is better than acupuncture in rewarding reaction.
     4. All three interventions can reverse depletion state of amine neurotransmitter in serum of rats, but three were no statistically difference among them.
     5. Compared with paroxetine, acupuncture can markedly improve phosphorylation level of ERK 1/2 protein kinase, stimulate Ras-MAPK/ERK pathway, and expand protein expression of BDNF, to protect the neurons.
     6. Compared with paroxetine, acupuncture may significantly adjust phosphorylation level of JNK protein kinase, restrain Ras-MKK-JNK pathway, and reduce protein expression of caspase-3, to reduceneuron apoptosis.
     7. Both Acupuncture and paroxetine can reduce the ratio of BAD/Bcl-2 to protect the neurons.
     8. According to the result, in pathologic state, both acupuncture and paroxetine can adjust phosphorylation level (p-ERK1/2, p-JNK) of MAPK signaling pathways, which caused the expantion of cells effect proteins showed significant diffence eventually.
     9. According to the result, we infer that these chages above maybe have relationship with the basic mechanism of acupuncture antidepression treatment. It maybe the resean for the advantages that acupuncture has early effection, decreasing toxic, improve patients' overall state in clinic.
引文
[1]Gilmer WS, Trivedi MH, Rush AJ, etal. Factors associated with chronic depression episode:a preliminary report from the STAR-D project. Acta Psychiatrica Scandinavica 112, 425-433.
    [2]中华医学会精神科分会.中国精神障碍分类与诊断标准第三版[M].济南:山东科学技术出版社,2001,87-89.
    [3]朱紫青.抑郁障碍诊疗关键[M]江苏科学技术出版社,2003:21-27.
    [4]Daszuta A, Ban Sr M, Soumier A, etal.Depression and neuroplasticity:implication of serotoninergic systems [J].Therapy,2005,60:461-468.
    [5]Fava GA, Ruini C. The sequential approach to relapse prevention in unipolar depression [J]. World psychiatry,1,10-15.
    [6]Porsoh RD, Lepiehon M, Jalfre M. Depresion:a new animal model sensitive to antidepressant treatment.Nature,1977,266:730-732.
    [7]Luckil. The forced swimming test as a mod el for core and component behaviorl effects of antidepressant drugs. Behav Pharmacol,1997,8:523-532.
    [8]Kelly JP.Leonard BE. The effect of tianeptine and sertraline in three animal models of depression. Neuropharmacology,1994,33:1011-1016.
    [9]张有志,李云峰,刘刚,等.巴戟天寡糖对获得性无助抑郁模型大鼠行为学的影响fJ].中国行为医学科学,2005,14(4):309-11.
    [10]Katz R, Roth K, Carroll B.Acute and chronic stress effects on open-field activity in the rat:implications for a moddel of depression.Neurosci Biobehav Rev,1981,5:247.
    [11]W illner P.A animal models as simulations of depression. TIPS,1991,12:131-137.
    [12]Zhang YZ, Li Y F, Liu G, et al. Antidepressant effect of oligosaccharides extracted from Morinda Officinalis on the learned helplessness rat model [J].Chin J Behavioral Med Sci, 2005,14(4):309-11.
    [13]Sato A, Nakagawasai O, Tanno K, etal. Effect of non-selective dopaminergic receptor agonist on disrupted maternal behavior in olfactory bulbectomized mice [J]. Behav Brain Res, 2010,210(2):251-6.
    [14]Roche M, Harkin A, Kelly J P. Chronic fluoxetine treatment attenuates stressor-induced changes in temperature, heart rate, and neuronal activation in the olfactory bulbectomized rat [J]. Neuropsycho pharmacology,2007,32(6):1312-1320.
    [15]Schildkraut JJ.The catecholamine hypothesis of affective disorders:a review of supporting evidence [J]. Am J Psychiatry,1965,122(5):509-522.
    [16]韩济生.神经科学原理[M].北京:北京医科大学出版社,1999.1132-1144.
    [17]安磊,田燕,李静,等.小补心汤总黄酮对慢性应激小鼠脑内单胺递质水平的影响[J]大连医科大学学报2011,3(33):208-210.
    [18]Bourin M, David DJ, Jolliet P, etal. Mechanism of action of antidepressants and therapeutic perspectives [J]. Therapie,2002,57(4):385-396.
    [19]Mitani H, Shirayama Y, Yamada T, etal. Plasma levels of homovanillic acid, 5-hydroxyindoleacetic acid and cortisol, and serotonin turnover in depressed patients [J]. Prog Neuropsychopharmacol Biol Psychiatry,2006,30:531-534.
    [20]Blier P. Altered function of the serotonin 1A autoreceptor and the antidepressant response [J]. Neuron,2010,65(1):1-2.
    [21]Savita J, Lucki I, Drevets WC.5-HT (1A) receptor function in major depressive disorder [J].Prog Neurobiol,2009,88(1):17-31.
    [22]Neumeister A. Tryptophan depletion, serotonin, and depression:where do we stand [J]. Psychopharmacol Bull,2003,37(4):99-115.
    [23]Blier P, Ward NM. Is there a role for 5-HT1A agonist in the treatment of depression [J] Biol Psychiatry,2003,53(3):193-203.
    [24]余善法,姚三巧,丁辉,等.抑郁症状与职业紧张的关系[J].中华劳动卫生职业病杂志,2006,24(3):129-133.
    [25]Now akow ska E, Chodera A, Kus K, etal. Reversal of stress-induced memory changes bymoclobemide:the role o f neurotransmitters [J]. Pol J Pharmacol 2001,53(3):227-233.
    [26]Almaguer-MelianW, Rojas-Reyes Y, Alvare A, etal. Long-term po tentiation in the dentate gyrus in freely moving rats is reinforced by intravent ricular application o f norepinephrine, but not oxotremorine [J]. Neurobiol Learn Mem,2005,83(1):72-78.
    [27]沈鱼屯.精神病学[M].北京:人民卫生出版社,1998,429.
    [28]代英杰,范骏,孟昭义.抑郁症的神经生化特征及进展[J].中国临床康复,2003,7(30):4126-4127.
    [29]Mizoguchi K, Yuzurihara M, Ishige A, etal. Chronic stress differentially regulates glucocorticoid negative feedback response in rats. Psychoneuroendocrinology,2001, 26:443-459.
    [30]李云峰,罗质璞.应激诱发抑郁症机制的研究进展[J].生理科学进展,2002,33(2):142-144
    [31]Mukherjee, Knisely A,Jacobson J.Partial glucocorticoid agonist like effects of imipramine on hypothalamic pituitary adrenocortical adrenoeortical activity,thymus weight,and hippocampal glucocorticoid receptors in male C57BL/6 mice.Endocrinology, 2004,145(9):4185-4191.
    [32]LiberzonI, KrstovM, Young EA. Stress-restress:effects on ACTH and fast feedback. Psychoneuroendocrinology,1997,22(6):443.
    [33]Young EA, Lopez JF, Murphy-Weinberg V, etal. Mineralocorticoid receptor functions in major depression. Arch. Gen. Psychiatry,2003,60(1):24.
    [34]Muller M.B, Holsboer F, Keck M.E, etal. Genetic modification of corticosteroid receptor signalling:novel insights into pathophysiology and treatment strategies of human affective disorders.Neuropeptides,2002,36 (2-3):117.
    [35]Pariante CM, Miller AH.Glucocorticoid receptors in majordepression:relevance to pathophysiology and treatment. Biol Psychiatry,2001,49:391-404.
    [36]Fabriee Duvai Marie-Claude Mokrani, Jos6 A Monreai Ortiz,etal. Cortisoi hyperseeretion in unipolar major depression with melanehoiie and psychotic features: Dopaminergic, noradrenergic and thyroid correlates [J].Psychoneuroendocrinelogy,2006, 31(7):876-888.
    [37]张小松,赵更力,陈丽君,等.产后抑郁的转归及影响因素和与激素水平的关系.第二届国际妇幼保健学术会议暨2006全国妇幼保健学术大会论文集.2006.
    [38]郭锡永,王悦.更年期抑郁症状与血清单胺氧化酶活性及雌二醇水平相关性研究.中国妇幼保健,2005,20(10):1189-1191.
    [39]过斌,邸晓兰,杨大中,等.米氮平与SSRIs类抗抑郁药对伴有性功能障碍的男性抑郁发作患者的对照研究[J].中国新药杂志,2009,18(9):43-46.
    [40]周娟,袁勇贵.抗抑郁剂对中老年抑郁患者血清褪黑素水平的影响[J].四川精神卫生,2008,21(3):48-49.
    [41]胡敏,张桂青,梁霞.抑郁症患者血清白介素-6、白介素-2与生活事件及应对方式的相关研究.中国健康心理学杂志,2010,(6):3-5
    [42]陆小兵,杨东英,薛士健,等.老年抑郁症患者治疗前后血清细胞因子水平的研究.中国健康心理学杂志,2010,(7):3-5
    [43]师天元,郭新胜,张红亚,等.手法精神分裂症和首发抑郁症患者血浆白细胞介素及其可溶性受体的对照研究.中国神经精神疾病杂志,2009,(1):30-33.
    [44]Larson S J, Dunn A J.Behavioral effects of cytokines. Brain, Behavior, and Immunity, 2002,15(4):371-387.
    [45]Castanon N, Konsman J P, Medina C, etal. Chronic treatment with the antidepressant tianeptine attenuates lipopolysaccharide-induced Fos expression in the rat paraventricular nucleus and HPA axis activation.Psychoneuroendocrinology,2003,28(1):19-34.
    [46]Yirmiya R,Weidenfeld J,Pollak Y,etal.Cytokines,depression due to a general medical condition, and antidepressant drugs. Advances in Experimental Medicine and Biology,1999, 461:283-316.
    [47]Aschner M, Sonnewald U, Tan KH. Astrocytemodulation of neuro-toxic injury. Brain Patho,2002,12:475-481.
    [48]Olie JP, Silva CE, Macher JP. Neuroplasticity-A New Approach to the Pathophysiology of Depression. Current Medicine Group,2005.
    [49]Monje ML, Palmer T. Radiation Injury and Neurogenesis. Cur Opi 2003,16:129-134
    [50]NadareishviliZ, Hallenbeck J. Neuronal Regeneration after Stroke [J]. N Engl Med,2003, 348:2355-2356.
    [51]李晓白,翁史,中川伸等.成年期大脑的神经再生:一个理解精神疾病的新机制.上海精神医学,2005,17(5):301-301
    [52]Kiss JP. Theory of active antidepressants:a nonsynaptic approach to the treatment of depression [J]. Neurochem Int,2008,52(1-2):34-39.
    [53]Bell McGinty S, Butters MA, Meltzer CC, etal. Brain Morpho-metricAbnormalities in Geriatric Depression:Long-Term Neurobio-logical Effects of illness Duration [J]. Am Psychiatry,2002,159:1424-1427.
    [54]Lampe IK, Janssen J, SchnackHG, etal. Association of Depression Duration with Reduction of Global Cerebral Gray Matter Volume in Female Patients with Recurrent Major Depressive Disorder [J]. Am Psychiatry,2003,160:2052-2054
    [55]Czeh B, Lucassen PJ. What causes the hippocampal volume decrease in depression [J] Eur Arch Psychiatry Clin Neurosci 2007,257(5):250-260.
    [56]McEwen BS. Possible mechanisms for atrophy of the human hippocampus [J]. Mol Psychiatry,1997,2(3):255-262.
    [57]Longone P, RupprechtR, ManieriGA, etal. The complex roles of neurosteroids in depression and anxiety disorders [J]. Neurochem Int,2008,52(6):596-601.
    [58]Elenkov IJ. Neurohormonal-cytokine interactions:implications for inflammation, common human diseases and well-being [J]. Neurochem Int,2008,52(3):40-51.
    [59]Malcangio M, Lessmann V. A common thread for pain and memory synapses? Brain-derived neurotrophic factor and trkB receptors [J].Trends Pharmacol Sci 2003,24(3): 116-121.
    [60]TsankovaNM, BertonO, RenthalW, etal. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action [J]. Nat Neurosci 2006,9(4):519-525.
    [61]Greenwood BN, Strong PV, Foley TE, etal. Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus [J]. Neuroscience,2007,144(4): 1193-1208.
    [62]O'Leary O F, Wu X, Castren E. Chronic fluoxetine treatment increases expression of synaptic proteins in the hippocampus of the ovariectomized rat:role of BDNF signaling [J]. Psychoneuroendcrinology,2009,34(3):367-381
    [63]Hoshaw BA, Malberg JE, Lucki I. Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects[J].Brain Res,2005,1037(1-2):204-208.
    [64]Lang UE, Hellweg R, Gallinat J. BDNF serum concentrations in healthy volunteers are associated with depression-related personality traits [J]. Neuropsychopharmacology,2004, 29(4):795-798.
    [65]Matrisciano F, Bonaccorso S, RicciardiA, etal Changes in BDNF serum levels in patients with major depression disorder (MDD) after 6 months treatment with sertraline, escital opramor venlafaxine [J]. J Psychiatr Res,2009,43(2):247-254.
    [66]Lee HY, Kim YK. Plasma brain-derived neurotrophic factor as a peripheralmarker for the action mechanism of antidepressants [J]. Neuropsychobiology,2008,57(4):194-199.
    [67]Karege F, Vaudan G, Schwald M, etal. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs [J]. Brain ResMol Brain Res,2005,136(1-2):29-37.
    [68]Tiraboschi E, Tardito D, Kasahara J, et al. Selective phosphorylation of nuclear CREB by fluoxetine is linked to activation of CaMK IV and MAPkinase cascades. Neuropsychopharm, 2004,29:1831-1840.
    [69]Perez J, Tardito D, Mori S, et al. Abnormalities of cAMP signaling in affectivedisorders: implication for pathophysiology and treatment. Bipolar Disord,2000,2:27-36.
    [70]Kamenetsky M, Middelhaufe S, Bank EM, et al. Molecular details of cAMP generation in mammalian cells:a tale of two systems. J Mol Biol,2006,3(62):623-639.
    [71]Donati RJ, Rasenick MM. G protein signaling and the molecular basis of antidepressant action. Life Sci,2003,73:1-17.
    [72]李卫东,杨秀岩,王远征,张敏,卢峻,图娅.电针对慢性应激抑郁大鼠行为学与海马组织cAMP含量的影响.中国行为医学科学,2007,16(12):1060-1063.
    [73]张晋碚,黄兴兵,关念红等.广泛性焦虑症与抑郁症患者免疫、内分泌及单胺递质的对照研究[J].中华精神科杂志,2004,37(4):211-214.
    [74]Poulsen DJ, Harrop JS, During MJ.Gene therapy for spinal cord injury and disease [J].Spinal Cord Med 2002,25(1):2-9.
    [75]袁建华,何平.脑源性神经营养因子及其临床研究[J].医学综述.2008;14(2):117-179.
    [76]卢峻,时宇静,费宇彤,等.电针对抑郁症模型大鼠脑磷酸化cAMP反应元件结合蛋白表达的影响.中国中医基础医学杂志,2006,12(5):380-382.
    [77]Almeida RD, Manads BJ. Neuroprotection by BDNF against glutamate induced apoptotic cell death is mediated by ERK and PI-3kinase pathways. Cell Death Diffa,2005,20.
    [78]戴巍,李卫东,卢峻,阿英格,图娅Hippocampal activation of c-Jun N-terminal kinase, protein kinase B, and p38 mitogen-activated protein kinase in a chronic stress rat model of depression. NRR,2010,5(19):1486-1490.
    [79]戴巍,李卫东,卢峻,图娅.电针对慢性应激抑郁大鼠海马神经元凋亡及JNK信号转导通通路的影响.针刺研究,2010,35(5):330-334.
    [1]王永炎,张伯礼.中医脑病学[M].北京:人民卫生出版社,2007:243-344.
    [2]周仲瑛.中医内科学[M].北京:中国中医药出版社,2007:373-380.
    [3]田旭升.浅谈抑郁症与中医学相关疾病对应关系[J].新中医,2007,39(7):97-98.
    [4]安春平,程伟.近年来抑郁症的中医病机、证候研究概述[J].中医药信息,2007,24(1):12-14.
    [5]马学红,李卫东,许柯,等.电针对盐酸帕罗西汀治疗轻中度抑郁症患者起效时间及疗效的影响[J].中华行为医学与脑科学杂志,2011,20(2):4-6.
    [6]罗和春等,电针治疗情感性精神病疗效观察.中国针灸,1984,4:1-3.
    [7]Luo.HC etal. A comparative study of depression by electroacupuncture and amitriptyline. Acupunture:Scientific International Journal 1990,1(2):20-28.
    [8]郭爱松,李爱红,陈鑫.电针联合氟西汀对卒中后抑郁症患者抑郁状态及神经功能的影响[J].山东医药,2011,51(25):9-11.
    [9]徐世芬,庄礼兴.电针百会印堂对肝郁型抑郁性神经症的影响[J].现代中西医结合杂志.2010,19(15):1835-1838.
    [10]朱洁.电针治疗对脑卒中后抑郁症状和认知功能的影响[J].中国临床康复,2005,9(32):32-34.
    [11]王远征,淑沙尼克,宋萌,图娅.电针抗抑郁疗效作用特点分析[J].北京中医药大学学报,2010,33(3):210-213.
    [12]李光海,李斗江,张欣娜.头针电配合文拉法辛对焦虑抑郁共病的辅助治疗作用[J].临床精神医学杂志,2011,21(5):345.
    [13]刘方超.头针配合运动疗法治疗脑卒中后抑郁疗效观察[J].上海针灸杂志,2011,30(11):733-734.
    [14]彭慧渊,何希俊,赵明华Effects on activities of daily life and quality of life of post-stroke depression treated with electroacupuncture at temple-three-needle [J]. World Journal of Acupuncture-Moxibustion,2010,22(4):13-16.
    [15]姜劲峰,徐蕾,林燕红,等.基于SSRIs药物治疗的针、灸抗抑郁效应研究fJ].中国针灸,2012,32(3):219-223.
    [16]张卫,程绍鲁,林安基,等.针药并用对卒中后抑郁患者抑郁状态及日常生活能力的影响[J].上海针灸杂志,2011,30(12):823-825.
    [17]祝丰奎,赵军,丁勇.针药结合治疗中风后抑郁的临床疗效观察[J].针灸临床杂志,2010,26(5):10-11.
    [18]张振伟,路月霞,贾进辉.针药结合治疗脑梗塞后抑郁36例[J].辽宁中医杂志,2007,34(10):1462-1463.
    [19]王彦英,樊瑞.针药并举治疗抑郁失眠症32例疗效观察[J].新中医,2011,43(11):95-96.
    [20]汪冰霞,周树平,罗和春,等.电针合并抗抑郁剂治疗抑郁症的临床观察[J].北京中医,2003,22(4):5-7.
    [21]王亚军,张瑜,田永萍,等.针药结合治疗对慢性应激抑郁模型大鼠行为学的影响[J].中医研究,2008,21(11):12-15
    [22]张敏,图娅.电针对慢性应激抑郁模型大鼠学习记忆行为的影响[J].中医研究,2008,(3):19-22.
    [23]邱艳明,时宇静,图娅.电针印堂、百会对获得性无助大鼠不同脑区内单胺类神经递质的影响[J].北京中医药大学学报,2002,25(6):54-56.
    [24]张有志.电针对慢性应激抑郁模型大鼠大脑皮层5 HT1和5 HT2受体数量和结合活性的影响.中国针灸,2003,9(23):9
    [25]罗和春,周东丰,贾云贵,等.电针治疗抑郁症临床观察与实验研究[J].北京医科大学学报,1987,19(1):45-47.
    [26]陈华德,金灵青,娄冉,等.百会穴电针和埋线对慢性应激抑郁模型大鼠行为学及血清CORT和ACTH的影响[J].上海针灸杂志,2010,29(4):244-247.
    [27]张瑜,王亚军,田永萍,等.针药结合治疗对慢性应激抑郁模型大鼠HPA轴的影响[J].中国中医药科技,2011,15(3):5-9.
    [28]史榕荇,吴茜,秦丽娜,等.电针百会、印堂对慢性应激模型大鼠体重及HPA轴影响的研究[J].针灸临床杂志,2007,23(1):50-53.
    [29]唐胜修,徐祖豪,唐萍.电针对抑郁症患者血清甲状腺激素水平的影响.中华实用中西医杂志,2004,4(2):2007.
    [30]徐世芬,庄礼兴,唐纯志.针刺对抑郁大鼠行为学及神经内分泌的影响[J].时珍国医国药,2009,20(12):3137-3138.
    [31]时宇静,卢峻,费宇彤,等.电针对抑郁状态模型大鼠性行为及血清睾酮、黄体生成素水平的影响[J].北京中医药大学学报,2006,29(5):318-320.
    [32]周胜红.针刺对女性更年期抑郁症患者血清FSHE2的影响.辽宁中医杂志,2007,34(7):980-981.
    [33]韩毳,李晓泓,郭顿根,等.电针对抑郁大鼠中枢及外周单胺类神经递质的影响[J].中医药学刊,2004,22(1):185.
    [34]李丽萍,华金双,孙忠人,等.艾灸百会和太冲穴对慢性应激抑郁模型大鼠细胞因子的影响.中医药学报,2006,24(9):1757-1759.
    [35]卢金花,姜劲峰,王玲玲,等.电针治疗抑郁模型大鼠快速起效海马区BDNF-TrkB机制研究[J].针灸临床杂志.2011,27(5):51-54.
    [36]李文迅.电针对抑郁模型大鼠海马神经元凋亡的影响.中国中医药信息杂志,2005,12(2):33-35
    [37]韩焱晶,李文迅,贾宝辉,等.电针对抑郁模型大鼠海马脑源性神经营养因子基因表达的影响[J].中国中医基础医学杂志,2011,17(9):1004-1006.
    [38]段冬梅图娅陈利平.电针不同穴组对抑郁大鼠行为活动及海马p-CREB表达的影响[J].中国针灸,2008(28)5;369-373.
    [39]卢峻,时宇静,费宇彤,等.电针对抑郁症模型大鼠脑磷酸化cAMP反应元件结合蛋白表达的影响[J].中国中医基础医学杂志,2006,12(5):380-382.
    [40]李卫东,杨秀岩,王远征,等.电针对慢性应激抑郁模型大鼠行为与海马组织环磷酸腺苷水平的影响fJ].中国行为医学科学,2007,16(12):1060-1063.
    [41]韩焱晶,李文迅,贾宝辉,等.电针对抑郁模型大鼠海马一氧化氮-环磷酸鸟乌苷信号转导通路的影响[J].针刺研究,2009,(4):22-27
    [42]戴巍,李卫东,卢峻,等.电针对慢性应激抑郁大鼠海马神经元凋亡及JNK信号转导通路的影响[J].2010,(5):330-334.
    [43]李文迅,韩焱晶,陶娟,等.电针对抑郁模型大鼠海马神经元凋亡的影响[J].中国中医药信息杂志.2005,(02):36-38.
    [1]Murua VS, Gomez RA, Andrea ME, et al. Shuttle 2 box deficits induced by chronic variable stress:Reversal by imipramine administration. Pharmacol Biochem & Behav, 1991,38:125.
    [2]许晶,李晓秋.慢性应激抑郁模型的建立与评价[J].中国行为医学科学,2003,12:14-17.
    [3]郑晖,马光瑜,付晓春.帕罗西汀对抑郁模型大鼠空间学习记忆和海马ERK-CREB通路的效应[J].中国药学杂志,2008,43(16):1234-1237.
    [4]Katz RJ, Roth KA, Carroll B. Acute and chronic stress effects on open-field activity in the rat:Implications for a model of depression. Neurosci Biobehav Rev,1981,5:247.
    [1]张明园.21世纪中国精神病学的思考---由全球疾病负担研究引发的联想[J].上海精神病学,2000,12:1-2.
    [2]Murray C JL, Lopez AD. The Global Burden of Disease:A comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020 [M]. Cambridge (USA):Harvard University Press,1996:416-418.
    [3]World Health Organization. The World Health Report 1999. Geneva:WHO,2000:98-109.
    [4]米希塔梁·淑沙尼克,图娅.电针与百优解对照治疗抑郁症的临床观察[J].针刺研究,2006,31(4):242-243.
    [5]段冬梅,图娅,陈利平.电针与百优解对伴躯体症状抑郁症有效性的评价[J].中国针灸,2008,28(3):167-170.
    [6]贾守梅,路正仪,胡雁,等.社区老年抑郁症防治[J].中国全科医药,2005,8:203-205.
    [7]Hayley S, Poulter MO, Merall Z, etal. The Pathgenesis of Clinical Depression:Stressor and Cytokine Induced Alterations of Neuroplasticity [J].Neuroscience,2005,135:659-678.
    [8]Wong ML, Licinio J.From monoamines to genomic targets:a paradigm shift for drug discovery in depression. Nature Review. Drug Discovery,2004, (3):136-151.
    [9]Deussing JM. Animal models of depression. Drug Discov Today Dis Models, 2006;3(4):375-383.
    [10]贾宝辉,李志刚,卢峻,等.电针抗抑郁研究的模型探讨[J].针刺研究,2005,30(1):22-25.
    [11]许晶,李晓秋.慢性应激抑郁模型的建克及其评价[J].中国行为医学科学,2003,12(1):14-15.
    [12]Forbes NF, Caroline A, Keith Matthews etal. Chronic mild stress and sucrose consumption:validity as a mod el of depression Physiology & Behavior,1996.60: 1481-1484.
    [13]Forbes NF, Stewart CA, Matthews K, etal. Chronic mild stress and sucrose consumption: validity as a mod el of depression Physiol Behav,1996,60:1481-1484.
    [14]王玲玲,张建斌.针药结合治疗抑郁症的临床现状与研究前景[J].南京中医药大学学报,2006,22(2):130-133.
    [15]温乃义,王巍,杜维丹.电针对难治性抑郁症的辅助治疗作用[J].现代中西医结合杂志,2003,12(12):1250.
    [16]米希塔梁·淑沙尼克,图娅.电针与百优解对照治疗抑郁症的临床观察[J].针刺研究,2006,31(4):242-243.
    [17]周胜红,吴富东.针刺对女性更年期抑郁症患者的疗效及其对DA, NE,52HIAA的影响[J].中国针灸,2007,27(5):317-321.
    [18]娄渊敏,郭雅明.电针并小剂量马普替林治疗老年抑郁症[J].中国临床康复,2006,10(19):61-62.
    [19]李林森.抗抑郁药和抗抑郁治疗的进展.中国民康医学杂志,2003,15:685-687.
    [20]郑晖,马光瑜,许崇涛.帕罗罗西汀对抑郁模型大鼠不同脑区环磷酸腺昔反应元件结合蛋白的影响[J].中华精神科杂志,2007,40(2):113-115.
    [21]段冬梅,图娅,陈利平.电针不同穴组对抑郁大鼠行为活动及海马p-CREB表达的影响[J].中国针灸,2008,28(5):369-373.
    [22]马学红,李卫东,许柯,等.电针对盐酸帕罗西汀治疗轻中度抑郁症患者起效时间及疗效的影响[J].中华行为医学与脑科学杂志,2011,20:4-6.
    [23]黄薛冰,洪楠,杨琼.晚发抑郁症患者眶额回体积改变的磁共振成像研究[J].中国行为医学科学,2006,15(1):401.
    [24]Keedwell PA.Andrew C.Williams SC, etal. The neural correlates of anhedonia in major depressive disorder.Biol Paychiatry,2005,58(11):843-853.
    [25]夏军,雷益,周义成.慢性应激大鼠抑郁症模型的免疫组织化学和MRI研究[J].武汉大学学报(医学版),2006,27:83-86.
    [26]徐叔云.药理实验方法学.北京:人民卫生出版社,1994:641.
    [27]郭德玉,陈铁玉,李斌,等.不同年龄大鼠学习记忆能力及旷场行为比较[J].中国实验动物学报,1998,6:19-23.
    [28]Willner P. Validity, reliability and utility of the chronic mild stressmodel of depression:a 10-year review and evaluation. Psychopharmacology,1997,134:319-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700